
INTRODUCTION

In general, theoretical nuclear physicists are interested 
mostly in the following three problems i (a) The spectrum of 
low lying states^ (b) the wave functions of low lying states, 

from which nuclear moments and transition rates can be 
calculated^ (c) the level density and other average properties 

of more highly excited states. Almost all the theories and 
models are designed to obtain solutions of these three problems, 
so that the results give best fit with the experimental data.

Until a few years ago, attempts were made to solve these 

problems by the method of complex spectroscopy. However* as 
we shall see later, complex spectroscopy has its own draw
backs. Here we give a brief account of conventional complex 
spectroscopy and its difficulties, because the results of 
complex spectroscopy provide a check for the new methods

1}which have been introduced and developed recently by French ', 

and which we have used to study various problems in this thesis.

The essential features of complex spectroscopy with 
spherical orbits are based on the use of second quantization 
and spherical tensors. By using the former, Pauli's 
antisymmetrization principle is satisfied, while by representing 
all quantities by spherical tensors we can take into account 
all rotational invariances implied by a spherically 
symmetric, charge-independent Hamiltonian. This means that 
we can decompose the model vector space into subspaces which
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are defined by the exact symmetries, angular momentum, 
isospin and parity and which are invariant under operation 
of the hamiltonian. For example, in the ds shell, the 4 
particle space has dimensionality 10626, but after decomposition ) 
by (J,T) the largest subspace has dimensionality only 69.
From this example> we realise how important and powerful 
this feature is. However, it is not sufficiently powerful 
for more complicated cases; for example, the largest invariant 
subspace for (ds)12 has dimensionality about 70001

In principle, for nuclear calculations one should 
consider an infinite dimensional Hilbert space, but in 
practice we always use finite dimensional space. In conven
tional spectroscopy, we first set up a Hamiltonian defined 
by its single particle energies and two body matrix elements 
in a given model space of m particles distributed over N 
single particle states. These N single particle states form 
a set of basis states. Then the hamiltonian matrix is formed 
by calculating matrix elements between these basis states and 
the eigenvalues and eigenvectors are obtained by diagonalizing 
this matrix. The eigenvalues and eigenvectors are associated 
with nuclear energies and wave functions respectively.
After obtaining the wave functions, the calculation of 
transition rates, occupancies and other nuclear properties is 
very simple.



3 i

However, as the number of active particles increases, 
the dimensionality of the hamiltonian matrix increases 
rapidly and so does the complexity of the problem. For 
example, in the ds shell, with 24 single particle states, 
the dimensionalities of the largest of a (JT) matrix in

Jt £ 4 A(ds) , (ds) and (ds) are 69, 500 and over 6000 respectively.
The number of matrix elements for a 6000 dimensional matrix 

7is 1.8 x 10 • It is easy to see that the setting up and
diagonalization of such a large matrix is far beyond the
ability of sophisticated computers. Moreover, if we consider
excitation of particles so as to include the f-p shell (these
excitations are necessary to understand some phenomena such
as electric quadrupole transitions), the largest dimensions- 

28lity of a Si matrix grows by many orders of magnitude.

Besides this difficulty in computation associated with 
large dimensional matrices, we come across another problem. 
Large matrics produce large number of eigenvalues and 
eigenvectors, and except for particular properties like level 
densities and properties of certain states near the ground 
states, most of the resulting output is redundent. Also, 
without redoing the calculation, it is difficult to say how 
the results depend on the chosen interaction and which 
aspects of the results are of importance and which are of no 
particular interest.
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The recently introduced Spectral Distribution Methods 
provide us with a powerful alternate tool to overcome the 
difficulties mentioned above* This method deals with a 
spectroscopy which is well adapted to study; some general 
aspects of nuclear structure and also to search' for 
simplicities in complicated systems. Besides searching for 
general simplicities, this method also allows us to study 
the details of low lying states of a nuclear system* Thus 
Spectral Distribution Method helps us to study the basic 
structure without going too much in detail*

