LIST OF FIGURES

Details	Figure No.	Page No.
Energy density vs power density of electrochemical devices	1.1(a)	2
Typical Sodium Battery	1.1(b)	2
Amorphous and crystalline regions in a polymer	1.2	7
Polymer blend system	1.3	13
Irradiation effects on Polymer	1.4	15
Vacancy and Interstitial mechanism for ion motion	2.1	23
Representation of cation motions in a polymer electrolyte (a) assisted by polymer chain motion only; and (b)taking account of ionic cluster contributions	2.2	25
Leitmotif of the jump relaxation model. (a) Ions on a sublattice. (b) Cage-effect potential (broken line) and effective single-particle potential (solid line) after a hop from A to B at time $t = 0$. (c) Development of the potential for $t > 0$. (Funke & Wilmer, 2000)	2.3	32
CBH Model: Lowering of barrier height for two closely spaced charge carriers	2.4	34
Ion hopping mechanism (at t=0, i.e. right after ion has hopped) (a site sensitive model on top and coulomb cage potential below). (Bunde et al., 1960; Kumar, 2014).	2.5	35
Impedance plot in a complex plane	2.6	36
Complex Impedance plots for some elementary R, C and RC circuits	2.7(i-iv)	37
Geometric response for an (i) ideal circuit (ii) distributed elements	2.8(i-ii)	39
Vector diagram for Loss tangent	2.9	41
Structure of Poly (ethylene oxide) (PEO)	3.1	51
Structure of Polyacrylamide (PAM)	3.2	52
Structure of Sodium triflate (NaCF3SO3)	3.3	52
Structure of Ethylene Carbonate (EC)	3.4	53

Structure of Propylene Carbonate (PC)	3.5	53
Structure of Silicon dioxide (SiO2).	3.6	54
Schematic of Pelletron Acceleator, IUAC	3.7	57
Schematic diagram of a typical FT-IR Instrument	3.8	59
Stretching vibrations of a diatomic molecule and bending vibrations of a triatomic molecule	3.9	61
Different types of Bending vibrations of a triatomic molecule	3.10(a)	63
Image of FT-IR instrument	3.10(b)	63
Bragg's Law	3.11	64
Image of X-ray Diffraction instrument	3.12	65
Working Principle of SEM instrument	3.13	65
Image of the gold/palladium source coating unit for SEM studies.	3.14	66
Image of SEM Microscope	3.15	66
Schematic of a typical DSC unit	3.16	68
Schematic DSC curve	3.17	68
Image of DSC instrument	3.18	69
Wagner's Polarization method for transference number measurement Experimental setup	3.19	70
IR-spectra of all the starting materials	4.1 (a-f)	77
IR-spectra of pristine blend and PPS-system	4.2	78
IR-spectra of irradiated PPS-7.5 sample	4.3	78
IR-spectra of PPSP-system	4.4	79
IR-spectra of irradiated PPSP-15 sample	4.5	79
IR-spectra of PPSPN-system	4.6	79
IR-spectra of irradiated PPSPN-12.5 sample	4.7	79
X-ray diffractograms of polymers and pristine blend	4.8	83
X-ray diffractograms of PPS-system	4.9	83

X-ray diffractograms of irradiated PPS-17.5 sample	4.10	83
X-ray diffractograms of PPSP-system	4.11	85
X-ray diffractograms of irradiated PPSP-15 sample	4.12	85
X-ray diffractograms of PPSPN-system	4.13	86
X-ray diffractograms of irradiated PPSPN-12.5 sample	4.14	86
DSC thermograms of PPS-system	4.15(a)	88
Melting temperature (T _m) as a function of salt concentration	4.15(b)	88
DSC thermograms of irradiated PPS-17.5 sample	4.16 (a)	88
Melting temperature (Tm) as a function of fluence for irradiated PPS- 17.5 sample	4.16(b)	88
DSC thermograms of PPSP-system	4.17 (a)	88
Melting temperature (T _m) as a function of EC+PC concentration	4.17(b)	88
DSC thermograms of irradiated PPSP-15 sample	4.18 (a)	89
Melting temperature (T _m) as a function of fluence for irradiated PPSP-15	4.18(b)	89
sample		
DSC thermograms of PPSPN-system	4.19 (a)	90
Melting temperature (T _m) as a function of SiO ₂ concentration	4.19(b)	90
DSC thermograms of irradiated PPSPN-12.5 sample	4.20(a)	90
Melting temperature (T _m) as a function of fluence for irradiated PPSPN-	4.20(b)	90
12.5 sample		
SEM micrograph of un-irradiated PPS-17.5 sample	4.21(a)	91
SEM micrograph of PPS-17.5 sample irradiated at 1×10^{11} ions/cm ²	4.21(b)	91
fluence		
SEM micrograph of PPS-17.5 sample irradiated at 1×10^{12} ions/cm ² fluence	4.21(c)	92
SEM micrograph of PPS-17.5 sample irradiated at 2×10^{12} ions/cm ² fluence	4.21(d)	92

