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CHAPTER V

STATISTICALLY AVERAGED INVERSE ENERGY 
WEIGHTED SUM-RULES

Sum-rules in spectral distribution methods are encounted 

in two different ways. First, if an excitation operator 0 acts on . 
an eigenstate with energy E of a hamiltonian H, then the expect
ation value of G+ 0 as a function of energy E, corresponds to 

the non energy weighted sum and gives us the expression for the 
total strength of the excitation operator 0, acting on the 
eigenstate E. The linear - energy - weighted sum given by the 
expectation value of 0 + HO as a function of E, relates to the 

centroid of the strength distribution. Similarly, the quadrati- 
cally - energy - weighted sum (expectation value of 0+ H^O as 

a function of E) has the information about the spread of the 

strength with respect to energy. Single nucleon transfer 
provides as example for such sum rules. Secondly, the sums arise 

when a hamiltonian H is perturbed by a small operator =<K, where
o<is merely a multiplicative parameter. In this case the

2expectation value of K as a function of energy E is related to 
the width of an eighnfunction of H at E, when expressed in 
terms of eigenfunctions of K. Perturbation of H by any operator 
provides an example of the second kind* So far not much attention 
has been paid to the inverse - energy - weighted sums. This is 
partly due to, the notion that one lies to deal with Green's 
function and complete solutions of the problems, for obtaining
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inverse - energy - weighted sums. However, recently Halemane 
applied the spectral distribution methods to the Rayleigh- 
Schrodinger perturbation theory and obtained expressions for 

varieties of inverse energy weighted sums. Our purpose is to 

rederive his expressions using a different procedure. In the 
first section we discuss the new and simple procedure to obtain 

inverse - energy - weighted sums. The second section deals with 
the central limit theorem (CLT) limit for the rule. Its extension 

to configuration spaces is discussed in the third section. We
apply these rules in the fourth section to correct the ground

%

state energy estimates when an effective interaction is 
approximated by linear sum of well known operators.

38)

A. THEORY

The eigenvalue density of a Hamiltonian H in a finite 
dimensional space is always discrete. However, the spectral 
distribution methods which generally deal with only few lower 
order moments, assume a continuous density of states, f(E).

It has been demonstrated that when the higher order moments 
are not taken into account, it amounts to ignoring the level 
to level fluctuations. Ratcliffe's procedure provides us a 
method to generate a smoothend (fluctuation free) spectrum 

from the continuous density function which in turn is 
expressible in terms of few lower moments (traces of
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powers a£ Hamiltonian matrix). For example, the n level 

starting from the ground - state is given by

E
n -1/2 = d fn f(x) dx = d * F (En)

_ oo
iLwhere En is the eigenvalue (smoothened) of nu level, d is. 

the dimensionality of the space and F is the distribution 
function. If a small operator <*K is added to H, this pertur
bation will shift the eigenvalues. The new set of eigenvalues 
can be obtained by the same procedure with the state density 
function '^(x), which is characterised by few lower order moments 
of H + ®<K. We denote n^. eigenvalue of H by §n Q and corres

ponding eigenvalue of H +°c K by Efl ^ , The value of the 
distribution function is same for both these eigenvalues; we 
denote it by p.

:n,Q

00

f<x) dx - F,._o<En;0) = P = F_(E„
o(~o

of, ' n, c<

J ?(x) dx .. (1)

00

It should be noted here that, the statistical methods involved 
here naturally invoke the principle of rigidity (non-crossing 
of levels). For small values of <?(, the shifted eigenvalue E„ .
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can be written down as a series in powers ofe<, the coefficients
j.|_of nrn power of<<denoted by Sm (En Q), where En q is the 

unperturbed energy.

En,* = En,0 + *S1<En,0> + * S2 <En,0> + (2)
The coefficients Sm (En q) are explicitly1 given by the Rayleigh- 

Schrodinger perturbation expansion j

E , = E n, ei
n.O + *<En,0 I* 1 En,0> + .. (3$

-ra,0 ~ cn,0

Thus S.j corresponds to the expectation value of K and $2 is 
the inverse energy weighted sum of the strength of the operator 
K. Spectral distribution methods provide the smoothened 
expressions for these coefficients; th obtain these we turn 
to equation (1). Differentiating equation 1 with respect too<, 
we get (since we are interested in smooth forms, we drop the state 
index n from now on).