Instead of,attempting a detailed solution of spectro
scopic problem^ the spectral distribution method adopts a 
statistical approach* In this approach too we set up a Hami
ltonian matrix in a model space of m particles distributed over 
N single particle states. After that we study how the basis 
state (formed by the N single particle states) distributes C 
among the eigenstates of the system. In other words, Spectral 
Distribution Methods allows us to study the distribution of 
various quantities of interest in energy, configuration, 
isospin etc. Such distributions when averaged over all the 
states of the system or over appropriate subsets, can be 
studied by their energy moments. We shall see later that 
due to a certaih statistical "simplicity1* itf the spectral 
distribution we need only a few lower moments to describe 
the system with reasonable accuracy.

1 )
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Let us now study what are moments. Spectroscopy deals 
with the solution of the problem^ H « E^ 
where H is the hamiltonian operator and ^ and E^ denote 
the eigenfunctions and eigenvalues respectively. The 
functions tp^ are expanded in terms of a set of basis states
0d as

ft = f
This is the usual matrix problem. Let us consider the 

inverse problem, where the basis states 0j* are expanded in 
terms of *sas

K ■ f ci°<
ANow a plot of Ic^j vs H £ defines a distribution of the 

basis state, which can be studied via its energy moments, 
the pth moment being defined as

< = 1 ICiJ2 EiP

= ^0oi | hpI 0Ky
Now if we define as the average moment over a set of
states £( then 

Mp 1 I <0J Hpf 0CK>
where d denotes "the number of states in the set^. The 
first moment p » 1 defines the centroid energy of the
distribution M1

&
Ec (o£). In terms of the centroid energy

the central moments /ware defined as
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M P,<*
= JL I I (H - m!)p/ «U>
d(o<) «<eg<

The second central moment /i0 = cr^ (°<) is given by

(«<) ss - (M*)^ and is called the energy variance

and describes the spreading of the states about the centroid 
energy* It is related to the width of the distribution* The 
higher central moments define the shape of the distribution.

In the evaluation of the spectral moments, we encounter 
the first simplifying feature of the spectral distribution 
methods. From the defining expression of moments, we notice 

that moments are nothing but, to within a dimensionality 
factor, the traces of appropriate powers of the hamiltonian. 
Since the traces can be calculated without evaluating the 
many-body matrix elements, the problem of calculating the 
moments simplifies to a great extent. The expression for 
the average of a k-body operator in m-particle states 
belonging to the symmetry £< is given by ^

<0(k)>m&= t J <m«|o (k)|mo<>d tino< )*€&

and hence the trace is given by

«0 (k)»m* = d <m*) <0 (k)>m&

<m°4jo (k)l m°(>
olQ: «*

Using the anticommutation relations for creation and 
destruction operators (A^ & respectively) the definition
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of a k body operator and the properties of particle - hole 
transformations, it has been shown that ^

<0 (k)>mi jf (kj2)j i^(0 (k)>

where the k particle states have been divided into sets J? 

and summed over allJz * This expression reveals an important 
feature that the trace of a k-body operator in various k- 
particle spaces (kj3) can be related to the trace of p(k) 
in the space m«(. Thus we have another simplifying factor, 
since a k-body operator is completely specified by its 
matrix elements in k-particle states (defining space), we 
see that the trace in the defining space propogates to other 
spaces by means of the density operator '. In general the 
propogation formula can be written as

^0>m = t J o ^<0>t

where ?^(m) are the density operators and possess the 

following properties

1. (m) is a^ degree polynomialiin m.

