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CHAPTER V

STATISTICALLY AVERAGED INVERSE ENERGY

WEIGHTED SUM=~RULES

Sum=-rules in spectral distribution methods are encounted
in two different ways. First, if an excitation operator O acts on .
an eigenstate with energy E of a hamiltonian H, then the expect-
ation value of OF 0 as a function of energy E, corresponds to
the non energy weighted sum and gives us the expression for the
total strength of the excitation operator O, acting on the
eigenstate E. The linear = energy - weighted sum given by the
expectation value of O * HO as a function of E, relates to the
centroid of the strength distribution. Similarly, the quadrati-
cally - energy - weighted sum (expectation value of o" HQO as
a function of E) has the information about the spread of the
strength with respect to energy. Single nucleon transfer
provides as example for such sum rules. Secondly, the sums arise
when a hamiltonian H is perturbed by a small operator «K, Wﬁe;e
Kis merely a multiplicative parameter. In this case the
expectation value of K2 as a function of energy E is related to
the width of an eigknfunction of H at E, when expressed in
terms of eigenfunctions of K, Perturbation of H by any operator
provides an example of the second kinde S0 far not much attention
has been paid‘to the inverse - energy -~ weighted sums. This is
partly due to.the notion that one hs to deal with Green's

function and complete solutions of the problems, for obtaining
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fnverse - energy = weighted sums. However, recently HalemaneSg)
applied the spectral distribution methods to the Rayleigh-
Schrodinger perturbation theory and obtained expressions for
varieties of inverse energy weighted sums. Our purpose is to
rederive his expressions using a different procedure. In the
first section we discuss the new and simple procedure to cobtain
inverse - energy - weighted\sums. The second section deals with
the central limit theorem (CLT) limit for the rule., Its extension
to configuration spaces is discussed in the third section. We
apply these rules in the fourth section to correct the g;ound
state energy estimates when an effective interaction is

approximated b& lineaxr sum of well known operators.

A.  THECRY

The eigenvalue density of a Hamiltonian H in a finite
dimensional space is always discrete. However, the spectral
distribution methods which generally deal with only few lower
order moments, assume a continuous density of states, §(E).

It has been demonstrated that when the higher order moments
are not taken into account, it amounts to ignoring the level
to level fluctuations, Ratcliffe's procedure provides us a
method to generate a smoothend (fluctuation free) spectrum
from the continuous density function which in turn is

expressible in terms of few lower moments (traces of
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th

powers ef Hamiltonian matrix). For example, the n level

starting from the ground - state i1s given by

n -1/2 = d SE“ §(x) dx = dxF (E)
- 0

where E  is the eigenvalue (smoothened) of nth level, d is
the dimensionality of the space and F is the distribution
function. If a small operator K is added to H, this pertur=-
bation will shift the eigenvalues. The new set of eigenvalues
can be obtained by the same procedure with the state density
function ‘ggx), which is characterised by few lower order mements
of H +XK. We denote ntb, eigenvalue of H by En,o and corres=
ponding eigenvalue of H +« K by En,d_‘ The value of the
distribution function is same for both these eigenvalues; we

denote it by pe.

En,O
[ _};x) dx = Fa<=o(En,O)=p=Fo<(En,o<§
Y #4
e
En;%
~.~.f €(x) ax .. (1)
A
- 00

It should be noted here that, the statistical methods involved
here naturally invoke the principle of rigidity (non-crossing

of levels). For small values of ¥, the shifted eigenvalue E X
’
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can be written down as a series in powers of«, the coefficients

of mth

power of «denoted by S (En,o)’ where En,O is the
unperturbed energy.

2
E = En’o + A8, (En’o) +

n, o 32 (En’o) + va .o (2)

The coefficients S (En O) are explicitly -given by ‘the Rayleigh=~
4

Schrodinger perturbation expansion

oo (30

2
_ 2 <En OIK[Em O>)
En,o = En,0 +¢<<En’o [K isn,0>+ xﬁ%i ; s

my0 En,0

Thus 51 corresponds to the expectation value of K and 52 is

the inverse energy weighted sum of the strength of the operator

K. Spectral distribution methods provide the smoothened
expressions for these coefficientsj to obtain these we turn

to equation (1). Differentiating equation 1 with respect to«,

we get (since we are interested in smooth forms, we drop the state

index n from now on).

