LIST OF FIGURES

Figure No.	Title	Page No.
Figure 1.1	Classification of biodegradable polymer as per origin	3
Figure 1.2	A schematic of the role of ion beam in materials science	10
Figure 2.1	Schematic illustration for entire synthesis procedure	27
Figure 2.2	Schematic diagram of 15UD Pelletron Accelerator	29
Figure 2.3	Actual images of a ladder controlling unit, ladder and Material Science high vacuum chamber	30
Figure 2.4	Bruker D8-Advance diffractometer at IUAC, New Delhi	33
Figure 2.5	JASCO-4100 Spectrometer equipped with multi-reflection ATR PRO410-M at Department of Physics, Faculty of Science, MSU, Baroda	35
Figure 2.6	A schematic diagram of allowed electronic transitions due to absorption of UV-visible radiations	36
Figure 2.7	The wavelength region corresponds to molecular transitions due to interaction of UV-visible radiation with matter	37
Figure 2.8	Hitachi Model U-3300 Spectrometer at IUAC, New Delhi	38
Figure 2.9	(a) Agilent E4980A LCR meter equipped with Agilent 16451B solid dielectric test fixture at physics department, school of science, Ahmedabad and (b) Solartron SI-1260 impedance gain/phase analyzer at Department of Physics, Faculty of Science, MSU, Baroda	40
Figure 2.10	FESEM device of Zeiss, Merlin VP Compact at FCIPT, Gandhinagar	43
Figure 2.11	(a) Geometry between probe and surface (b) A schematic illustration of fundamental working principle of AFM	44
Figure 2.12	The AFM setups at IUAC, New Delhi	45
Figure 3.1	XRD of (a) chitosan and (b) CP blend matrices	52
Figure 3.2	(a-d) XRD of chitosan irradiated with C^{+5} ions at the fluence of 1×10^{11} ions/cm ² , 1×10^{12} ions/cm ² and Ni ⁺⁷ ions at the fluence of 1×10^{11} ions/cm ² 1×10^{12} ions/cm ² respectively; (e-h)	53

Figure No.	Title	Page No.
	XRD of CP blend irradiated with C^{+5} ions at the fluence of 1×10^{11} ions/cm ² , 1×10^{12} ions/cm ² and Ni ⁺⁷ ions at the fluence of 1×10^{11} ions/cm ² , 1×10^{12} ions/cm ² respectively	
Figure 3.3	FTIR spectra of (a) chitosan and (b) CP blend	55
Figure 3.4	FTIR spectra of (a) chitosan and (b) CP blend irradiated with C^{+5} and Ni ⁺⁷ ions at the fluence of 1×10^{11} ions/cm ² and 1×10^{12} ions/cm ² respectively	56
Figure 3.5	UV-Visible absorption spectra of (a) chitosan and (b) CP blend irradiated with C^{+5} and Ni^{+7} ions at the fluence of 1×10^{11} ions/cm ² and 1×10^{12} ions/cm ² respectively	59
Figure 3.6	Tauc's plots of (a) chitosan and (b) CP blend irradiated with C^{+5} and Ni ⁺⁷ ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ² , respectively.	60
Figure 3.7	Plot of dielectric constant (ϵ') versus log frequency for pre and post C ⁺⁵ and Ni ⁺⁷ ions irradiated (a) chitosan and (b) CP blend matrices	62
Figure 3.8	Plot of real electric modulus (M') versus log frequency for pre and post C^{+5} and Ni^{+7} ions irradiated (a) chitosan and (b) CP blend matrices	63
Figure 3.9	Plot of imaginary electric modulus (M") versus log frequency for pre and post C^{+5} and Ni^{+7} ions irradiated (a) chitosan and (b) CP blend matrices	64
Figure 3.10	Plot of dielectric loss (ϵ'') versus log frequency for pre and post C^{+5} and Ni ⁺⁷ ions irradiated (a) chitosan and (b) CP blend matrices	66
Figure 3.11	Plot of conductivity (σ) versus log frequency for pre and post C^{+5} and Ni ⁺⁷ ions irradiated (a) chitosan and (b) CP blend matrices	67
Figure 3.12	Plot of log ac conductivity versus log angular frequency for pre and post C^{+5} and Ni^{+7} ions irradiated chitosan	68
Figure 3.13	Plot of log ac conductivity versus log angular frequency for pre and post C^{+5} and Ni^{+7} ions irradiated CP blend	69
Figure 3.14	SEM micrographs of chitosan (a) irradiated with C^{+5} (b) and Ni^{+7} (c) ions at the fluence of 1×10^{12} ions/cm ² ; CP blend (d) irradiated with C^{+5} (e) and Ni^{+7} (f) ions at the fluence of 1×10^{12} ions/cm ²	70

