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CHAPTER VI

SUMMARY AND FUTURE PROSPECTS

In this thesis, we have studied applications of Spectral Distribution Methods.

Using these methods we have calculated the orbit 
occupancies in the ground states of nuclei in the mass range 
A = 60-80, and compared the results with experimental data 
where^ver available. We hsre also studied various ways of 
representing a density function, both empirical and based on 
transformations of variable. In particular, the Cornish Fisher 
expansion has been found to be very promissing, not only as a 
representation of density function, but also for calculating 
energy eigenvalues, expectation values and orbit occupancies. 
We have developed methods to calculate eigenvalues without 
numerical integration. Using these methods we have calculated 
eigenvalues for several cases and compared the results with 
exact shell model data. Besides this we have also derived 
expressions for statistically averaged inverse energy weighted 
sum rules and used them to calculate corrections to estimates 
of grourid state energy when an effective interaction is 
approximated by a linear conbination of well known simple 
operators. The results are very encouraging.
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Besides the applications mentioned above we have also

used spectral distribution methods to derive analytical
averaged.

expressions for the^tnird and fourth moments of intensity in 
the partitioned spaces. Here we present the derivation of these 

reseults and some future prospects.

1. When the scalar space is decomposed according to some 
symmetry representations (configurations for example), then 

the calculation of the third and fourth moments of intensity 
in the partitioned spaces becomes extremely difficult, more so, 
because the number of such partitions is quite large. As against 

this, there are several studies demonstrating the goodness of 
constant width approximation when the number of partitions is 
large; where it has been implicitly assumed that on an average, 
the intensity in each obturation can be represented by a 

Gaussian with same width. If the scalar skewness and excess 
parameters are known, with the knowledge of centroid distribution 
of the intensity in configurations, we can infer about average 

Y1 and i~2 values for each configuration and hence, one can test 
the validity of the assumption of using gaussian shape for each 
configuration intensity. One can go a step further and evaluate 
average -/^ and /g values without recourse to constant width 

approximation.

To begin with, let us assume that all the configuration



144

intensities have same shapes and same widths,
exp (-- -—o ) * S (x)f conf'tx)

JW conf 2 -<r conf

where S (x) is the shape function depending upon the shape 
parameters like Yj and which are assumed to be same for 

all configurations; centroid of configuration intensity is 

assumed to be zero here and (Tcon£ is the eonstant width.

We can represent the distribution of configuration centroids
by ?„ (E), where (E)

Dm
E ) » D ss 
m 7 m

d(m)

d (m) is the configuration dimensionality and is the 

configuration intensity centroid. Then, it is clear that the 

total state density can be represented by a convolution.

?<E)= fc®?conf= jf,c fconf (E’x) dx- The
moment of the total state density is given by

y“p = j xp f(x) dx and can be shown to be equal to

Ap = ^ ?V*r ^cent^ /p-r ^conf^ where (J) is a
r=0

binomial coefficient and we have shifted the energy scale in 

such a way that over all centroid is zero. The value of the 

configuration width in constant width approximation
automatically follows from /*2 = 0^tal = <r£ent + <^f

Similarly =/X^ (cent) (conf)
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3/2 _ ( Vi (cent)q~cent + (conf)o~3conf )
/ 2- ,2 n 3/2( o~ cent + <^conf '

and fourth moment gives the relation between various/^ 

values;
, V2(cent) c"cent + A (conf> r conf

nf 2 ~ ( tr2 cent + cr2 conf)2

. . Yi = /y(/k)

One can immediately estimate average Yj and values for 

configuration intensity using the knowledge of (i) skewness 

and excess foroverall state density and (ii) centroid 

distribution of configurations.