E
op dE, * 2 8((x)
i TR A L el
E«
- 2B 4 oS (4)
o ] ag{ f(&)\ a’°< ]
e \ - 0%
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In the limit - 0, we have

Eoy
O - S«
A= g(ﬁo) - A=D .

Now the integration limits do not depend on o , hence inter-
changing integration over x and d@ifferentiation with respect

toX, we obtain,

o E E
aof/ * T ey {é% 7 8% d"]
o =D 5 %o ~ x=e
1 )
R =~ Fx (EO) b (5)
9 (EO) [ad J g = O
Comparing this with equation 2 we obtain,
K(E)= 5 (E) = = =t 2 Fy (E)J
1 0
g (EO) 34 K= D

where K (E) is the expectation value of K at E. This result was

37)

originally given by €hang and French . Differentiating equation

(4)again with respect to & gives

z E
OB 4 (e s ax o+ U
o2 S;(Ea() 3x2 590((5&) o«

- X= Eo<
Ex E
o §d(x)dx 1 o5« (E() f WZ%(X) dx .. (6)

2
o« g&(go() X
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One has to be careful about keeping all the terms which depend

on &, For example ~i%§§#£5i2 can be written as
>S4 (Ex) 5 { 2 §, (xg)
—_—= " . £ O(E.) + —=2-2"1 (E, - E,) +
bd- oA X0 S x e E, A 0
2
5.2 +es eo (7)
2 X x=Eq

Substituting equation 7 in equation 6 and then taking the limit
as - 0, we obtain
2
o Ey
oK 2

= - 1 =
Sp(8) = 1/2 2 % S(Ey) ( aFo (B ))x~

F,(E.) ] \2
a%{é'(})<aaof 01)}] .. (8)
0 0 A

=0

As mentioned aarlier, this result. was given by Halemane.
We have rederived it beginming with the Ratcliffe's proceduresg).
Since the purpose here is to provide an alternative method of -
deriving the results originally given by Halemane, we merely
state that the expressions for Sm (EO) for higﬁer values of m

can be similarly obtained.



B. THE CLT RESULT

The role played by the central limit theorem in Spectrai
distribution methods has been well established and discussed
at various places. As a consequence of CLT, we can write the
eigenvalue density function as a Gaussian, defined by its
centroid € and width o, The CLT also allows us to assume thg;; .
when the hamiltonian H is herturbed by a small operator«K,
the new eigenvalue density still remains a Gaussian but .with
different centroid & (%) and different width o (X), The change
in centroid merely shifts the eigenvalue spectrum while the

width change corresponds to the scale change.

E = {HY> , (%) = <{HY+KLKD
2 = HP> - <H¥
e2(o) = <(H +oLK)2> - (<H +=xK>)?

c~2+2o<§o- oy ¥ 2 <s~2K

where € is the correlation coefficient between H and K and
U?K is the width of eigenvalue density function corresponding

to the operator K. The scale cha?ge parameter A is defined by

A:—.(-i‘;‘_ﬁ:"—"l~1)=(1+2o<§ oxlo + 2 G‘2K/O“2)%"1 .. (9)

Thus if we take into account these two changes, from the
eigenvalue EO corresponding to unperturbed hamiltonian H we

can obtain the eigenvalue E ,as
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Ex = Ey +X<K> + (Ej-&)X .. (10)

Merely expanding the parameter A\ as a series in gives:2 5
L K _5°K

Eo( o= EO +A KD + OQ(EO-E)g O"K/O,.+ (EO—E) == ( 2 - )

2
= By +KKO + «S0u /o (Eg=€) + %5 ( Eg=8) (1 =F) o7 /a®

Thus it immediately follows that in the CLT limit we have
8, (Ep) = <K> +Zop/o (Ey =€)

(1-P) (g, ~&)o/207 o (11)

i

s, (Eg)

The same expressions can be obtained using equatioﬁs (5) and
(8) if the distribution functions F and F, are takento be

Gaussian.