3p
+

E*;-®o a ?<(x)

d
dx

l£*
bU

Ex

— 06

d%(x)
b o<

dx .. (4)
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In the limit 0, we have

1
Eo
f d §<(*)

3 oi ?(E0> '_pO 3 <?<
dx

<?(.=-p

Now the integration limits do not depend on ©< , hence inter

changing integration over x and differentiation with respect 

toc<, we obtain.

jLEf/ b I
o( =>- 0

1
?(E0)

dx
o< = o

i-
? <E0)

(E0)

U - o.
Comparing this with equation 2 we obtain,

K (E) = S. (E) = - -1- [± F* (En)
1 EoU^

(5)

where K (E) is the expectation value of K at E« This result was
37)origanally given by Chang and French . Differentiating equation

(4)again with respect to o( gives
Eo<a e. 1

f.tej
oL

•

f .(x) dx
d oC j ■*-

x= £

EoC

- c&

a ?,(*)
3 oi

■dx +

E*

pO

a g,(x)
d< .. (6)
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One has to be careful about keeping all the terms which depend
aft ££*)

on°<* For example —^------ * can be written as

-T7 1 %^Eo' +--------d*< L * u axdoi. X= Eq

- E0) +

(Erf - E0)‘ s\W. r^-'-rr . |

3 x*
+, (7)

x-Ec

Substituting equation 7 in equation 6 and then taking the limit

as gi-i> 0, we obtain

$0(E) = 1/2
a>*£

&<< ■
ct—O

2 * f(E0) [ (&« ^i-o
bfji <En)±_ j 1_ _______5E0/?(E0)^ .. (8)

As mentioned earlier, this result , was given by Halemane.
We have rederived it beginning with the Eatcliffe's procedure"^. 

Since the purpose here is to provide an alternative method of •. 

deriving the results originally given by Halemane, we merely 

state that the expressions for Sm (E0) for higher values of m 

can be similarly obtained.
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B. THE CLT RESULT

The role played by the central limit theorem in spectral 
distribution methods has been well established and discussed 
at various places. As a consequence of CLT, we can write the 
eigenvalue density function as a Gaussian, defined by its 
centroid E and width cr. The CLT also allows us to assume that- _ 

when the hamiltonian H is berturbed by a small operator< K, 
the new eigenvalue density still remains a Gaussian but with 
different centroid <5 (tk) and different width cr(c<). The change 

in centroid merely shifts the eigenvalue spectrum while the 
width change corresponds to the scale change.

£= <H> , E (•*) a ^H>+XdK> 
a-2 = <H2> - C H>2

cr2(oi) = <(H +otK)2> - (<H+<K>)2

= cr2 + 2 o-r^ cr o~K f o<2 <y2K

where is the correlation coefficient between H and K and 
<3*- is the width of eigenvalue density function corresponding 
to the operator K. The scale cha^je parameter A is defined by

>S - - 1) = ( 1 + 2 oL S <^/<r + °<2 ct2k/ cr2) * - 1 ., (9)

Thus if we take into account these two changes,from the 

eigenvalue EQ corresponding to unperturbed hamiltonian H we 

can obtain the eigenvalue E^as
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Eo( = Eq +-U K> + (E0 -£ )A • • (10)
Merely expanding the parameter A as a series in ^gives^ ^

Thus it immediately follows that in the CLT limit we have

The same expressions can be obtained using equations (5) and 

(8) if the distribution functions F and are takerjto be 

Gaussian*

C. EXTENSION TO CONFIGURATIONS

The arguements based on the centroid shift and scale 
change for calculating 5^ (E) and Sg (E) are easily applicable 

in the scalar space. If we partition the space according to 
some symmetry group, we cannot use these simple arguments. Let 
us, for example, decompose the space into configurations. The 
over all state density 9(E) (assumed to be gaussian and hence 
completely described by its centroid $q and width <r^) is then 

the sum of all intensities of configurations into which the 

space has now been subdivided. Thus,

S1 (E0) = ^K> H-So^/cr- (Eq -<*)

