Chapter 3

Cross-Section: Formulation and
Uncertainty Analysis

A brief introduction to the formulation of the reaction cross-sections is
provided along with the detailed discussion on the uncertainty analysis by
using the ratio measurement technique. Section 3.1 of the present chapter
is very general in nuclear reaction theory and can be found in any nuclear
physics text book. The advantage of adding this section is to present a
complete insight into the measurement and to provide a basic knowledge,
which would be helpful to understand the following subsections 3.2.2 and
3.2.3.
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3.1 Determination of the Reaction Cross-Section

The irradiation of a target with a beam of particles may lead to various
reaction mechanisms among the projectile and target nuclei. As a result
of these different interactions an equilibrated compound nucleus may be
formed, which de-excites and produce many reaction residues by the emis-
sion of different particles like, 7y, p, n, « etc. The residual nuclei thus formed
are in their excited states. The excited residual nuclei may decay to lower
states through their characteristic y-ray emission. If ¢ is the flux of incident
particle beam, Nj is the initial number of nuclei present in the target and
0y is the activation cross-section of the target nuclei through a particular
reaction channel, then the final activation product may be given by,

N = No¢oy 3.1)

The disintegration rate of the induced activity in the sample at a time £,
after the end of irradiation can be given by the expression,

AN\ [1—exp(—=At;)]
(E)t =N exp(Atc) (32)

where t; is the time duration of irradiation of target, t. is the cooling time
and A is the decay constant for the induced activity of the residual nuclei
which is related to the half-life (T; /») by the expression,

_ In2

A= =
Ty /2

(3.3)

The factor [1 — exp(—At;)] is called the saturation correction. It should
also be considered that the radioactive nuclei produced might have also
decayed during the time of the irradiation process. Therefore, the number
of radioactive nuclei decay in a very small time interval dt can be written
as,

dN = N[1 —exp(—At;)]exp(—At.)dt (3.4)

If the induced activity in the irradiated sample is recorded for a time At
after a lapse of time t., then the total number of nuclei decayed during the
time ¢, to t. + At is given by
te+ At
C= dN (3.5)

te

tet- At
C = N[1—exp(—At;)] /t exp(—Ate)dt (3.6)
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C = N[1 — exp(—at)) L= ;ffé&?f ) (3.7)
C— N[l —exp(—At)][1 —exp(—A At)] (3.8)

Aexp(Ate)

If the induced activity in the sample is recorded by a suitable y-ray
spectrometer having geometry dependent efficiency (¢¢), then absolute
counting rate 'C” and the observed counting rate 'C,;s]" may be related as,

_ Cobs
where, T, is the branching ratio of the characteristic y-ray [1], K is the
correction factor for the self absorption y-rays [2,3] in the target and can be

(3.9)

given as,

ud
where, y is the y-ray absorption coefficient for the target of thickness d.

Thus, the reaction cross-section o of the evaporation residue at a given
beam energy E can be written as,

- Cobs/\exp(/\tc)
~ Noecl,K[L — exp(—A8)][1 — exp(—A A D)

OR (3.11)

where, C,5 is the number of counts under the photo-peak of the char-
acteristic y-ray. The equation 3.11 can be used for the calculation of the
reaction cross-section of a residue at a given energy. Since the counting time
of the detector (Tr) and the actual time of counting (T7) may differ due to
the dead time of the detector, therefore, equation 3.11 may be modified as,

— Cobs/\ ( TR/Ty, )
NogpegI,K[1 — e Mi][e~Mc][1 — e AT1]

OR (3.12)

where, C, is the observed counts for respective y-ray from monitor
reaction, Tg and T} are the clock time and the live time for the counting of
the spectrum, A is the decay constant (A = 0.693/t;7), I, is the branching
ratio for the respective y-ray taken from Ref. [1], Ny is the total number of
target nuclei in the sample and € is the detector efficiency. A C++ program
based on above formulation has been used for the calculation of measured
cross-section using the counting statistics of the populated reaction residues.
The residual nucleus of a particular reaction may, in general, emits y-rays of
more than one energy. In such cases, the cross-section for the same reaction
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can be determined separately from the observed intensities of different
7 -rays originating from the same residue. The weighted average of the
cross-sections from different y-rays is taken as the final experimental value,
which can be determined as follows,