C. EXTENSION TO CONFIGURATIONS

The arguements based on the centroid shift and scale
change for calculating 5, (E) and S, (E) are easily applicable
in the scalar space. If we partition the space according to
some symmetry group, we cannot use these simple arguments. Let
us, for example, decompose the space into configurations. The
over all state density S(E) (assumed to be gaussian and hence
completely described by its centroid EO and width 55) is then
the sum of all intensities of configurations into which the

space has now been subdivided. Thus,
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QE) = T ¢ (B) §&¢ = Z 1%E)

with dc being the configuration dimensionality and D =gldc

is the total dimensionalily. Each térm in the above summation
corresponds to the intensity of the configuration ¢ in the
eigenvalue distribution at energy E. Further, we assume that
each pariial state density is a gaussian (higher order
configuration moments are usually not easy to calculate

because of two reasons : (i) number of configurations involved
are prchibitively many (ii) with increasing order of moments,
computer time increases at a mueh faster rate, and hence if one
pleads complete ignorance of higher order moments, it turns out

that natural choice is a Gaussian) and can be written down as
: E=-2&, (c) 2
c 1 9]
(E) = —— exp ( - 1/2 {
5 [57 oy (c) 55 (©)

where Eo(c) and db (c) are configuration centroid and width

respectively. The corresponding distribution function is
E

E
F (E) =Z—d——§-—- g e® (x) dx = % J I (x) dx
Z oo ! oo

Now, when the Hamiltonian operator H is perturbed, the new

state density ELJE) corresponding to the perturbed hamiltonian

operator H + «K is given by &(E) = % Ig( (E)
de/D E~-&(c) 2
— Z [T exp ( - 1/2 ( ...........__3(___) ) Teo (12)

¢ /2T gle) o (c)
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The corresponding distribution function is

c

E
Fy (E)= 2 J 1S (x) dx

- OO

E
Fu (E) = 2 de/D gg: (x) ax .. (13)

-

The calculation of €(c) and oy (c) is straight forward.

By definition we have, &,(c) = <HX +«<K>°€

A
= &, (c) +<k>%x .. (14)
(5‘3 (¢) = <(H +o<K)2>° - (<H +«<K>%) 2
=°’62(c)+ 2 5, oylc) 0’5(c)0<+o<207<2 (c) .. (15)

where o, (c) corresponds to the configuration width of the
unperturbed Hamiltonian H, o (¢) is the configuration width
corresponding to the operator K and ”§C is the correlation

coefficient between the operators H and K in the configuration.

Partially differentiating both sides of (13) with respect
to Land interchanging the integration over x and differentiation

with respect to «£(since integration limits do not depend on «)
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e

we have E
o Fy (E) ‘ 3 .C .
- 00

We are now in a position to define 81(}3) and 82(5) in

configuration spaces.

o 1 O Fe (E)
S, (E) TS * == ,(,___

2 P 2 2
§,(E) = = —1 *E"" <E>/ Sl (L () >}
2 22 1%(E) (9«2 " < =0 SE | Z 1%() o< ‘

oe (17)

Using equation (12) = (17), we can derive explicit expressions

for S1(E) and SQ(E) in configuration space. For ease of calculation:
we consider a single term in the expression (12) and perform the
summation at the end of the calculation. Partially differentiating
Io(c with respect to «, we have

9 1% _ 21 3522 () 51 3 & (c) 0)
ad - Jg2 o - | JE O o S
o (¢) ()

where 3&(¢c) and 5 g_<(°) are obtained from (14), (15) by

partially differentiating both sides of the equations with respet
'to o{ » These partial differential coefficients turn out to be
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o & (¢c)
o _ ¢
P = {K>
2 2
o g {c) (c) oy~ (e¢)
reu = 2 op? (o) (S -+ Kyt )
GB (C) GPO (C)
¢ © 4 4C
Similarly the terms 21X ang —2LIX  can also be
252 (c) OF (c)

obtained by partial differentiation of IS* with respect to
<q§ (c) and igﬁc) respectively. Substituting the various tkrms

in (18) we have

1€ - & 2 -
2; =1 exp (= 3 < (e) )[<K>° ( == 265‘(0)) *
J2m g (e) 20.7(c) s (¢)
2 2
sp_ (¢) (5, oy (€) . < K (¢) ) {( X Er,((c)>2_ ﬂ
a2 (c) o5 (e) a52(¢) % (¢)
.o (19)