• • (11)
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$(E) = f f (E) dc
D = 2 IC(E)

with dc being the configuration dimensionality and D = 21 dc
v

is the total dimensionality. Each term in the above summation 
corresponds to the intensity of the configuration c in the 

eigenvalue distribution at energy E. Further, we assume that 
each partial state density is a gaussian (higher order 

configuration moments are usually not easy to calculate 
because of two reasons : (i) number of configurations involved 
are prohibitively many (ii) with increasing order of moments, 

computer time increases at a mueh faster rate, and hence if one 
pleads complete ignorance of higher order moments, it turns out 
that natural choice is a Gaussian) and can be written down as

f (E) 1
J2W crn (c)

E - c* (c) 2 
exp ( - 1/2 ( ^~(c) " 5 5

where <£q(c) and cr^ (c) are configuration centroid and width

respectively. The corresponding distribution function is 
c

( Ic (x) dx
L oO

F (E) =2%- j §c (x) dx = Z { -c

oC

Now, when the Hamiltonian operator H is perturbed, the new 
state density £(E) corresponding to the perturbed hamiltonian

operator H + <K is given by 
dc/D

= ^ —zrrr— , v exp (
c J27T <£(c)

*JB> = f £ (E)
1/2 (

£ (c) 2* ) ) ■. (12)
(c)
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The corresponding distribution function is 

E(E)= f r I*(x) dx

«. oO

E
F^(E) = f dc/D | (x) dx .. (13)

- oO

The calculation of ^(c) and <%(c) is straight forward.

By definition we have, 2L(c) = -<H>C +»«K>C

= £0 (c) +<K>Cc< .. (14)

cT2 (c) = <^(H + c<K)2> C - (<^H+KK>C)2

= °02(c)+ 2 5C o^(c) o-^(c)®< + ®<2a^2 (c) .. (15)

where (c) corresponds to the configuration width of the 

unperturbed Hamiltonian H, cr^ (c) is the configuration width 

corresponding to the operator K and T. is the correlation 

coefficient between the operators H and K in the configuration.

Partially differentiating both sides of (13) with respect 

to °<and interchanging the integration over x and differentiation 

with respect to <4(since integration limits do not depend on«()
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we have
a?* (E)
a *

2
c

J 
— oO

3o(
(x) dx .. (16)

We are now in a position to define S.j(E) and S2(E) in 

configuration spaces.

J____ _____ * F* (H)
K=0

S.j (E) * — I IC(E) d<

S0(E)
2|lc(E) IM*C

F* (E)

°<=0

——r ( —F^ (E) )2l
-f iC(E5 ** 1*JJ

• • (17)

Using equation (12) - (17), we can derive explicit expressions 

for S^(E) and S2(E) in configuration space. For ease of calculation; 
we consider a single term in the expression (12) and perform the 

summation at the end of the calculation. Partially differentiating

with respect to oL, we have
d
d o< dcr2 (c)

a ^(c)
3 c<

, <3^°^ , 3c^(c)
where tt™.. and

BE^Io)

are obtained from (14), (15) by

(18)

<3 o< “““ 3 o(
partially differentiating both sides of the equations with respct
to o(, These partial differential coefficients turn out to be
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ssjc) 

3 ^(c)

^K>

= 2 <r-Q2 (e) (
(c)

*• + K (c)

°0 (c)

Similarly the terms
3 ICc<

a <s^ (c)
and

..g.Hi.
a^(c)

<rn2 (c)

can also be

obtained by partial differentiation of I*k. with respect to 

cr^ (c) and <^(c) respectively* Substituting the various tferms 

in (18) we have

7 27T (c)
exp (

<5a2 (c)

( X - (c))'
2<r,2(c)

) <CK>C (

cr2 (c)