Figure No.	Title	Page No.
Figure 3.15	Variation in crystallite size, bandgap (E_g), dielectric constant (ε') and dc conductivity of chitosan and CP blend irradiated with C ⁺⁵ and Ni ⁺⁷ ions at fluence of 1×10 ¹¹ and 1×10 ¹² ion/cm ² . The symbols of square and circle referred to chitosan and CP blend, respectively	71
Figure 4.1	XRD patterns of CS and SPE system with different concentrations	78
Figure 4.2	FTIR spectrum of CS and CSC SPE samples	79
Figure 4.3	The concentration-dependent FTIR of chitosan-based SPE system	80
Figure 4.4	FTIR spectra of SPE samples irradiated with 60-MeV C^{+5} and 100-MeV Ni^{+7} ions at the fluences of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	81
Figure 4.5	UV-Vis spectra of concentration-dependent SPE samples	82
Figure 4.6	UV–Vis spectrum of CS and CSC samples irradiated with 60- MeV C ⁺⁵ and 100-MeV Ni ⁺⁷ ions at the fluences of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	83
Figure 4.7	Plot of dielectric constant versus log frequency for pristine and irradiated SPE with 60-MeV C^{+5} and 100-MeV Ni^{+7} ions at the fluences of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	86
Figure 4.8	Plot of real part of modulus versus log frequency for pristine and irradiated SPE with 60-MeV C ⁺⁵ and 100-MeV Ni ⁺⁷ ions at the fluences of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	87
Figure 4.9	Bergman equation fit of imaginary part of modulus versus log frequency for pristine and irradiated SPE with 60-MeV C ⁺⁵ and 100-MeV Ni ⁺⁷ ions at the fluences of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	88
Figure 4.10	Plot of dielectric losses versus log frequency for pristine and irradiated SPE with 60-MeV C^{+5} and 100-MeV Ni^{+7} ions at the fluences of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	90
Figure 4.11	Scaling behavior of imaginary part of modulus for all the SPE samples	91
Figure 4.12	Plot of conductivity versus log frequency for pristine and irradiated SPE with 60-MeV C^{+5} and 100-MeV Ni^{+7} ions at the fluences of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	92

Figure No.	Title	Page No.
Figure 4.13	Variation in dc conductivity as a function of salt concentration and ion fluence	92
Figure 4.14	Plot of log ac conductivity versus log angular frequency for all the SPE samples	93
Figure 4.15	AFM images of CS (a) and CSC (b) films and CSC films irradiated with 60-MeV C^{+5} ions (c), 100-MeV Ni^{+7} ions (d) at the fluence of $1{\times}10^{12}$ ions/cm ²	94
Figure 5.1	XRD of (a) CS, (b) CSNA, (c) CSNB, (d) CSNC, (e) CP, (f) CPNA, (g) CPNB, and (h) CPNC matrices	102
Figure 5.2	XRD of (a-h) CSNA and CPNA, (i-p) CSNB and CPNB, and (q-x) CSNC and CPNC matrices irradiated with C^{+5} and Ni^{+7} ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	103
Figure 5.3	FTIR spectra of concentration-dependent CSN matrices	105
Figure 5.4	FTIR spectra of concentration-dependent CPN matrices	106
Figure 5.5	FTIR spectra of (a) CSNC (b) CPNC matrices irradiated with C^{+5} and Ni ⁺⁷ ions at the fluences of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	107
Figure 5.6	UV-Visible spectra of concentration-dependent (a) CSN and (b) CPN matrices, respectively	109
Figure 5.7	UV-Visible spectra of (a) CSN (b) CPN matrices irradiated with C^{+5} and Ni^{+7} ions at the fluences of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	110
Figure 5.8	Plot of dielectric constant versus log frequency of Ag NPs dependent (a) CSN and (b) CPN matrices, respectively. Inset depict the variation of ε' at 1 kHz versus Ag NPs wt% for CSN and CPN matrices	113
Figure 5.9	Plot of dielectric constant versus log frequency for (a) CSNA, (b) CSNB, (c) CSNC, (d) CPNA, (e) CPNB, and (f) CPNC matrices irradiated with C^{+5} and Ni^{+7} ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	114
Figure 5.10	Plot of dielectric loss versus log frequency of Ag NPs dependent (a) CSN and (b) CPN matrices, respectively	115
Figure 5.11	Plot of dielectric loss versus log frequency for (a) CSNA, (b) CSNB, (c) CSNC, (d) CPNA, (e) CPNB, and (f) CPNC matrices irradiated with C ⁺⁵ and Ni ⁺⁷ ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	116