If o9, 0, 03, ...... , 0, are the measured cross-section and Aoy, Aoy,
A03,......, Aoy, are the respective experimental cross-sections for the same
reaction due to different y-rays, then 01 + Aoy, 0o £ Aoy, 03 £ Aos,......,
0y £ Aoy are the experimentally measured cross -section for a given reac-
tion due to different y-rays. Therefore, the weighted average cross-section
(0) is determined as,

— w0
g = 3.13
S w, (3.13)
where,
1
W, = —— 3.14)
" (Agy)? (
The internal error I.E. is given by,
-}
LE. = [Zwl} (3.15)
Thus the I.E. entirely depends on the individual observations.
However, the external error E.E. is given by,
Y wi(0; — ;) 12
E=|"—"——= 1
EE [n(n—l)ij (3-16)

Which depends on difference between observed and the mean value.
Therefore, the internal error depends on the internal consistency , whereas
the external error is a function of external consistency of the observations.
These error calculations have also been incorporated in the computation of
desired cross-sections at different -y energies.

The above formulation and the equations 3.12-3.16 can be directly used
for the calculation of proton-induced reaction cross-sections as in the present
work, the proton flux was measured using the Faraday cap or by monitoring
the accelerator beam over the irradiation time. However, in case of the
neutron-induced reactions the neutron flux can not be measured by any
direct method, therefore, a monitor reaction was used in each case in order
to determine the neutron flux by using the evaluated or experimental cross-
sections as the primary input for the monitor reaction. Monitor reactions
can also be used in proton-induced measurements, though, the method is
useful for neutron-induced reactions where the accurate flux estimation is
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important. The neutron flux (< ® >) can be written as,

Cobs)\(TR/TL)
NoegI,K[1 — exp(—At;)]exp(—Atc)[1 — exp(—ATL)]
(3.17)
where, < oy > is the flux weighted cross-section for the monitor reac-
tion and rest of the quantities have their usual meanings for monitor reac-
tion residue similar to the equation 3.12. The flux weighted cross-section
< ow > can be written in terms of the neutron flux ¢; and corresponding
cross-section 0; at an energy E; can be written as,

fEi PEOE;
fEi PE;

Therefore, the neutron-induced reaction cross-section cgx can now be
written with the help of equations 3.12 and 3.17 as,

<O >=<oy >

< ow >= (3.18)

— CobsA(TR/TL)
No < ® > egI,K[1 — e Mi][e—Me][1 — e~ AL]

OR (3.19)

The indirect calculation of neutron flux may lead to large uncertainties
and strong correlations among the different quantities used in the mea-
surement. Therefore, in case of neutron-induced reaction cross-section, the
uncertainties in the measured data have been calculated using co-variance
analysis [4, 5], which has been widely used and recommended for the eval-
uation of uncertainties in the data. The details regarding the co-variance
technique are given in the following section.

3.2 Uncertainty Propagation using
Covariance Analysis

The covariance (correlation) analysis [5] is a mathematical tool based on the
error estimation by predicting means and covariances in non-linear systems.
The covariance analysis provides the best estimation of the uncertainty
along with the cross-correlations among the measured quantities, which
in this case, are the reaction cross-sections. Except the counting statistics
from a spectrum, other quantities like, the y-abundances, efficiency of
detector, flux, half-life of residues, etc, are taken from different sources
which probably contains significant errors. A review of the literature [6,7]
for the reported uncertainties in the recently studied (n,v) and (n, 2n)
reaction cross-sections for 22Th and 233U isotopes and the most commonly
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Figure 3.1: A pictorial representation of the uncertainties present in the (1, ) and
(n, 2n) reaction cross-sections of 2*2Th and ?*3U isotopes. The data were taken from
the EXFOR [6] and ENDF/B-VIIL.1 [7] libraries.

used monitor reactions, listed in Table 2.4, show that, there is a minimum
uncertainty of ~ 5 — 10% present only in the cross-sections used for the
relative measurement of the nuclear data. A graphical representations are
also shown in Figures 3.1 and 3.2. The uncertainties in the data presented
in figure 3.1 were calculated by using quadratic sum of the statistical and
systematic errors. In which the error from the monitor cross-sections were
not included properly. It is obvious from the figure 3.2 that inclusion of the
uncertainty from monitor cross-sections may further increase the total error
present in the (1,) and (n, 2n) cross-sections. Here, covariance analysis
plays a vital role as it transfers the errors from each quantity used in the
calculations into the final uncertainties.