Taking limit asJd—»>0 on both sides, we get

- £ 2
exp ( - L x o {¢)) 2

2 o (e)

c
sly \ _oa
o oA =0 J2m °o (e)

{<K>° & “'§o (C)) . {( X= Eo(c))z _ 1} T 9K (C)}

gole) ¢ o ()

Integrating both sides with respect to a standardized variable
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X -50 (c¢)
ap (¢)

in the limits = «and E, we have,

215 (x) x| f %2
f"é'?-?m{?/: (c) O:Xp(z)*

[(K)c % + (X5=1) Se Ck(c)] dx

where d® = dx/ o(l:) or

E
g an( (x) dxr 4 E-§, (c))2f N

E-Eo(ch a&<«0‘
= S

[<x<>° + T ok (€) % ( ee  (20)

o (c) 0

Now -5——-—--—-1 can be obtained by summing the above

oF« (E)
expression over all the configurations., Substituting - yramnn

o{:o
in (7) we have

& I%(E) x XK>C + 3 ople) = (=1 -EO (C) )b
- .. (21)
$,(E) =
2 1(E)
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For calculating 52(}3) in the configuration space, we use the

second one of the equations (17)

32 F, (E)
S,(E) = [ -
22;':(5) S o2 420
) 1 o  F, (E) 2 7.
2 (2 Fx j ) ]
c Sed .o (22)
OE g_l (E) i
2
The first term contains -a-—-f:—:-—-@l! « To calculate this
0 A =0
9 2 c .
term we need to calculate =%— I (x) |« e have jusing (19)
o o oK, =
5, 9Ig (x) 2 Ty (T, + Ty + 1y (22 é"’s
g‘;"(-.g\-;(- ) = 5= 1 V2 3 1 v )
(x = "5'3.,‘((6'))2
where T, = I% (x) = de/D_ exp ( =
! « 27 o (c) 25:2(c) )
x = & (¢)
Ty = <K¥ (——=—")

52 ()

Ty= oy (c)( 5 5k () ,,,L"“Kg (c) )( x = &le)
55 () o2 (e)

where, as PBefore, we have used only one term in the summation
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%Ic (x)s Now

T
gﬁ.’il" = H U =T (T
3T, LK>® { ¢ x=Z(c)
d 0"02( (c) g /+ o (¢)
2
ok (c) ok (c) ]
A &
(2% =0 752 (o) ) 5" (@)
2
SR (u wr ),
ot 2 (e) o2

{_—_-__g <KE (x =S(c)) +2 0y (c)( K (c) .ol ‘57(2(0) ) -

03 (c) I (c) 0”2 (c)

( 1 2 (x- Eo((C))2):i Taki limit A0, the
- . faking m as »
A (c) o, (¢)

above expressions reduce to

I K> € [<1<>° +2 (x= &(c)) 5, oy (c)]
(c)

7% ()
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2
3T3 2 (x “'56(0)) 1

{- 2<KX° (x =& (c)) 2 oy (e) 3, ogle) =
y; +
op  (e)

(o - )

% *e)

-

0T, OT
[T1 (Ty+Ty)(Ty+T,) + T, (a 2 4 3)J

[71 { (T2+T3)2 aT3 1}:)

e oI oT3
Substituting the values of T1, '1'2, T3, Fyva and >

~n X =% (c)
limit >0 and writing x = s We have
S, (c)