(TZs (c)
+ °(

(c)

^(c) ^n2(c)

x- £<(c) 
cr3 (c)

) +

l <5(c)

Taking limit as°l->0 on both sides, we get

.. (19)

a i

<*=0 '/27r °o
exp (

f x - £0 (c))-

2 ^n2 (c)
) -ie

c x ~£o (c)
<K>C (-----......... ) + K

(c)

x- ^j(c)^2 ^ T crK (c)

«£(«)
)2 - 1} Je

(e)

Integrating both sides with respect to a standardized variable
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A X “ £0 (C)
x = ---------

<*~h (c)
in the limits - Oand E, we have,

f s (x) dx/
d

o<esO
- i_
s/2^f <J~n (c)

*2xexp (----) *
2

<?o

[«> c x + (x2-1) Tc <rK(o)j dJ

where d& = dx/ n(«) or

E c , „ 
f a IT, (x) dx

<*5 * =0 4 2^ *o<c>
exp

E - En (c) 2
2 Oq (c) ) f *

(&■>* + (c) * c E --£0 (c) '
^ (c) J

3F* (E)
a <

c<=0
aF^ (e)

Now --------- 1 can be obtained by- summing the above3F* (E)
expression over all the configurations. Substituting

df <<
in (V) we have _ / )c2. IC(E) * |<K>e + Tc ^(c) * ( „/(%) >]
s,(E) ■ 0

Oi

|lC(E)

(20)

• • (21)
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For calculating S2(E) in the configuration space, we use the 
second one of the equations (17)

s2(e) JL2 ^ IC(E)
c?2' (E)

d °( SB G

JL
dE

1
f IC (E)

F* (E)

^=0
(22)

The first term contains .
~d o<2

term we need to calculate d <=('

o(. =0

1 M

• To calculate this

I • We have using (19) 
G< S*0

where, as Before, we have used only one term in the summation
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Z ic c
dT.j
&

2*2

S>o4

above

at2
<3

o6

(x). Now

5»( (x) T< ( T„ + To)

4K>C
<*5 (c)

x - <S (c)<K> C + —7?----- *
CTZ (c)

_ <5V (c)( 2^c ---
^0 (c) + <<

0~K2 (c)
°~2 (c) °) *~n (c)

CT^ ^ (C)
(x - zyc))2

(c) ^ (c)

<rh (c) 5. K (c)
“<*0 (c) + oL.

0~K (c)
^ (c) X-

2<K>C (x ilcil
0*\

(c)
+ 2 <r-Q2 (c) j<3~£ (c) 

C^0 (c) + «< ^(0) \
■^O2 tc)^

2 (x- £,(c))2 

tr* (c> .Taking limit as«<-»0, the

expressions reduce to
^K> c [<K>C + 2 (x- -^(c)) Sc (c)

~ tc) L %M-

*
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<5T3
(5 o< o< asO

(x - £a(c))2
°o4 (c) rhf, j+CTo<c) rc ak(c) *•

o 'c'

I - 2<K>C (x (c)) 2 (c) sc o-K(c) *
t Oq 4(c)

f j 2 (x - Eq (c))2 \ )
_3_ _ ^ 6 (e) yy

I*(x)
o<sO

c)T0Tt (T2+T3)(T2+T3) + T, (^f 4- s^)
°<=0

■ (t2+t3)2 o>T3
d°<

^To 5T3
Substituting the values of , T2, T3, and -g-— in the

a x - Ej (c)
limit <<-*0 and writing x = ....... ..., we have

% <c>



125 i

£? lC-tx) = 3 exp ( - &/2 ) *
c^m 0

[m4 (x) Sc2 cr^2 (c) + 2 He3 (x)^K>c Ic cr^, (c) +

He2 (x) [ ( <K>C)2 + <j^(c)J j

where Hen (x) are Hermite polynomials. Now
s2f=< (e)
d o<«

A2 ** tx>

= 0
3*
oO

dx
oi ssQ

Carrying out this integral using a standardized variable 
* /V E (c)
x and writing Eg v (c) , we have

d2F^ <E>

o>
oi =. O

. J-- - IC(E)| I2(T 2(c) He, (Ec) +
g-q (c) l c K 3

2<:K>C Tc ff^(c) He2 (Ec) + 4K2>C He1 (Ec) .. (23)