The method is based on the assumption that the result of an observation
can be considered as a random variable x = (x1, x3, X3, ..., X5 ). The normal-
ization condition of the probability distribution p(x) of x can be given as,
i :LOZO p(x)dx =1, where dx = dx1dx,dxs...dx,. The expectation value "A” of

a real-valued function f(x) can be defined as,

AF@) = [ f)p(x)dx (3.20)

— 00

the mean and variance of variable x; are given by,
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Figure 3.2: A pictorial representation of the uncertainties present in the commonly
used monitor reactions. The data were taken from the EXFOR [6] and ENDF/B-
VIL1 [7] libraries.

ik = A(xk); Var(xk) == A[(xk — fk)z] (321)

Since, the variables are dependent, therefore, the covariance and the
correlation among the variables x; are defined as [5],

Cov(xg, x;) = /(xk — %) (x; — %) p(x1, X0...05 ) dx (3.22)

Corr(xy, x;) = Coo(x, xi) (3.23)

Var(xe)y/Var(x;)
where, —1 < Corr(xy, x;) < 1 and the uncertainty can be defined as the
standard deviation Axy = /Var(xy).

3.2.1 Basic Concepts and Definitions

A number of input parameters (e.g., number of counts, number of incident
particles, number of atoms in the sample) are used in the determination
of reaction cross-section. we assign these parameters as random variables
x; (1i=1,2,3,...) with a probability distribution function p(x1, xy, ..) following
a normalization condition ff;o p(x1,x2,..)dx = 1, where dx = dxidx;....
The mean value of the function x;,,, covariance Cov(x;, xj), correlations
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Cor(x;, x;), variance Var(x;) and the standard deviation Ax; can be defined
as,

Xim = /xip(xl,xz,..)dx (3.24)
Coov(x;, x) = /(x,- — Xim) (%) = Xim ) p(x1, X2, .. )dx (3.25)
Cor(x;, x;) = Cov(x;, xj)/ Ax; A xj; (3.26)

0 > Cor(x;, xj) < 1;Cor(x;,x;) = 1(i =)
Var(x;) = /(x,- — Xim)2p(x1, x2,..)dx = Cov(x;, X;) (3.27)
A x; =/ Var(x;) (3.28)

If a set of quantities say yy are related to the parameter x; by y; =
Yi(x1, x2, ...), the relation can be linearized around the mean values as,

Vi = Yim + Y_ ki (Xi — Xim) (3.29)
i

where, Vi, = Yk (X1m, X22m, -..) and the sensitivity coefficient,
ax; = (Oyx/0%;)x;=x,,

The variance and covariance of y; can be expressed in terms of x; as,

Var(yi) = Var(Zakixi> =Y ag;Var(x;) +2Y_ Cov(x;, xj)a;;  (3.30)

i>j
Cov(yg,y;) = Cov ( Z AkiXi, Z aljxj) = Z aiCov(x;, X;)ayj (3.31)
i j i
If the function v is expressed in the form of multiplication as,
ye =[] gu==+10 (3.32)
i
the sensitivity coefficient can now be modified as,

ki = SekiYkm/ Xim (3.33)

If the parameters are uncorrelated then the equation 3.29 simplifies to,
(Ay/Yim)” = Y &ri( Axi/ i) (3.34)
i

If the correlation is present in parameters x;, equations 3.29 and 3.30 are
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simplifies to,

(Ayx/ Yim) = Zgl%i(Axi/xim) +2) Cov(x;, x;)gij (3.35)

i>j

Cov(yi, vi) = Y, &kiCov(xj, xj) g (3.36)
]
When vy can not be explained in terms of equation 3.31 and no correlation
exists then the equations 3.29 and 3.30 can be written as,

(Ay/yim)* = Yt (Dxi/ Xim)? (3.37)

where Si; = (Xjn / Yim ) ki, is the relative sensitivity coefficient which gives
the uncertainty in y; due to the uncertainty in x;.

When the two parameters, say x; & x, are equal and they are inde-
pendent from rest of the set, then the probability distribution takes the
form,

p(x1,x2,...) = P(x1)d(x1 — x2)Q(x3, x4, ...) (3.38)

where 0(x) is the Dirac” delta function. By using the definition

/dxldsz(xl)é(xl —x2)f(x1,x2) = /dle(xl)f(xl,xl)

(3.39)

= /dsz(xz)f(xz, XQ)

for a given function f(x1, x3), the variance and the covariance of x; and x;
are related as,

Var(x1) = Var(xp) = Cov(x1, x2) (3.40)

and hence Cor(x1,x3) = 1 (fully correlated). However, x; and x; are said
to be uncorrelated, Cor(x1,x2) = 0, when x; and x; can be determined
independently. A situation of partial correlation occurs when x; and x; are
determined not independently, but still x; is not automatically determined
from x; (e.g., two detection efficiencies obtained from the same efficiency
curve characterized by parameters a, b,...). A general matrix representation
for the fully correlated, uncorrelated, and partially correlated parameters x;
and x, are shown below.