82 c
22 5w -
< o, =0

in the




32 ¢ 1 a2
— I (x) = exp (= %%/2 ) %
a2 T a0 VAR e

{He, (®) 3.2 o3 (c) + 2 Hey (X)<KF T o (e) +

He, (%) { ( <K>°)2 +d¥<(c)J}

where He, (X) are Hermite polynomials. Now

E
2
2°F_, (E) 2 j
L= 0 - 0 K =0

Carrying out this integral using a standardized variable
~ E ~EE) (c)

X and writin E¢ = h
iting = (e , We have

a %, (E) ~
\ (c) IC(E){ 7.2 03 %(c) Hey (Ec) +

24KF 5, op(c) Hey (Ec) + <k2>© He, (Ec)} o e (23)

Now, the second term in the expression for 52(5) is

_ 3 1 oF, (E)

« =0

) f where, again for ease of

calculation we have considered enly one configuration. This can
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be written as

F, (E 2 1%(E 2 F, (E)
1 2(::()’*5" (8) _ AL
[1°(E)] 420 E 1° (E) 40
()
ey
A =0
IF.
23 2 °<'
- GEZE f®ezs @& (51 ) e
4 =0

This expression can be stmplified by substituting the. values of
various terms by using equations (12), (20) and (21). Finally
putting together all the terms from (24) and (23) in (22) ws

and summing over all configurations we get



1° (B) ¢ 4 2 _ 2 .
sp(E) = 2 | T O () ey o)

2<K>°§'c ok (¢) He, (Ec) + <K2> © He, (gc)) +

¢ E 1° (E ~
1/2 2 DB 4{2 ) (<KY® + 8 oyle) He1(Ec)))2
S 1(E) oyle) I (E) .
1° (E n 1°(E)
-2 ( )(<K>° +, ogle) Ec )g *
I (E) I (E) op(e)

(<K Be 45, o2(c) He, (Ec))

This is a very useful result as we shall see later in the.
next section. A large variety of effective interactions for s=d
and f-p shell have been studied by quantitatively analysing their
quadrupole and pairing properiies41). This has been done by
generating an empirical interaction as a linear combination of
the quadrupole and pairing operators, and by comparing the
effective interactions via their correlation coefficients with
this empirical interaction. A comparison is also made between
the low lying states of the spectrum generated by the effective
interaction and those obtained by various empirical interactions.

We have used a somewhat similar approach to correct the estimates
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of the ground state energies thus obtained. We notice that

the expressions for 81(E) and SZ(E) depend on the parameters

of the original Hamiltonian H, the perturbing Hamiltonian«<K

and the correlation coefficient be{ween the two in the corresp-
onding space. Thus knowing the estimates of ground state energy
Eo made by an empirical interaction hamiltonian H, the parameters
of the perturbing hamiltonian and the correlation coefficient
between the two operators, S, (E) and SQ(E) can be calculated
to.give corrections to the estimates of EO. Analytic expressions
in scalar and configuration spaces and the results of calcula-

tions are given in the next section.

D. CORRECTION TO GROUND STATE ENERGY ESTIMATE

Given an effective interaction Hamiltonian He and an
empirical interaction represented by ﬁM; since the empirical
interaction is an approximation to the effective interaction,
we can write Hp = Hy +AK = Hy + Hp where K = Hp corresponds

to the Hamiltonian of the perturbing interaction,

If E0 is the ground state energy estimate obtained by

using the empirical interaction, then S, (Eo) and S, (EO) will

st

provide the 1 order andv2nd order corrections to it, which

have their origin in the neglect of the perturbing Hamiltonian



HP’ As is evident from their expressions, we need the correlation
coefficient X MP between the empirical and the perturbing
hamiltonians HM and HP respectively. This can be obtained from

the definition of g{orrelation éoefficientM) in a given space«X .,
<y Hp» ~
Tom = - where H = H = <H>is the traceless

MP © ~ ~ ok
2 2584
[< HM > < HP >j part of He The centroids and widths

of the operators HM and HP are éM, O’M and Ep, 6; respectively,
Further, we can assume without loss of generality that E-P= EM.