Now, the second term in the expression for S2(E) is
. J -L / aFe< ^0E 1 IC(E) ' 3a< where, again for ease of

=0
calculation we have considered anly one configuration. This can
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be written as

1
[IC(E)]2

5 F* (E)
' B =<

<A asO

IC(E) 2
1° (H)

(E) 5 *
d=0

a f f \
3E v I 1

o(=0

(S^E))2 IC(E) +2S, (E) —
1 as 1 a E

5F*
.. (24)

<=< ssO

This expression can be simplified by substituting the,values of 
various terms by using equations (12), (20) and (21). Finally 
putting together all the terms from (24) and (23) in (22) 
and summing over all configurations we get
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S2(E) - 2-^—!\ , (^c2crK2 (c) He3 (*c) +2 c i (E) ( 205 (c) c K d

2<K>CJC cr~K (c) He2 (Ec) + <K2> C H®1 (Ec)) +

1/2 2
IC(E) Ep

I (E) cr0(c) v I (E)
|JLJ„E) (<K>c + ^(c) Hei(Ec))j2

- IC (E) . * «yIC(E)
-2—-- (<K>C + ^^(<0 Ec )2 —

I (E) I (E) ot(c)

( a)c Ec +JC o^(c) He2 (Ec))

This is a very useful result as we shall see later in th#.
next section. A large variety of effective interactions for s-d
and f-p shell have been studied by quantitatively analysing their

41)quadrupole and pairing properties This has been done by 
generating an empirical interaction as a linear combination of 
the quadrupole and pairing operators, and by comparing the 
effective interactions via their correlation coefficients with 
this empirical interaction. A comparison is also made between 
the low lying states of the spectrum generated by the effective 
interaction and those obtained by various empirical interactions. 
We have used a somewhat similar approach to correct the estimates
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of the ground state energies thus obtained* We notice that 
the expressions for S^(E) and S2(E) depend on the parameters 
of the original Hamiltonian H, the perturbing Hamiltonian e<K 
and the correlation coefficient between the two in the corresp
onding space. Thus knowing the estimates of ground state energy 
Eq made by an empirical Interaction hamiltonian H, the parameters 
of the perturbing hamiltonian and the correlation coefficient 
between the two operators, S, (E) and S2(E) can be calculated 
to give corrections to the estimates of Eq. Analytic expressions 
in scalar and configuration spaces and the results of calcula
tions are given in the next section.

D. CORRECTION TO GROUND STATE ENERGY ESTIMATE

Given an effective interaction Hamiltonian H^ and an 
empirical interaction represented by H^j since the empirical 
interaction is an approximation to the effective interaction, 
we can write % K = HM + HP where K = Hp corresponds
to the Hamiltonian of the perturbing interaction.

If Eq is the ground state energy estimate obtained by 
using the empirical interaction, then (Eq) and S2 (Eq) will 
provide the 1 order and 2 order corrections to it, which 
have their origin in the neglect of the perturbing Hamiltonian
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As is evident from their expressions, we need the correlation 
r

coefficient 5Mp between the empirical and the perturbing

hamiltonians and Hp respectively. This can be obtained from
41 )

the definition of correlation Coefficient ' in a given space-K

'MP [<HM2>!<Hp2>/i
where H * H - <H>is the traceless

'M ^ “P ‘"■J part of H. The centroids and widths 

of the operators HM and Hp are <5^, ^ and £p, ^ respectively. 

Further, we can assume without loss of generality that <£p= 

Therefore
,-wc <HM HP> _ V“M“F'

MP °M °P

<hmhf> -<hmhm>

Now<HM Hp>can be written in terms of the correlation coefficient

s j^P between and Hp which is known and maximised'41)

• •
MF <3“r <3W

MP °P °M

We atso note that and Hp have the same widths i.e. cr^= <r^ 

by a condition which demands that they have the same norms41)

.\ J.
MP

Zk.

