List of Figures

1.1	A plot showing a country wise data of total number of op-	
	erational reactors with their net energy production capacity	2
10	(Gwe) [1]	3
1.2	Country wise nuclear share to their total produced electricity	~
4.0	combining all the resources [1].	3
1.3	A schematic diagram showing the reactions and the products	
	in a typical MOX fuel.	4
1.4	A schematic diagram of Accelerator Driven Sub-critical Sys-	_
	tem (ADSs) [11]	5
1.5	An illustration showing the thorium deposits (in thousand	
	tonnes) around the world [10].	6
1.6	A schematic diagram of International Thermonuclear Experi-	
	mental Reactor (ITER) [7]	8
1.7	A chart showing different nuclear reactions and their outgo-	
	ing particle spectra. The labels, C, P and D corresponds to	
	the labels given in Figure 1.8	11
1.8	Schematic diagram of an outgoing particle spectra contribut-	
	ing from direct (D), compound nucleus (C) and pre-equilibrium	
	(P) reactions. The dashed line separates the compound nu-	
	cleus contribution from rest of the spectrum	11
1.9	A general representation of nuclear reaction on a target nu-	
	cleus with neutron being the incident particle	13
1.10	Excitation function of the ${}^{232}Th(n,\gamma){}^{233}Th$ reaction cross-	
	sections within the energy range of 1-25 MeV. The plot has	
	been taken directly from the EXFOR website [15]	14
2.1	A schematic diagram of 14UD Pelletron Accelerator at BARC-	
	TIFR Facility.	25
2.2	A schematic diagram of Folded Tandem Ion Accelerator (FO-	
	TIA) at Nuclear Physics Division, BARC.	26
2.3	A pictorial view of the 6 meter irradiation setup at BARC-	
	TIFR Pelletron accelerator.	30

2.4	Schematics of a typical HPGe detector connected to a cooling dewar [9]	32
2.5	A typical recorded spectrum of a standard ${}^{152}Eu \gamma$ -ray source marked with prominent γ -lines	33
2.6	Pictorial view of typical source-detector counting setup at BARC-TIFR Pelletron facility	34
2.7	Measured efficiencies for the detector used for (a) the ${}^{232}Th(n, \gamma)$ reaction at BARC, (b) ${}^{58}Ni(n, p)$ reaction at FOTIA, BARC, (c) ${}^{58}Ni(n, 2n)$ and ${}^{100}Mo(n, 2n)$ reactions at TIFR and (d) for p-induced reaction measurements at TIFR at the 5 cm source to detector distance	35
3.1	A pictorial representation of the uncertainties present in the (n, γ) and $(n, 2n)$ reaction cross-sections of ^{232}Th and ^{238}U isotopes. The data were taken from the EXFOR [6] and ENDF/B-VII.1 [7] libraries.	44
3.2	A pictorial representation of the uncertainties present in the commonly used monitor reactions. The data were taken from the EXFOR [6] and ENDF/B-VII.1 [7] libraries	45
4.1	A flow chart representation of the TALYS model calculations.	57
4.2	Reaction flow of PE equilibrium in Exciton Model [1,18]	59
4.3	A flow chart representation of the EMPIRE-3.2.3-Malta calculations [3].	60
5.1	A schematic diagram of the target irradiation setup at BARC-FOTIA with <i>natLiF</i> tablet [23]	71
5.2	A schematic diagram of the target irradiation setup at BARC- TIFR Pelletron with ^{nat}Li metal foil	74
5.3	Typical neutron fluxes used for the present measurements reproduced by using the literature data and parameters given in Refs. [41–46].	77
5.4	Demonstration of the neutron flux correction applied when the monitor and sample reactions have different thresholds [46].	79
5.5	Typically recorded spectrum for the ${}^{232}Th(n, f)$ monitor and ${}^{232}Th(n, \gamma)$ sample reaction at 16 MeV incident proton energies [10].	80
5.6	Typically recorded spectrum for the ${}^{27}Al(n, \alpha)$ monitor and ${}^{100}Mo(n, 2n)$ sample reaction at 19 MeV incident proton energies [22].	80