We can relax constant width approximation by introducing 
a bivariate eentroid and width distribution for configurations

<E- > = I S (E - E- ) S ( cr- cfj.) ,

here we have assumed constant shape parameters for each config 
uration intensity

Q?conf 1 e - x2/2cr2 g
J27T o-

(x)

The overall state density can again be written down as a 
linear combination of convolutions.
5(1) = Jd<r f(E/cr) = ffd<r dx ^E" x»cr ) ^0nf

/

where $(E/<r*) = state density coming from all those confi

gurations which have width <5^ It is given by
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S^CE-x, o~) ?conf (x’^1 dx'

The moment® of the overall state density are given by 
yUp « JjjdE dcr dX ^M^E“X,cr^ ( E-x+x)P fconf(x,w-)

substituting E* for E - x we get
A “ ^ ( P (dcr/^M (H’5P"r dE* * jxr $conf(x,cr) dx

= | (P) dcr dE* yE»,cr)(E') P“Vr >]r

Here gives the information about shape of configuration 
intensity and has the following values9^ =1» 7l =0 A2 »
7 3 = A '74 =YZ +3 and 50 on. We can immediately recognise 
the integral over cr* and E as the moments of a bivariate 
density function (E,a~), hence

/“p - £ <?> M p-r, r 7r.r=0
M p>q = jjdar dE Ep crq ?M (E, <r)

From these expressions, it is clear that knowing the 
bivariate moments of centroid and width distribution along 
with the scalar moments, we can find out the average , Yg 
values for configuration intensity distribution.



% 147

Numerical calculations have been done in the s-d shell 
to determine the average values of r/1 and Yg in 'the config

uration spaces, and they are found to be quite small. It is 
relevant to mention here that-if the spread in these values 
is large, the calculation of average values is pointless, 
because they cannot be used, in\?‘principle, as the constant 
shape parameters. For calculating the spread in Y.j, 7^ values,

•hhone would need to calculate scalar moments upto the 8 order.

2. In general, the effective interaction Hamiltonian matrix 
elements are derived in two ways; (i) From the bare S-matrix 
by renormalisation and (ii5 this renormalised interaction is 
used for detailed shell - model calculation to determine the 
eigenvalue spectrum, this spectrum is compared with the 
experimentally obtained spectrum and with the help of least 
square fitting method the effective interaction Hamiltonian 
matrix elements are modified. Here we propose that a method for 
modification af effective interaction matrix elements based on 
empirically fitting observed ground sta'te->occupancies( which 
considers the experimentally observed trerids) can be given.
As an illustration, the sudden change of proton occupancy structure 
for germanium isotopes when the neutron number is the space 
crosses 12 can be simulated by properly adjusting the induced 
proton single particle energies, (Chang et.al. 1977) for p



* 148

orbits and f such that these cross over when the
number of neutrons becomes 12. There are several advantages 
in the proposed scheme (i) calculations involved are simple,
(ii) only few parameters like induced single particle energies 
(which depend on sums of two body matrix elements) need be varied 
and (iii) modification relates to the wave function of the 
ground state rather than the eigenvalues.

Besides these, we should be able to solve the following 
problems.

3. The Cornish Fisher expansion around a n6n gaussian random 
variable, which will allow a direct evaluation of expectation 
values of various operators of interest.

4. We have seen how to calculate the orbit occupancies by 
applying Cornish Fisher expansion to a ratio of densities 
representing positive definite operators (number operator in 
this case). We can study how to do such calculations for any 
operator in general (negative or positive).

5. We know that the eigenvalues of a random matrix yield
a semi-circular distribution. We also know that when a constant 
matrix is added to a random matrix, there is a shift in the 
ground state on the energy scale. An analytical expression can 
be derived for this shift by representing the density function by
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I ^

Cornish Fisher expansion using the moments of' a random matrix*

6. Vie have approximated an effective interaction in terms of
the guadrupole and the pairing operators and then applied the
perturbation theory to inverse energy weighted sum rules to
calculate corrections to estimates of ground state energy given
by the empirical interactions. It has been seen that the empirical
interactions so generated in various spaces do have large, s-~,
correlation coefficients with the effective interactions, and
in that sense we can say tha t a large part of the effective
interaction on the average does come from these two operators.
However, these empirical interactions connot, to a good
accuracy, reproduce the low lying energy levels generated by
the effective interaction. We thereforefeel that addition of

4 4other operators such as L.S., V • V etc. may not only 
improve the correlation but the predictions of low lying levels 
as well.