SEM micrograph of un-irradiated PPSP-15 sample	4.22(a)	92
SEM micrograph of PPSP-15 sample irradiated at 1×10^{11} ions/cm ²	4.22(b)	92
fluence		
SEM micrograph of PPSP-15 sample irradiated at 1×10^{12} ions/cm ² fluence	4.22(c)	93
SEM micrograph of PPSP-15 sample irradiated at 2×10^{12} ions/cm ²	4.22(d)	93
fluence	(-)	
SEM micrograph of un-irradiated PPSPN-12.5 sample	4.23(a)	93
SEM micrograph of PPSPN-12.5 sample irradiated at 1×10^{11} ions/cm ²	4.23(b)	93
fluence		
SEM micrograph of PPSPN-12.5 sample irradiated at 1×10^{12} ions/cm ²	4.23(c)	94
fluence		
SEM micrograph of PPSPN-12.5 sample irradiated at 2×10^{12} ions/cm ²	4.23(d)	94
fluence		
Sinusoidal Current response in a linear system	5.1	99
Impedance plots for various concentrations of NaCF ₃ SO ₃ in PPS system	5.2(a-c)	102
recorded at different temperatures		
Impedance plot of PPS-system at 313 K	5.3	102
Equivalent circuit model used to fit impedance data in PPS-system	5.4	102
A typical Randles cell model	5.5	102
Fitted impedance plot of PPS-system at 313 K	5.6 (a)	103
Fitted impedance plot of PPS-17.5 sample at various temperatures	5.6(b)	103
Conductivity as a function of salt concentration	5.7	104
Temperature response of conductivity of PPS samples	5.8	104
Frequency dependent conductivity for various concentrations of	5.9 (a-c)	106
NaCF ₃ SO ₃		
Frequency dependent conductivity for PPS-system	5.10	106
Power law exponent dependence on temperature for PPS-system	5.11	106

Impedance plots of irradiated (a) PPS-7.5 and (b) PPS-17.5 samples	5.12	107
Impedance plots of PPS-17.5 sample at different temperatures irradiated	5.13	107
with 1×10^{12} ions/cm ² fluence		
Fitted impedance plot of irradiated PPS-17.5 sample	5.14	107
Fluence dependent conductivity for PPS-17.5 sample	5.15	108
Temperature dependent conductivity for irradiated PPS-17.5 sample	5.16	108
Frequency dependent conductivity for irradiated PPS-17.5 samples	5.17	109
Frequency dependent conductivity of PPS-17.5 sample at different	5.18	109
temperatures irradiated with 1×10^{12} ions/cm ² fluence		
Power law exponent dependence on temperature for irradiated PPS-17.5 sample	5.19	110
Impedance plots for various concentrations of EC+PC in PPSP-system recorded at different temperatures	5.20(a-c)	111
Impedance plot of PPSP system at different EC+PC concentrations	5.21	111
Fitted impedance plot of PPSP-system at 313 K	5.22(a)	111
Fitted impedance plot of PPSP-15 sample at various temperatures	5.22(b)	111
Conductivity as a function of EC+PC concentration	5.23	112
Temperature response of conductivity of PPSP samples	5.24	112
Frequency dependent conductivity for various concentrations of EC+PC	5.25(a-c)	113
Frequency dependent conductivity for PPSP-system	5.26	114
Power law exponent dependence on temperature for PPSP-system	5.27	114
Impedance plots of irradiated (a) PPSP-5 and (b) PPSP-15 samples	5.28(a-b)	115
Impedance plots of PPSP-15 sample at different temperatures irradiated with 1×10^{12} ions/cm ² fluence	5.29	115
Fitted impedance plot of irradiated PPSP-15 sample	5.30	115
Fluence dependent conductivity for PPSP-15 sample	5.31	115
Temperature dependent conductivity for irradiated PPSP-15 sample	5.32	115