LIST OF FIGURES

5.7	The typical recorded spectra for (a) ${}^{197}Au(n, \gamma)$, (b) ${}^{115}In(n, n')$, (c) ${}^{27}Al(n, \alpha)$, and (d) ${}^{58}Ni(n, x)$ reactions at 19 MeV incident	01
5.8	Demonstration of the neutron tailing correction applied to remove the contribution coming from the low energy neutron continuum from the measured data.	81
5.9	A comparison of the present results with the literature data [58–69], TALYS-1.8 [26] theoretical data (default as well as with modified parameter set) and the evaluated data from	
5.10	ENDF/B-VII.1 [50] and JENDL-4.0 [51] libraries A comparison of the ${}^{232}Th(n,2n){}^{231}Th$ data [58–61,70–74] with the default and modified input parameter set of TALYS-1.8 [26], the evaluated data from ENDF/B-VII.1 [50] and JENDL-4.0 [51] libraries	91 91
5.11	A comparison of the present results, literature data [79–87], and the theoretical results from different level density models (ldmodel 1-6) [40–45] of TALYS-1.9 [26] for ${}^{100}Mo(n, 2n)^{99}Mo$	06
5.12	A comparison of the present results, literature data [79–87], evaluated data from ENDF/B-VII.1 [50], JENDL-4.0 [51], JEFF-3.2 [52], CENDL-3.1 [53] data libraries and the theo- reticalesultfrom lefault nonodified pullevel lensity	90
E 12	parameters in TALYS-1.9 [26] for ${}^{100}Mo(n,2n)^{99}Mo$ reaction.	96
5.15	lations of TALYS-1.9 [26] and ALICE-2014 [77,78] (default) values.	97
5.14	A comparison of present data with the literature data [11,94–122] and the theoretical reaction cross-section calculations using the TALYS-1.9 [26] code.	103
5.15	A comparison of present data with the literature data [11,94–122], the evaluated data [50–53], and the theoretical reaction cross-section calculations using the EMPIRE-3.2.2-Malta [27]	100
5.16	codeA comparison of present data with the literature data [11,112–130] and the theoretical reaction cross-section calculations	103
	using the TALYS-1.9 [26] code.	104
5.17	A comparison of present data with the literature data [11,112– 130], the evaluated data [50–53], and the theoretical reaction cross-section calculations using the EMPIRE-3.2.2-Malta [27]	
	codes	104

5.18	A comparison of present data with the literature data [11,94– 122], and the theoretical reaction cross-section calculations	
	(default and by switching off the PE contribution) using the TALVS-19 [26] and EMPIRE-3.2.2-Malta [27] codes	105
5 10	A comparison of present data with the literature data [11 112_	105
5.17	130] and the theoretical reaction cross-section calculations	
	(default and by switching off the PE contribution) using the	
	TALYS-1 9 [26] and EMPIRE-3 2 2-Malta [27] code	105
5 20	Experimental cross-sections for ${}^{116}Sn(n,n){}^{116}In$ reaction fit-	100
0.20	ted with ENDE/B-VII 1 [50] and different level density na-	
	rameters using TALYS-1.8 [26] and EMPIRE-3.2.2 [27]	109
5.21	Experimental cross-sections for ${}^{117}Sn(n, p){}^{117}In$ reaction fit-	
	ted with ENDF/B-VII.1 [50] and different level density pa-	
	rameters using TALYS-1.8 [26] and EMPIRE-3.2.2 [27].	110
5.22	Experimental cross-sections for ${}^{117}Sn(n, p){}^{117m}In$ reaction fit-	
	ted with ENDF/B-VII.1 [50] and different level density pa-	
	rameters using TALYS-1.8 [26] and EMPIRE-3.2.2 [27]	110
5.23	Experimental cross-sections for ${}^{118}Sn(n, 2n){}^{117m}Sn$ reaction	
	fitted with ENDF/B-VII.1 [50] and different level density	
	parameters using TALYS-1.8 [26] and EMPIRE-3.2.2 [27]	111
5.24	Experimental cross-sections for ${}^{120}Sn(n, 2n){}^{119m}Sn$ reaction	
	fitted with ENDF/B-VII.1 [50] and different level density	
	parameters using TALYS-1.8 [26] and EMPIRE-3.2.2 [27]	111
5.25	Experimental cross-sections for ${}^{124}Sn(n, 2n){}^{123m}Sn$ reaction	
	fitted with ENDF/B-VII.1 [50] and different level density	
	parameters using TALYS-1.8 [26] and EMPIRE-3.2.2 [27]	112
6.1	A schematic diagram of the stack foil arrangement of the	
	target assembly	126
6.2	Typical γ -ray energy spectrum obtained from the interaction	
	of (from top) [A] $p + {}^{nat} Nb$ at $E_{Lab} \approx 19$ MeV, [B] $p + {}^{nat} Ag$	
	at $E_{Lab} \approx 19$ MeV, and [C] $p + {}^{nat} Ti$ at $E_{Lab} \approx 19$ MeV	127
6.3	Excitation function of the ${}^{93}Nb(p,n){}^{93m}Mo$ reaction. The	
	comparison of the present and the literature data [50-55] with	
	different level density model parameters in TALYS-1.9 [37]	133
6.4	Excitation function of the ${}^{93}Nb(p, pn){}^{92m}Nb$ reaction. The com-	
	parison of the present and the literature data [50–55] with	
	different level density model parameters in TALYS-1.9 [37]	133
6.5	Excitation function of the ${}^{93}Nb(p,\alpha n){}^{89g}Zr$ reaction. The	
	comparison of the present and the literature data [50–55] with	
	different level density model parameters in TALYS-1.9 [37]	135