CTb
* ^MF “ 1 ^ .. (25)

Now S| (E) in scalar space is given by 

S1 (E0) = <Hp> + J <Tp 
MP arM (E- £.) .. (26)

Where we have made the following substitutions
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<K> * <r Hp>*<T(HF - Hm)> « 0
°lc = ®~p, o~0 m CTjjjj in (11) ..

Assuming £ »<5^ = £p » 0 and substituting the value of Twp 
from (25) in (26) we have S,j (Eq) * - (1- ?Mp) Eq

Since is always less than 1 and EQ is - ve, (Eq) 
gives a +ve correction to the ground state energy Eq, Again 
from equation (11 )j S2 (Eq) = (l*^^jyjp) ^^^

Following similar arguments as for (Eq) and observing that 
c-p2 = <(Hf - Hm)2>= 2 crF2 (1- 5-mf) we get

Sg (Eq) * Eq/2 (1 - 52Mp)t which, as can be clearly seen, 

is a -ve correction to the ground state Eq, The total correction 
is given by the sum of S1 (Eq) and S2 (Eq) and is found to be
s, <E0) + S2 (Eq) = - E0/2 (1- Sjjp)2 .. .. (27)
which is +ve. These are the expressions for scalar space. Similar 
analytical expressions can very easily be obtained for 
configuration spaces also.

Starting from the definition of correlation coefficient, 
we have in configuration spacee
Wc) -^e) ^ -^<c> > •• <28)
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where all the quantities are to be evaluated in configuration 

space. More over ^(c) £ <^(c) contrary to the case of scalar, 

space. This is so because the condition of equal norms iip 

imposed on the overall density and not the partial densities 

into which it is subdivided. Therefore the configuration centroids 

^ (c) and £p (c), corresponding to and Hp are also different 

Consequently, we have to evaluateo^(c) explicitely.

crp2(c) = <HP2>? = <((hf-hm) - (CHF>-<^,»)2>c

=<(hf2 + ty* - 2HpHM + ( ^ Hp > )2 +(<^,> )2 - 2<HpXiy>

- 2 HF^ Hp> + 2 HM<HF> + 2 Hp<H„> - 2 )>C

Now writing Hp -!• Hp + dp(c), HM = (c)

and performing the average over all configurations, we get 

^p2 (c) = <^2{c) + 5F2(c) + a^2(c) + ^2(c) - 2 SMF(c) ^p(c) <^(c)

“ 2 ^p{c) <5j«(c) •• £2
C29)

<Hpyc » <Hp - Hm>c * £p(c) - ^(c)

Substituting 5^ (c) from (28) for Sc in (21) and making the 
substitutions <CK>c - - /LJ ° "c

^K(c) ss d^j(c), (c) = <J^(c) we have,

E -
*r- t _ % /

tc)
S,(E)

I. (E) * _ e - £,.(c) , ,
MP'
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Similarly Sg (E) can be deduced from (22) and we have

ss(E) = ^<c) < ^2(c) ^2(c) He3(Ec) +

2 (<^r(c) - He2 (Ec) + <Hp3>c He^ (Ec) ))

+ 1/2 Z-iliMl Jc (Z ^ULL ( £ (e) . 6 (e) +
c. I (E) mlc) ' c I (E) F M

5MP(c) °f <c) He1 (Ec)))2 - 1/2 <?p(c) - Ej,(c) +

Wc) °p(c) =c) * I - £m(c)) Fc +

SMp(c) “F (c) He2 (Ec)), Ec = E - Vc)
°m(°>

.. (31)

Equations (30) and (31) can be further simplified by substituting 

^Mp(c) from (28).