Frequency dependent conductivity for irradiated PPSP-15 samples	5.33	116
Frequency dependent conductivity of PPSP-15 sample at different	5.34	116
temperatures irradiated with 1×10^{12} ions/cm ² fluence		
Power law exponent dependence on temperature for irradiated PPSP-15	5.35	116
sample		
Impedance plots for various concentrations of SiO ₂ in PPSPN-system	5.36(a-c)	118
recorded at different temperatures		
Impedance plot of PPSP system at different SiO ₂ concentrations	5.37	118
(a) Fitted impedance plot of PPSPN-system at 313 K and (b) Fitted	5.38(a-b)	118
impedance plot of PPSNP-12.5 sample at various temperatures		
Conductivity as a function of SiO ₂ concentration	5.39	119
Temperature response of conductivity of PPSPN samples	5.40	119
Frequency dependent conductivity for various concentrations of SiO2	5.41(a-c)	120
Frequency dependent conductivity for PPSPN-system	5.42	121
Power law exponent dependence on temperature for PPSPN-system	5.43	121
Impedance plots of irradiated (a) PPSPN-7.5 and (b) PPSNP-12.5	5.44(a-b)	122
samples		
Impedance plots of PPSPN-12.5 sample at different temperatures	5.45	122
irradiated with 1×10^{12} ions/cm ² fluence		
Fitted impedance plot of irradiated PPSPN-12.5 sample	5.46	122
Fluence dependent conductivity for PPSPN-12.5 sample	5.47	122
Temperature dependent conductivity of irradiated PPSPN-12.5sample	5.48	122
Frequency dependent conductivity for irradiated PPSPN-12.5 sample	5.49	123
Frequency dependent conductivity of PPSPN-12.5 sample at different	5.50	123
temperatures irradiated with 1×10^{12} ions/cm ² fluence		
Power law exponent dependence on temperature for irradiated PPSPN-	5.51	123
12.5 sample		
Dielectric response for various concentrations of NaCF ₃ SO ₃	5.52(a-c)	126

Dielectric response of PPS-system	5.53	126
Dispersion frequency as a function of NaCF ₃ SO ₃ concentration	5.54	126
Dispersion frequency as a function of temperature	5.55	126
Dielectric loss for various concentrations of NaCF ₃ SO ₃	5.56(a-c)	128-129
Dielectric loss of PPS-system	5.57	129
Peak frequency as a function of NaCF ₃ SO ₃ concentration	5.58	129
Peak frequency as a function of temperature for PPS-system	5.59	129
Dielectric response of irradiated (a) PPS-7.5 and (b) PPS-17.5 samples	5.60 (a-b)	129
Dispersion frequency as a function of fluence for PPS-7.5 and 17.5 samples.	5.61	130
Dielectric response of PPS-17.5 sample irradiated at 1×10^{12} ions/cm ² fluence	5.62	130
Dispersion frequency of PPS-17.5 sample irradiated at 1×10^{12} ions/cm ² fluence	5.63	130
Dielectric loss of irradiated (a) PPS-7.5 and (b) PPS-17.5 sample	5.64(a-b)	130
Peak frequency as a function of fluence for PPS-7.5 and 17.5 samples.	5.65	131
Dielectric loss of PPS-17.5 sample irradiated at 1×10^{12} ions/cm ² fluence.	5.66	131
Peak frequency of PPS-17.5 sample irradiated at 1×10^{12} ions/cm ² fluence	5.67	131
Dielectric response for various concentrations of EC+PC	5.68 (a-c)	132-133
Dielectric response of PPSP-system	5.69	133
Dispersion frequency as a function of EC+PC concentration.	5.70	133
Dispersion frequency as a function of temperature for PPSP-system.	5.71	133
Dielectric loss for various concentrations of EC+PC.	5.72(a-c)	134
Dielectric loss of PPSP-system.	5.73	134
Peak frequency as a function of EC+PC concentration.	5.74	134
Peak frequency as a function of temperature for PPSP-system.	5.75	134
Dielectric response of irradiated (a) PPSP-5 and (b) PPSP-15 samples.	5.76(a-b)	135