Therefore - ~
¢ . <{Hy Hp>  <Hy Hp = <_Hm EM?
MP ~ -

M P M4 °p

Now(ﬁM §F>can be written in terms of the correlation coefficient

< mp between H, and Hp which is known and maximised*! ) .
| 2
. T . cMECM TF M
MP M °Pp M 9P

We also note that‘HM and HF have the same widths i.e. O’éf O"E
41

by a condition which demands that they have the same norms ).
. S

= M -
o o S.MP - O—P (S—MF 1 ) ”e LN ) (25)

Now S, (E) in scalar space is given by
Sp

Where we have made the following substitutions
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<K> = <Hp>=<(H=H)> = 0

ay — -
K = °pr 9 = oy in (11) ..

Assuming & =&, =&, = 0 and substituting the value of FMP
from (25) in (26) we have 5, (EO) = = (1= EMF) Eqy

Since gMF is always less than 1 and Ej is = ve, S1 (Eo)
gives a +ve correction to the ground state energy EO‘ Again

from equation (11), S, (Eo) = (1—§?MP) (Eo-'E)<52/ 2<rﬁ2

Following similar arguments as for 81 (Ea) and observing that

2 L~ ~2 . 2
op = <(HF - M),>--- 2 op (1= SMF) we get

S, (Ey) = E0/2 (1 -:Szmp), which, as can be clearly seen,
is a =ve correction to the ground state EO‘ The total correctién

is given by the sum of S, (Ep) and S, (Eo) and is found to be

S, (Eg) + 5, (Ey) = = Eg/2 (1= 50 .. .. (27)

which is +ve. These are the expressions for scalar space, Similar
analytical expressions can very easily be obtained for

configuration spaces also.

Starting from the definition of correlation coefficient,

we have in configuration spacee

1
Suplc) = ;;(—c) (Quple) ogle) = oyle) ) | .o (28)
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»e

where all the quantities are to be evaluated in configuration
space. More over G'M(c) # O’f_.(c) contrary to the case of scalar.
space, This is so because the condition of equal norms ip

imposed on the overall density and not the partial densities

into which it is subdivided. Therefore the configuration centroids
'EM (¢) and EF (¢), corresponding to Hy and Hp are also different

Consequently, we have to evaluated‘lg(c) explicitely.

Pd

p2e) = <H2>C = () = (<Hp> = <H»))? >

2

_ 2 - 2 2
-«<(HF + Hy 2HFHM+(<HF>) +(<HM>) -2<HF><HM>

C
= 2 HedHp> + 2 Hy <HD> + 2 H<KHY = 2 B <Hp >

Now writing HF SE EJF + EF(c), HM = ﬁM + EM (c)

and performing the éverage over all configurations, we get

ope (c) = 552(c) +E.2(e) + o32(e) + £2(c) = 2 Tyrle) Sx(e) ox(e)

-2 EF(C) %(C) o (:2
(29)

Substituting S‘MP (¢) from (28) for Se in (21) and making the
. . c
substitutions <KX =<Hp® = dHy - Bt = E(c) - Eylc)

<'5“K(c) = d}gc), % (¢) = dﬁ(c) we have,
s I.(E) ° : E-& (c)
5(8) = F ——— (&le) = §le) + Sup(e) Tple)N ) =9
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Similarly S, (E) can be deduced from (22) and we have

s I° (E), 1 2 2 -

2 (&le) —<%“(c»fiup(c) o5(c) He, (Ec) + «<HP2>° He, (Ec) ))

LaN
1° (E) _E 1%(E _
v12 1B B <25Tf'e'§‘ (Egle) = Bylc) +

gmp(c) Sp (c) He, (é&)i)z - 1/2‘2;—%f?é§l (é}(c) = Eyle) +
Sup(c) %p(e) Ec) % = —?—(—S—l ( (Eple) = E(c)) Ec +

~ E = EM(C)

Suple) 5 () He, (Ec)), Ec = e (31)

aylc)

Equations (30) and (31) can be further simplified by substituting
S uplc) from (28).