1 0] [11 1 q]
3L ] gacae

Using the definitions given above, the covariance analysis can be per-
formed to find the uncertainties and correlations among detector efficiencies
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at different y-ray energies and reaction cross-sections at different incident
neutron energies. A detailed discussion on both the calculations is provided
in the following subsection.

3.2.2 Uncertainty in the Detector Efficiency

The geometry dependent efficiency of the HPGe detector is given by the
relation,

C

Koo =
T N NoLe T At

(3.41)
where, Nj is the disintegration rate of 1>2Eu «y-ray source at the time of
manufacturing, A is the decay constant, T is the time interval between the
date of manufacturing and the experiment, I, is the absolute intensity of
the particular -ray and K, are the correction factor for the coincidence-
summing effect [8]. which were calculated using the EFFTRAN code [9].

The different sources of uncertainty in the measurement process which
propagate as the uncertainty in the efficiency of the detector come from C,
Ny, I, and Tj /5. Therefore, the efficiency of the detector can be written as
the function of four attributes as,

e = f(C,No, Iy, Ty 2) (3.42)

the standard deviation in efficiency can be given by the Taylor expansion of
equation 3.42 as,

oe oe oe oe
Ne=(57)AC+ (E)_NO) A Np + (ﬁ) Ay + (m) ATy (3:43)

now squaring both the sides of equation 3.43 and neglecting the higher
order terms, we get,

2= (52) A+ (o) o+ (57) 7+ (572) o +2(50) (53 ) oo
+2(58) (5o, +2(58) (572 )eens +2(555) (57 ) o
+2(55) (5 )Jowms +251) (575 )

above equation states the law of error propagation in a single valued
function and can be represented in a matrix notation as,
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2 oe
oc 0UCNy ocr, UChip %c
2 _9¢_
0.2 — [ﬁ _de Oe o UCNo UNO ONol,  ONoTijs dNp (3 44)
€ aC aNo 317 aTl /2 U-CIV U-NOI,Y 0_127 U-I,YTl/z aaTi R
2 Jde
OCThi; INoTiyy 90L,Tv2 97y, Ty /2

The uncertainty in the detector efficiency due to the four attributes
(C, No, I, T1 /) can be calculated using the quadratic sum formula for i’
number of y-lines as,

= (5—2)20% + <8a_l\€f()>2012\’0 + (%)20127 + (8?18/2)20%1/2 (3.45)

which can be re-written as,

() = () + (G + (G2 ruanr oo

where the uncertainty in decay constant is,
0.693T; />

2
T1/2

AN = (3.47)
Further the covariance matrix for i’ number of measurements is given by
the sandwich formula,

(Ve)ij = Y_ eirSijrejr (3.48)
r

where S;; is the micro—correlation between ¢;, and ¢, due to the rth attribute
[10]. The micro-correlation between different attributes have been assigned
on the assumptions [4,11] as follows,

* If the two quantities (say x1, x2) can be determined independently,
then the correlation between them, Corr(xq, xp) = 0 (uncorrelated),
while Corr(x1,x2) = 1 (fully correlated), when they are completely
dependent. The situation 0 < Corr(x1, x2) < 1 occurs when x; and
x, are determined not independently, but still x; is not automatically
determined from xj [5].

e The Counts (C) of different y-lines are uncorrelated as they were
measured separately. Therefore, S;; for counts will be an identity
matrix of order i X i.
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e The y-abundance (I,) for different ~-lines of ®2Eu is a characteristic
property of each -line and hence they are assigned as uncorrelated.

* Since, each <y-line will be following same half-life (T; ;) during the
nuclear decay, therefore, they are correlated. The S;j, matrix in such

case would be a square matrix of order i x i having all the elements as
1.

