LIST OF TABLES

Table 3.1.	The lattice parameters, bulk modulus and pressure derivative of bulk modulus of GaX compounds in ZB and WZ phases65
Table 3.2.	The electronic bandgaps and bandgap types of GaX compounds in ZB and WZ phases
Table 3.3.	The acoustic and optic phonon frequencies at high-symmetry points of BZ, the Born effective charges (Z^*) and high frequency di-electric constants (ϵ) for ZB GaX compounds
Table 3.4.	The vibrational frequencies of phonon modes, Born effective charges (Z^*) and high frequency di-electric constants (ϵ) of WZ GaX compounds73
Table 3.5.	Calculated hole effective mass (m_h^*) , deformation potential (E ₁), elastic constant (C _{ii}), hole mobility (μ) and relaxation time (τ) of GaX compounds in ZB and WZ phases
Table 3.6.	Lattice thermal conductivity (κ _l) at 300 K for GaX compounds in ZB and WZ phases
Table 3.7.	The structural and electronic properties of GaX (X=P, As, Sb) nanowires for three different diameters
Table 3.8.	The structural and electronic parameters of GaP1, GaAs1 and GaSb1 NWs under the effect of uniaxial compressive strain95
Table 4.1.	Computed structural and electronic parameters of GaSb-GaAs and GaSb-GaP HSNWs together with pristine GaP, GaAs and GaSb NWs 123
Table 4.2.	Computed solar cell parameters for GaX (X=P, As, Sb) NWs under SQ limit
Table 4.3.	Computed solar cell parameters of GaSb-GaAs and GaSb-GaP HSNWs together with their comparison to the pristine core and shell NWs133
Table 5.1.	Computed structural and electronic parameters of AlX (X=P/As) in bulk, nanowire (NW) and radial (R) and axial (A) heterostructure nanowire (HSNW) configurations
Table 6.1.	Computed structural parameters of WZ BP in bulk and NW configurations 171
Table 6.2.	Electronic band gap (E_g) , electron effective mass (m_e^*) and nature of band gap of Boron Phosphide in bulk and NW geometries 171

Table 6.3.	Computed bond lengths and angles of BP NW subjected to hydrogen adsorption at different sites of NW surface
Table 6.4.	Computed bond lengths and angles of BP NW subjected to oxygen adsorption on different sites of NW surface
Table 6.5.	Adsorption and Gibbs free energies (in electron-volts) of BP NW under hydrogen and oxygen adsorption for pristine and Al and Ga doped configurations
Table 6.6.	Computed adsorption energy, Gibbs free energy and distance between the hydrogen atom to NW surface
Table 6.7.	The computed values of bond-length and distance of adsorbed hydrogen from NW surface
Table 6.8.	Computed bond angles of pristine and defected GaP NW with corresponding adsorption energy