Figure No.	Title	Page No.
Figure 5.12	Plot of real part of electric modulus versus log frequency of Ag NPs dependent (a) CSN and (b) CPN matrices, respectively	117
Figure 5.13	Plot of real part of electric modulus versus log frequency for (a) CSNA, (b) CSNB, (c) CSNC, (d) CPNA, (e) CPNB, and (f) CPNC matrices irradiated with C^{+5} and Ni^{+7} ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	118
Figure 5.14	Plot of imaginary part of electric modulus versus log frequency of Ag NPs dependent (a) CSN and (b) CPN matrices, respectively	119
Figure 5.15	Plot of imaginary part of electric modulus versus log frequency for (a) CSNA, (b) CSNB, (c) CSNC, (d) CPNA, (e) CPNB, and (f) CPNC matrices irradiated with C^{+5} and Ni^{+7} ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	120
Figure 5.16	Plot of conductivity versus log frequency of Ag NPs dependent (a) CSN and (b) CPN matrices, respectively	122
Figure 5.17	Variation in dc conductivity for (a) CSN and (b) CPN matrices as a function of ion fluence. Variation in frequency exponent "s" for (c) CSN and (d) CPN matrices as a function of ion fluence	123
Figure 5.18	Plot of conductivity versus log frequency for (a) CSNA, (b) CSNB, (c) CSNC, (d) CPNA, (e) CPNB, and (f) CPNC matrices irradiated with C ⁺⁵ and Ni ⁺⁷ ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	124
Figure 5.19	Scaling of the conductivity spectra for (a) CSNA, (b) CSNB, (c) CSNC, (d) CPNA, (e) CPNB and (f) CPNC matrices irradiated with C ⁺⁵ and Ni ⁺⁷ ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	125
Figure 5.20	Plot of log(fc') versus log frequency of (a) CSN and (b) CPN matrices irradiated with C^{+5} and Ni ⁺⁷ ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ² , respectively	126
Figure 5.21	FESEM micrographs of (a) CSNC irradiated with (b) C^{+5} ions, (c) Ni ⁺⁷ ions at the fluence of 1×10^{12} ions/cm ² and (d) CPNC irradiated with (e) C^{+5} ions (f) Ni ⁺⁷ ions at the fluence of 1×10^{12} ions/cm ²	127
Figure 5.22	AFM images of (a) CSNC irradiated with (b) C^{+5} ions, (c) Ni^{+7} ions at the fluence of 1×10^{12} ions/cm ² and (d) CPNC irradiated with (e) C^{+5} ions (f) Ni^{+7} ions at the fluence of 1×10^{12} ions/cm ²	128

Figure No.	Title	Page No.
Figure 6.1	Optical energy bandgap of chitosan, CP blend, SPE and polymer nanocomposites matrices as a function of beam parameters	138
Figure 6.2	Dielectric constant at 10 kHz frequency of chitosan, CP blend, SPE and polymer nanocomposites matrices as a function of beam parameters	140

LIST OF TABLES

Table No.	Title	Page No.
Table 2.1	The simulated value of S_e , S_n , and R_p for C ⁺⁵ and Ni ⁺⁷ ions in the respective matrix	31
Table 3.1	Variation in crystallite size of pristine and irradiated CS and CP blend matrices with 60-MeV C^{+5} and 100- MeV Ni^{+7} ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ²	52
Table 3.2	Variation in E_g , N, and R ² for (a) chitosan and (b) CP blend irradiated with C ⁺⁵ and Ni ⁺⁷ ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ² , respectively.	60
Table 4.1	Variation in optical energy bandgap (E_g) and the number of carbon atoms per conjugation length (N) at different fluences of 60-MeV C ⁺⁵ and 100-MeV Ni ⁺⁷ ion irradiation for SPE samples	84
Table 4.2	Parameter values obtained from the Bergman equation fit and σ_{dc}	89
Table 5.1	Variation in the crystallite size of pristine and irradiated CSN and CPN matrices with 60-MeV C^{+5} and 100-MeV Ni^{+7} ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ²	104
Table 5.2	Variation in optical energy bandgap (E_g), the number of carbon atoms per conjugation length (N) and (R^2) of pristine and irradiated CSN and CPN matrices with 60-MeV C ⁺⁵ and 100-MeV Ni ⁺⁷ ions at the fluence of 1×10 ¹¹ and 1×10 ¹² ions/cm ²	111
Table 5.3	Parameter values obtained from the Bergman equation fit of pristine and irradiated CSN matrices with 60-MeV C^{+5} and 100-MeV Ni^{+7} ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ²	121
Table 5.4	Parameter values obtained from the Bergman equation fit of pristine and irradiated CSN matrices with 60-MeV C^{+5} and 100-MeV Ni ⁺⁷ ions at the fluence of 1×10^{11} and 1×10^{12} ions/cm ²	121