LIST OF FIGURES

6.6	The comparison of the excitation function of the ^{<i>nat</i>} $Ag(p, x)^{107}$ C reaction with the literature data [56] and the theoretical model codes TALYS-1.9 [37] and ALICE-2014 [38,39]	'd 135
6.7	The comparison of the excitation function of the $^{nat}Ag(p, x)^{106m}$ reaction with the literature data [56] and the theoretical model codes TALYS-1.9 [37] and ALICE-2014 [38,39]	<i>Ag</i> 136
6.8	Excitation function of $^{nat}Ti(p, x)^{48}V$ reaction. The comparison of the present and the literature data [63–65, 68–73, 75] with different level density model parameters (ldmodel 1-6) [40–45] in TALYS-1.9 [37]	136
6.9	Excitation function of $^{nat}Ti(p, x)^{48}V$ reaction. The comparison of the present and the literature data [63–65, 68–73, 75] with different level density model parameters (Fermi Gas and Kataria-Ramamurthy) in ALICE-2014 [38, 39] and TALYS-1.9 [37] default values.	139
6.10	Excitation function of ${}^{nat}Ti(p,x){}^{47}Sc$ reaction. The compar- ison of the present and the literature data [61–64,66,71,75] with different level density model parameters (ldmodel 1- 6) [40–45] in TALYS-1.9 [37]	139
6.11	Excitation function of $^{nat}Ti(p, x)^{47}Sc$ reaction. The compar- ison of the present and the literature data [61–64, 66, 71, 75] with different level density model parameters (Fermi Gas and Kataria-Ramamurthy) in ALICE-2014 [38, 39] and TALYS- 1.9 [37] default values	140
6.12	Excitation function of $^{nat}Ti(p, x)^{46}Sc$ reaction. The compar- ison of the present and the literature data [61, 63, 72, 74, 75] with different level density model parameters (ldmodel 1- 6) [40–45] in TALYS-1.9 [37]	140
6.13	Excitation function of $^{nat}Ti(p, x)^{46}Sc$ reaction. The compar- ison of the present and the literature data [61,63,72,74,75] with different level density model parameters (Fermi Gas and Kataria-Ramamurthy) in ALICE-2014 [38,39] and TALYS- 1.9 [37] default values.	141
6.14	Excitation function of $^{nat}Ti(p, x)^{44m}Sc$ reaction. The comparison of the present and the literature data [61, 62, 64, 65, 67, 71, 72, 75] with different level density model parameters (ldmodel 1-6) [40–45] in TALYS-1.9 [37]	141

6.15	Excitation function of $^{nat}Ti(p, x)^{44m}Sc$ reaction. The compari-	
	son of the present and the literature data [61,62,64,65,67,71,	
	72,75] with different level density model parameters (Fermi	
	Gas and Kataria-Ramamurthy) in ALICE-2014 [38, 39] and	
	TALYS-1.9 [37] default values.	143

- 6.16 Excitation function of the ${}^{93}Nb(p,n){}^{93m}Mo$ reaction. The comparison of the literature data [50–55] with pure CN and CN+PE reaction cross-sections from TALYS-1.9 [37] 144
- 6.17 Excitation function of the ${}^{93}Nb(p,pn){}^{92m}Nb$ reaction. The comparison of the literature data [50–55] with pure CN and CN+PE reaction cross-sections from TALYS-1.9 [37] 144
- 6.18 Excitation function of ${}^{nat}Ag(p, x){}^{107}Cd$ reaction.. The comparison of the present and the literature data [60] with pure CN and CN+PE reaction cross-sections from TALYS-1.9 [37] and default values from ALICE-2014 [38,39]. 145
- 6.19 Excitation function of $^{nat}Ag(p, x)^{106m}Ag$ reaction. The comparison of the present and the literature data [56, 60] with pure CN and CN+PE reaction cross-sections from TALYS-1.9 [37] and default values from ALICE-2014 [38, 39]. 145