2. Si (m) *<$mt ,0« m ^ V

Thus, we see that the calculation of moments becomes 
very straightforward. We first calculate the required moments 
in a space of very few particles (usually 2), and then 
propogate this information to desired space with any number 
of particles.
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Another very important simplifying feature is the 
recognition of the sole played by the Central Limit Theorem 
(CLT) in many particle spaces. By virtue of this theorem, 
in the limit of large number of particles, the smoothed 
eigenvalue distributions for most hamiltonian operators 
in the given space become close to Gaussian. Analysis of 
shell model results has shown that the shell model spectrum 
is essentially a Gaussian. French and Wong (1970)^, and 
Bohigas and Flores (1971)^ have carried out detailed 

numerical studies and suggested that the gaussian nature of 
the spectrum is related with the two body nature of the 
effective interaction and the direct product nature of the 
m-particle states. The normality of distribution is now 
quite rigorously proved (for states belonging to 4fixed 
exact symmetry) using two body Gaussian orthogonal ensembles. 
The fact that the distributions are close to normal suggests 
that there exist closely related asymptotic forms-i for 
expectation values and strengths of operators.

4)This idea was the origin of the polynomial expansion * 

(usually rapidly convergent) for expectation values and 
strength of operators. These polynomials are orthogonal 
polynomials and associated with the eigenvalue density and 
can be constructed explicitly in terms of the density moments 
given by
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<np>m » 1 <x hp» m cf
Wien the density is gaussian, the polynomials are related to 
Hermite polynomials by

E = Energy 
cr m Vlidth

and Ee = Centroid of the distribution*

Orbit occupancies are the expectation values of the 
number operator n^ in the state. It has been shown by 
Draayer et.al. (1977)"^ that the expectation value of any 

operator 0 at E can be expanded in terms of orthogonal 
polynomials P/i(E) as

/ eO

In Chapter II we have used this important fact to evaluate 
the orbit occupancies of ground states of nuclei in the mass 
range A = 60-80* The spectroscopic space used consists of the 
f-p shell and the g orbit and the single particle 
energies are 0.0, 0.78, 1.08 and 3.0 MeV for P%/2f f5/2 »

modified fully renormalised Kuo-Brown interaction. The 
calculated results have been compared with experimental data.

where

He^U) - ( z/ JT)

O (E) -<0>+ Z <T0 Pju <H)> P^E)1
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Given a set of moments, one can represent an 
eigenvalue distribution in terms of these moments. But 
there does not exist a unique way to do this. It is 
important that we have a proper representation of the 
eigenvalue distribution which satisfies certain theoreti
cal and physical norms. In Chapter III we have studied 
various methods of representing a dtnsity function when its 
moments unto 4in order are given? the use of Edgeworth' 
expansion and the Gram Charlier expansion has been reviewed. 
We have introduced the Cornish Fisher expansion to represent 
the density function and it has been shown to be very 
useful in studies using spectral distribution methods.

As stated earlier, the moments and eigenvalues of a 
distribution characterising a given Hamiltonian are 
important ingredients of spectral distribution methods.
In Chapter IV we have developed two methods of calculating 
eigenvalues without resorting to numerical integration 
which is tedious nand time consuming. In this 6hapter we 
have also studied various uses of the Cornish Fisher (CF) 
expansion, and the CF expansion appears to be quite promising. 
Various numerical calculations have been done in this regard 
and the results have been compared with those obtained by 
exact shell model calculations.
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Besides studying eigenvalue distributionswith respect 
to energy, spectral averaging methods can also be used to 
evaluate the expectation values of various operators as a 
function of energy. These are obtained by statistically 
testing the response of the system as measured by its state 
density, when the Hamiltonian is modified by adding to it 
an appropriate function of the operator. These expectation 
values then allow one to obtain various sum rules.
Halemane used these methods to obtain a set of inverse 
energy weighted sum rules. We have adopted a simple and 
different approach to derive the same. Chapter V deals with 
this derivation. We have also studied the CLT limit of, the 
rule and its extension to configuration spaces. The results 
of the analytic study are used to obtain correction to 
ground state energy when an effective interaction (PW inter
action in our study) is approximated by a linear sum of Q.Q 
and Pairing interactions. Results are given for calculation 
in scalar and configuration spaces.

Chapter VI gives the conclusion and future prospects.