¢ The initial activity (Np) will be common for each <-line, therefore, it
would be treated as correlated quantity.

depending upon the above discussion the S;;, matrices for attributes C, No, Iy
and T; /, will be of the forms,

10 -0 11 1 10 -0 11 1
01 ---0 11 1 01 --- 0 11 1
. . . .| and

00 --- 1 11 -1 00 - 1 11 -1

Since, the y-rays taken into calculations (say E;) may be different from
those taken into account for efficiency calculations. Therefore, the detector
efficiencies for the y-lines E;can be calculated using the interpolation model
[4]

Ine; = me(lnEi)m_l (3.49)
m

where, p;, is the fitting parameter, m is the order of the model used for
titting and E; are the energy of the y-lines. The solution for equation (2.36)
can be obtained by considering a linear model Z = AP, where, Z (z; = Ing;)
is a column matrix, A (A;, = (InE;)"™ 1) is the design matrix with elements,
and P is the matrix having parameters p,,, which can be estimated using
the least square method. The covariance matrix for solution parameters is
given by,

Vo= (A'V;1A)? (3.50)

Now the values of parameters p,, can be calculated as,
P=Vs(A'V,'Z) (3.51)
where matrix V; can be obtained by using the definition,

(Ve)ij

Vo)jj=———
(V2)i <€ ><€ >

(3.52)
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The goodness of the fit can be calculated by,
X2 = (Z - AP)V, Y(Z — AP) (3.53)

The fitting parameters can be obtained by using equation (2.38) with V; as
the covariance matrix for the 7y-lines of energies E;. The correlation matrix
for E; can easily be calculated using the covariance matrix V as,

COV(EZ', E])
Var(E;),/Var(E;)

Corr(E;, E;) = (3.54)

now the covariance matrix for the measured cross-sections can be calculated
using the results of the calculations presented in this section.

The efficiencies for the 7y-lines of the sample and monitor reactions can
be calculated by using the fitting parameters into the equation 3.49. The
covariance matrix then can be calculated by designing matrices Z and A for
new efficiencies. and using the equations,

Vzei =A VpA (3.55)
and
Vei]. = €ineij €j (3.56)

where, V,_ is the covariance matrix for the column matrix Z and Vei]. is the
1

covariance matrix for the efficiencies of the sample and monitor reaction

v-lines.

3.2.3 Uncertainty in the Measurement of Reaction Cross-
section
The ratio technique [5] has been used for the covariance analysis in activa-

tion cross-section measurements. We write equation 3.19 with the help of
equation 3.17 as,

— m m m X 7
<Oy >=< 0y > CmNOSQSI,ySf/\S (3 5 )

with the time factor f defined as,
f=1—eM)eM)1-e*)/A (3.58)

where the sample reaction parameters are denoted with suffix ‘s’ and the
monitor reaction parameters with suffix ‘m’. Following the definition pre-
sented in section 3.2.2, the uncertainty in measured cross-section can be
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given by the quadratic sum formula,
Aop\2 Aay\2 Aap\2 Aoy \2
(0}) _;(ar>+;<am)+<am) (3-59)
a=a(C,Nye I, f)
Since the decay constant A is related to the cross-section through an ex-
ponential function, therefore, the uncertainty in the time factor should be

propagated using the uncertainty in the decay constant by differentiating
"f” with respect to A as,

% - % [A%U —e M) (e M) (1 e M) e
S e M) (M) (1 - e M) ()

now dividing equation3.60 by (1 — e~*)(e~*¢)(1 — e~*L), squaring and
rearranging result in,

1 /9f\2 1/ Ate M A(Ty)e MTL) 2
Iz (ﬁ) A2 (1 s Abe 1—e ML) 1> (3-61)
for Atj, Ate,and ALT — 0, the above equation can now be written as,
AfNZ 5 rAAN2
(F) =) (362
with the relative sensitivity given as,
MM ATy )e=MTL)
Sf)\ = (1——6_/\t1 —/\tc+m —1) (363)

Now the covariance matrix for the measured cross-sections can be calculated
using the sandwich formula,

(Vo)ij = Y_eiSijrejr (3.64)
T

where S;j, are the micro-correlation matrices for different attributes
based on the discussion provided for equation (2.35). The correlation matrix
can be calculated using (V;) by following equation (2.41) and the uncer-
tainty in cross-section can be calculated as the square root of diagonal
elements ((V;,)!/2) of the covariance matrix. Detailed covariance analysis
for typically measured % Mo(n,2n)% Mo and *®Ni(n, x) reactions are given
in Appendix A.

PSSR
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