We have used the PW interaction as the effective interaction
HF’ in the spectroscopié space of (s=-d) shell with 4 particles.
Kota et. al. (1980)41) have constructed 5 empirical interactions °
in various spaces. Here we just give a brief description of these
interactions. The common feature of these interactions is that
the 2 ~ body part of each empirical interaction has been expressed

as a linear combination of the guadrupole and the pairing operators,
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The first empirical interaction, represented by H_, is

st
given as Hgy = ESPE + a{m) HQ + b (m) Hp where ESPE are the
external single particle energies (same as thoseof effective
interaction), a {m) and b(m) are coefficients depending only
on the number of particles m and the averages in scalar space,
HQ and HP are the 2 = body parts of quadrupole and pairing

operators.

When the same procedure is followed by taking averages
over all states with fixed m and fixed isospin (T), the values
of a and b depend on m and T, In this case the empirical

interaction is denoted by

Hgyq = ESPE + a(m,T) Hy + b(m,T) Hp.

Now if we take into account the induced single -
particle energies (ISPE), we get another empirical interaction
Hgp = ESPE + ISPE + a Hy + b T
where;ﬁé and/ﬁ; represent the unitary rank 2 parts of the
quadrupole and pairing operators respectively. In this case ESPE
and ISPE are the same as those of the effective interaction.

If the calculations are done in scalar T space, then we have to

take into account the isospin induced single particle energies,

For this purpose, we have the followihg empirical interaction.

Hyyp = ESPE + isospin ISPE + a (m,T) Hy + b (m,T) Hp
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Here;ﬁb and ﬁ; are the tensor rank - 2 parts of HQ and HP
respectively, with respect to the group U (o) (:) u (2).
(=3 i, <%, = 1/2 N;, N; = degemracy of the spherical

oxbit i)o

In scalar isospin space, T = 0 and T = 1 parts of the
irreducible rank =~ 2 operator propagate independently. This

property has been exploited in the definition of

= ; s05pi ETe1,, 5T=1, &T=0
Hst3 = ESPE + isospin ISPE + a HQ + b HP + eHQ

For all the empirical interactions thé values of the coefficients
a and b are calculated by maximising the correlation coefficient
§’(HF, HM) inﬁihe corresponding spaces, along with the conditions
<T? = U*M where <o corresponds to the width of the correspond-

ing operators.

Using these interactions (Kota et. al. (1980)), their .. .-
correlation coefficients with respect to vgrious effective
interactions in the s~d and f-p shell have been calculated and
maximised., Estimates of ground state have also been given by
making use of the empirical interactions so generated. We have
used their results forPW interaction for our calculations in

scalar and configuration spaces.,

Me ¥
The PW interaction gives rise to a binding energy of = 40,6 Me
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while the five empirical interactions41) (in the order Hs?’ Hs2’
Her1r Hgpoo Hsts) estimate it at - 45.8, - 43.8, - 43.2,

- 47.0 and - 46,1 (all in MeV) respectively., The corresponding
maximised correlation coefficients'FMP are found to be 0,799,
0.846, 0,806, 0.855 and 0.858 respectively. Using the equation
(27) we have directly calculated the total correction to the
ground state estimates given by each empirical interaction. in

scalar space. The results are given in the Table V.

However, for the calculation in configuration space, we
have used only two of the five empirical interactions described
above, The first one is Hs2' It is generated in such a way that
it has the same external and induced single particle energies as

those of the ieffective PW interaction.

Hgp = ESPE + ISPE + a Hg + b Hp .. (32)

:ﬁQ and'ﬁé are irreducible rank ~ 2 (V = 2) parts of the
quadrupole and pairing operators respectively. The ¥= 2 '2 body
matrix elements (TBME) corresponding to any hamiltonian are

given by

+ A ) Slk 5 where

ijkl (v=2) V?ijl =3 (X

“igkl ngkl - Vobix $q1

vIT

1jk1 are the TBME and Vb are the centroid of the TBME, given by
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[ 2]

p T
V. o= -8 ngi_iﬁﬂ s (311 = (27 + 1) (2T + 1),
¢ N {N-1)/2

N=3;N, N =2 (233 + 1 )s i,jsk,1 are the sperical
orbits, N; are their degeneracies. )si correspond to the
induced single particle energies and are given by