We have used the PW interaction as the effective interaction 

Hp, in the spectroscopic space of (s-d) shell with 4 particles.
A 4 \Kota et. al. (1980) have constructed 5 empirical interactions 

in various spaces. Here we just give a brief description of these 

interactions. The common feature of these interactions is that 

the 2 - body part of each empirical interaction has been expressed 

as a linear combination of the guadrupole and the pairing operators.
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The first empirical interaction, represented by Hs1 is 
given as = ESPE + a(m) Hq + b (m) Hp where ESPE are the
external single particle energies (same as thoieof effective 
interaction), a (m) and b(m) are coefficients depending only 
on the number of particles m and the averages in scalar space,
Hq and Hp are the 2 - body parts of quadrupole and pairing
operators.

When the same procedure is followed by taking averages 
over all states with fixed m and fixed isospin (T), the values
of a and b depend on m and T. In this case the empirical
interaction is denoted by

Hst1 “ ESPE + a(m,T) Hq + b(m,T) Hp.

Now if we take into account the induced single : -
particle energies (ISPE), we get another empirical interaction 
Hs2 a ESPE + ISPE + a Hq + b Up

where Hq and Hp represent the unitary rank 2 parts of the 
quadrupole and pairing operators respectively. In this case ESPE 
and ISPE are the same as those of the effective interaction.
If the calculations are done in scalar T space, thm we have to 
take into account the isospin induced single particle energies. 
For this purpose, we have the followihg empirical interaction.

Hst2 * ESPE + ,iso®Pin ISPE + a (m,T) Hq + b (m,T) Hp
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Here and Hp are the tensor rank - 2 parts of Hp and Hp 
respectively, with respect to the group U tn_) (x) U (2). 
{ _Q.= ^ s
orbit i).

1/2 N^, = degenracy of the spherical

In scalar isospin space, T - 0 and T = 1 parts of the 
irreducible rank - 2 operator propagate independently. This 
property has been exploited in the definition of
Hst3 * ESPE + isospin ISPE + a HqT = 1 + b HpT =1 + CHpT =0

For all the empirical interactions th§ values of the coefficients 
a and b are calculated by maximising the correlation coefficient 
r(hf, hm> in .the corresponding spaces, along with the conditions 
CTp = er-^ where o~corresponds to the width of the correspond
ing operators.

Using these interactions (Kota et. al..(1980)), their . 
correlation coefficients with respect to various effective 
interactions in the s-d and f-p shell have been calculated and 
maximised. Estimates of ground state foave also been given by 
making use of the empirical interactions so generated. We have 
used their results forPW interaction for our calculations in 
scalar and configuration spaces.

HeVThe PW interaction gives rise to a binding energy of - 40.6 -Me



: 135 :

41 } /while the five empirical interactions 7 (in the order Hg^, Hg2»
Hst1* Hst2* Hst3* estimate at - 45-8» ** 43.8, “ 43.2,
- 47.0 and - 46.1 (all in MeV) respectively. The corresponding
maximised correlation coefficients 5^ are found to be ,0.799, 
0.846, 0.806, 0.855 and 0.858 respectively. Using the equation 
(27) we have directly calculated the total correction to the 
ground state estimates given by each empirical interaction^ in 
scalar space. The results are given in the Table V.

However, for the calculation in configuration space, we 
have used only two of the five empirical interactions described 
above. The first one is Hg2» It is generated in such a way that 
it has the same external and induced single particle energies as 
those of the ieffective PW interaction.
Hs2 - ESPE + ISPE + a HQ + b lp .. (32)

Hq and Hp are irreducible rank - 2 (v « 2) parts of the 
quadrupole and pairing operators respectively. The 2 J2 body 
matrix elements (TBME) corresponding to any hamiltonian are 
given by

Vijkl(i;-2) " ^jkl “ * Ai + V Sik Sjl where

V JT
ijkl Vc 5ik 5 jl

VJTijkl are the TBME and Vc are the centroid of the TBME, given by
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. Vf* fJT}
y * ---itel----- . fjxJ * (2J + 1) (2T + 1),C N (N-1>/2

N *2^, Nx = 2 <2j^ + 1 )» i,jfk,l are the sperical

orbits, are their degeneracies, correspond to the 
induced single particle energies and are given by

