CONTENTS

Page No.

Declaration	I
Certificate	II
Acknowledgement	IV
Preface	V
List of Publications	VIII

Chapter 1 Introduction and Review

	1.1	Molecular Electronics: An Introduction	
		1.1.1 Origin	2
		1.1.2 Exotic Effects and Potential	4
×. ·		1.1.3 Computing Electronic Transport	6
	1.2 Ba	asics of DFT and Methodology	
		1.2.1 Introduction	10
		1.2.2 The Hohenberg-Kohn-Sham theorem	12
		1.2.2.1 The Hohenberg-Kohn (HK) theorem	12
		1.2.2.2 The Kohn-Sham energy functional	14
		1.2.2.3 Kohn-Sham equations	14
		1.2.3 Exchange and correlation	16
		1.2.4 Pseudopotentials	18
		1.2.4.1 Need of Pseudopotentials	19
		1.2.4.2 Norm conserving pseudopotential	23
		1.2.5 Supercell approximation	24
		1.2.6 Algorithm	29

.

1.3	Electronic	Transport	Calculations

1.3.1 Electron Transport in bulk	30
1.3.2 Electron Transport in Nanoscale systems	32
1.3.3 The Concept of Junction	33
1.3.4 Electronic states in a molecular junction	36
1.3.5 The Landauer formalism: equilibrium transport	38
1.3.6 PWCOND	41
1.4 References	47

. . . .

Chapter 2 Carbon Silicon atomic chains Attached to Al Electrodes

2.1 Introduction	59
2.2 Synthesis of atomic chains	62
2.3 Transmission co-efficient Calculations	66
2.3.1 Atomic chain Attached to Al nanorod	
2.3.1.1 Computational Details	66
2.3.1.2 Results and Discussion	69
2.3.2 Atomic chain Attached to Al Bulk	
2.3.2.1 Computational Details	75
2.3.2.2 Results and Discussion	77
2.4 Conclusion	78
2.5 References	80
Chapter 3 Armchair, Zigzag and Mixed Geometries of S-6C-4H-	5
3.1 Introduction	84
3.2 Synthesis/ Optimization of AC, ZZ and COMBO molecules	86
3.3 Transmission co-efficient Calculations	89
3.4 Results and Discussion	92
3.5 Conclusion	103
3.6 References	104

.

Chapter 4 Armchair and Zigzag Edged Graphene as Electrodes

Chapter 5 Summary	
4.5 References	125
4.4 Conclusion	124
4.3 Results and Discussion	112
4.2 Computational Details	110
4.1 Introduction	108

.......

· • .

...

. ...

.