List of Tables | Table 3.1: Comparison of computed data for the Ni ₂ , NiCu, and Cu ₂ clusters with experimental and other theoretical data | |--| | Table 3.2: The adsorption energy ($E_{co\text{-}ads}$ eV) of CO over Ni _{n+1} and Ni _n Cu clusters (calculated with various functional schemes), Ni–C ($R_{\text{Ni-C}}(\text{Å})$) and C–O ($R_{\text{C-O}}(\text{Å})$) bond distance, vibrational stretching frequency of CO molecule ($v_{\text{C-O}}(\text{cm}^{-1})$). The H, B, and T characters indicate hollow, bridge, and top sites | | Table 3.3: Analysis of conditions/factors affecting the magnitude adsorption energy and adsorption trend of CO over Ni_nCu clusters examined with PBE+D3 calculations 65 | | Table 3.4: Calculated d -band center (ε_d , eV), d -band filling (f_l , eV), and d -band widths (W_d , eV) for both the spin-up and the spin-down states of the representative cluster systems. | | Table 3.5: The spin-dependent effective Löwdin charge analysis of $Ni_{n+1}CO$ systems. The Δq^X (where $X=C, O, CL(cluster)$) is the effective Löwdin charge on the corresponding X atom/cluster, for which $\Delta q>0$ means loss of charge while $\Delta q<0$ is the gain of charge. | | Table 3.6: The spin-dependent effective Löwdin charge analysis of Ni_nCuCO systems. The Δq^X (where $X=C, O, CL(cluster)$) is the effective Löwdin charge on the corresponding X atom/cluster, for which $\Delta q>0$ means loss of charge while $\Delta q<0$ is the gain of charge | | Table 3.7: The co-adsorption energy (E_{ads}) of CO + O ₂ (2O), CO + O, and activation energy barrier (E_a) for CO oxidation over Ni ₉ , Ni ₈ Cu, and Ni ₁₃ clusters. The symbol * refers to the molecule/atom being adsorbed over the clusters | | Table 4.1: The average binding energy per atom $(E_b \text{ eV})$, mixing energy $(E_{mix} \text{ eV})$, second-order energy difference $(\Delta^2 E \text{ eV})$, and average bond length $(\mathbf{\bar{R}}(\mathbf{\dot{A}}))$ of $\mathbf{I_h} \text{ Pd_mCu_n}$ $(\mathbf{m} + \mathbf{n} = 13)$ clusters | | Table 4.2: Adsorption geometry, adsorption energy (E_{ads} , eV), structural parameters (distance between C–O1 (Å), C–O2 (Å), and \angle O1–C–O2 in degree) of adsorbed CO ₂ molecule over I_h Pd _m Cu _n (m + n = 13) clusters with Löwdin charge transfer (e) from cluster to an adsorbed CO ₂ molecule | ## List of tables | Table 4.3: The most preferable adsorption site, bond parameters, and the adsorption | |--| | energies (E_{ads}) of different species over the Pd ₅ Cu ₈ cluster | | Table 4.4: Activation energy barriers $(E_a, \text{ eV})$ and reaction energies $(\Delta H, \text{ eV})$ of | | elementary steps in CO ₂ hydrogenation over the Pd ₅ Cu ₈ cluster | | Table 5.1 Calculated <i>d-band</i> center (ε_d , eV) and <i>d-band</i> filling (f_l , eV) for both the spin- | | up and the spin-down state of each atom of the clusters supported over Cu ₂ O(111) | | surface |