Dispersion frequency as a function of fluence for PPSP-5 and 15 samples.	5.77	135
Dielectric response of PPSP-15 sample irradiated at 1×10^{12} ions/cm ² fluence	5.78	135
Dispersion frequency of PPSP-15 sample irradiated at 1×10^{12} ions/cm ² fluence	5.79	135
Dielectric loss of irradiated (a) PPSP-5 and (b) PPSP-15 samples.	5.80(a-b)	136
Peak frequency as a function of fluence for PPSP-5 and 15 samples.	5.81	136
Dielectric loss of PPSP-15 sample irradiated at 1×10^{12} ions/cm ² fluence	5.82	137
Peak frequency of PPSP-15 sample irradiated at 1×10^{12} ions/cm ² fluence	5.83	137
Dielectric response for various concentrations of SiO ₂ .	5.84(a-c)	137-138
Dielectric response of PPSPN-system.	5.85	138
Dispersion frequency as a function of SiO ₂ concentration.	5.86	139
Dispersion frequency as a function of temperature for PPSPN-system	5.87	139
Dielectric loss for various concentrations of SiO ₂	5.88(a-c)	139-140
Dielectric loss of PPSPN-system	5.89	140
Peak frequency as a function of SiO2 concentration	5.90	140
Peak frequency as a function of temperature for PPSPN-system	5.91	140
Dielectric response of irradiated (a) PPSPN-7.5 and (b) PPSNP-12.5 samples .	5.92(a-b)	141
Dispersion frequency as a function of fluence for PPSPN-7.5 and 12.5 samples	5.93	141
Dispersion frequency as a function of fluence for PPSPN 7.5 and 12.5 samples	5.94 (a)	141
Dielectric response of PPSPN-12.5 sample irradiated at 1×10^{12} ions/cm ² fluence	5.94 (b)	141
Dispersion frequency of PPSPN-12.5 sample irradiated at 1×10^{12} ions/cm ² fluence	5.95	141

Dielectric loss of irradiated (a) PPSPN-7.5 and (b) PPSPN-12.5 samples.	5.96(a-b)	142
Peak frequency as a function of fluence for PPSPN-7.5 and 12.5	5.97	142
samples.		
Dielectric loss of PPSPN-12.5 sample irradiated at 1×10^{12} ions/cm ²	5.98	142
fluence		
Peak frequency of PPSPN-12.5 sample irradiated at 1×10^{12} ions/cm ²	5.99	142
fluence		
Modulus behaviour of various concentrations of NaCF ₃ SO ₃ .	5.100(a-c)	144
Modulus behaviour of PPS-system.	5.101	145
Onset frequency as a function of NaCF ₃ SO ₃ concentration	5.102	146
Onset frequency as a function of temperature for PPS-system	5.103	146
Modulus behavior of irradiated PPS-7.5 samples	5.104(a)	146
Modulus behavior of irradiated PPS-17.5 samples	5.104(b)	146
Onset Frequency as a function of fluence for PPS-7.5 and 17.5 samples	5.105	147
Modulus behavior of irradiated PPS-17.5 sample at different	5.106	147
temperatures		
Onset Frequency as a function of temperature for PPS-17.5 sample	5.107	148
irradiated at 1×10^{12} ions/cm ² fluence.		
Modulus behaviour of various concentrations of EC+PC	5.108(a-c)	149
Modulus behaviour of PPSP-system	5.109	149
Onset frequency as a function of EC+PC concentration	5.110	150
Onset frequency as a function of temperature for PPSP-system	5.111	150
Modulus behavior of irradiated PPSP-5 samples	5.112(a)	150
Modulus behavior of irradiated PPSP-15 samples	5.112(b)	150
Onset Frequency as a function of fluence for PPSP-5 and 15 samples	5.113	150
Modulus behavior of irradiated PPSP-15 sample at different	5.114	151
temperatures		

Onset Frequency as a function of temperature for PPSP-15 sample	5.115	151
irradiated at 1×10^{12} ions/cm ² fluence.		
Modulus behaviour of various concentrations of SiO ₂	5.116(a-c)	152
Modulus behaviour of PPSPN-system	5.117	152
Onset frequency as a function of SiO ₂ concentration	5.118	153
Onset frequency as a function of temperature for PPSPN-system	5.119	153
Modulus behavior of irradiated PPSPN-7.5 samples	5.120(a)	154
Modulus behavior of irradiated PPSPN-12.5 samples	5.120(b)	154
Onset Frequency as a function of fluence for PPSPN-7.5 and 12.5	5.121	154
samples		
Modulus behavior of irradiated PPSPN-12.5 sample at different	5.122	154
temperatures		
Onset Frequency as a function of temperature for PPSPN-12.5 sample	5.123	155
irradiated at 1×10^{12} ions/cm ² fluence.		