A.
x 4 v&jn± iJT ^ 3

Cjt] ( % + s^) -

j  xN klJT
vfiu fJTj ( 1

The coefficients a and b in equation (32) are calculated by 
maximising ^Mp in the corresponding spectroscopic space along 

with the condition that « cr^. However we have used the values 
of a and b corrisponding to the PW interaction given in reference 
41 directly® They are - 0,107 and 0.160 respectively. ESPE and 

ISPE are the external single particle energies and contribution 
due to the induced single particle energies of the effective 
P0 interaction respectively. Thus, first we generate >*= 2 part 
of the Q.Q and pairing hamiltonians. Then by adding the ESPE 

and ISPE of PUS interactions, we get new TBME whose V = 2 part 
is a sum of 1?= 2 parts of Q.Q and pairing operators and ESPE 

and ISPE are those of the PW interaction.

The second empirical interact!or that we have used is
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The coefficients a,b and c are calculated by the same procedure 

as mentioned earlier. However for PW interaction we have adopted 

them directly from the results bn reference 41j they are - 0.075, 
0.316 and - 0.113 respectively. ESBE are the external single 

particle energies and isospin ISPE corresponds to the contribu

tion of isospin induced single particle energies, which are given 

as

1
-Q, z yJTvfclkl M ( 1 +\j)

T is the isospin of the 2 - particle state,-O.^ = 1/2 N^, and 

_a = 2 -ar ESPE and ISPE hare again correspond to those of 

the effective interaction.

The configuration centroids and widths <E.(c), cr(c) for

effective interaction, each empirical interaction and the

configuration correlation coefficients £jyjp(c) were evaluated
43)by using already existing compi&ifeer programs . Using equations 

(30)^(31) we calculated (Eq) and (Eq) and the difference 

A between the ground states given by the effective interaction 

and the new calculated results. The results are tabulated in 

table V.

Eg s OLD corresponds to the ground state energie obtained
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by approximating the effective FW interaction by 5 model 
41 }interactions % and A OLD is the difference between the

E „ given by the PI interaction and those given by the five 9* s
empirical interactions. On the other hand E„ _ NEW are they • 5 «

binding energies obtained as corrections to E„ . OLD byi y • 5
using the inverse energy weighted sum rule theory developed 
in the previous section. ANEW correspond to the corresponding 
difference between the binding energy of PW interaction and 
those obtained from the empirical interactions• The last two 
colum> in the table V give similar results for the configurat
ion space. We regret that due to non availability of data, we 
could not calculate the correction to ground state energies 
for the remaining three interactions. However the results we 
have obtained seem to be very encouraging. As is obvious from 
the table,A the difference between E_ „ of effective and 
empirical interactions has reduced successively from - 3.2 to -2.7 
in scalar space and from - 2.7 to - 0.83 in configuration space. 
Similarly, for the last interaction, from - 5.5 to - 5.0 and 
- 5.0 to - 2.1.

Thus we see that spectral distribution methods when applied 
to perturbation theory, give very good results for corrections 
to estimates of ground state energy given by various empirical'
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TABLE - 5
MMMMNMMMMW

Corrections to ground state energy estimates obtained by 
applying spectral distribution methods to Rayleigh Schro- 
dinger perturbation theory. Results are presented for 
scalar and configuration spaces. The effective interaction 
used is the PW interaction with binding energy - 40.6 MeV.
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TABLE - 5

1

GROUND STATE ENERGY CORRECTIONS USING
Sj(e) and s2(e) in

SCALAR SPACE ^CONFIGURATION SPACE
E_ e OLD g.s A OLD E_ e NEW g*s A NEW E_ e NEW g.s yA NEW

- 45.8 - 5.2 - 44.9 - 4.3
- 43.8 - 3.2 - 43.3 - 2.7 - 41.4 - 0.83
- 43.2 — 2.6 - 42.4 - 1.8 -
- 47.0 -» 6.4 - 46.5 - 5.9
— 46.1 - 5.5 - 45.6 - 5.0 - 42.7 - 2.1
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interactionso The results improve considerably when the 

calculations are done in the configuration space.