e - L € A T SR

: ij
Ny iJT

L T JT) (1 +6§;.)
N k1JT Eikl Sp i3°*

The coefficients a and b in equation (32) are calculated by
maxjmiszing §MF in the corresponding spectroscopic space along
with the condition that d"}; = Oye However we have used the values
of a and b corré@sponding to the PW interaction given in reference ’
. 41 directly. They are = 0,107 and 0,160 respectively., ESPE and
ISPE are the external single particle energies and contribution
due to the induced single particle energies )‘i of the effective
PH interaction respectively\. Thus, first we generate Y= 2 part
of the Q.Q and pairing hamiltonians. Then by adding the ESPE
and ISPE of PW interactions, we get new TBME whose V= 2 part
is a sum of 77? 2 parts of Q.Q and pairing operators and ESPE
and ISPE are those of the PW interaction.

= The second empirical interactior that we have used is Hst3'



The coefficients a,b and ¢ are calculated by the same procedure
as mentioned earlier. However for PW interaction we have adopted
them directly from the results bnlreference 413 they are = 0,075,
0,316 and =~ 0.113 respectively. ESPE are the external single
particle energies and isospin ISPE corresponds to the contribu-
tion of isospin induced single particle energies, which are given

as

S

AT =L JT ) -
i Q éaJ ViJlJ fJ) Q’ + 513)

1 T
"y k,Zl,g Vit K93 (1 +8y)

_ T is the isospin of the 2 - particle state,n; = 1/2 N;» and
L£O0= :§ ~2;. ESPE and ISPE here again correspond to those of

the effective interaction.

The configuration centroids and widths & (c), o (c¢) for’
effective interaction, each empirical interaction and the
configuration correlation coefficients Slmp(c) were evaluated
by using already existing comphéer programs43). Using equations
(30)2(31) we calculated S, (Eg) and s, (EO) and the difference
A between the ground states given by the effective interaction
and the new calculated results. The results are tabulated in

table V.

Eg.s OLD corresponds to the ground state energie obtained
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by approximating the effective PW interaction by 5 model

41)

interactions » and A OLD is the difference between the

Eg s given by the PW interaction and those given by the five
empirical interactions. On the other hand E NEW are the

g.s 1
bind%ng energies obtained as corrections to Eg OLD by

s
using the inverse energy weighted sum rule theory developed

in the previous section. 2O NEW correspond to the corresponding
difference between the binding energy of PW interactién and

those obtained from the empirical interactions. The last two
colud@ in the table V give similar results for thé configurat-

ion space. We regret that due to non awailability of data, we
could not calculate the correction to ground state energies

for the remaining three interactions. However the results we

have obtained seem to be very encouraging. As is obvious from

the table,& - the difference between Egos of effective and
empirical interactions has reduced successively from - 3.2 to -2.7
in scalar space and from -~ 2.7 to -~ 0.83 in configuration space.
Similarly, for the last interaction, from = 5.5 to = 5.0 and

bad 5.0 to - 2.1

Thus we see that spectral distribution methods when applied
to perturbation theory, give very good results for corrections

to estimates of ground state energy given by various empirical’
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TABLE -~ 5

Corrections to ground state energy estimates obtained by
applying spectral distribution methods to Rayleigh Schro-
dinger perturbation theory. Results are presented for
scalar and configuration spaces. The effective interaction

used is the PW interaction with binding energy - 40,6 MeV,
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TABIR =~ 5

GROUND STATE ENERGY CORRECTIONS USING
S,(E) AND S,(E) IN

SCALAR ( SPACE ‘ iCONFIGURATION SPACE
{ i Ve o \
Eg.s 6LD A OLD Eg.s NEW A NEW Eg.s NEW A NEW
- 45.8 - 5.2 - 4409 - 4.3
o 4308 - 3.2 hend 43.3 - 2.7 - 41 04 - 0083
- 4302 - —— 2‘6 - 42.4 - 1.8
- 47.0 N - 604 - 46.5 - 5.9
- 46.1 - 5.5 - 45,6 = 5.0 - 42,7 - 2.1
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interactions, The results improve considerably when the

calculations are done in the configuration space.



