


Introduction and Review
If molecular electronics will finally prove to be viable technologies, it is 
quite clear that quantum physics will change from basic to applied 
science, and physicists will work and be regarded as electrical 
engineers...

1.1 Molecular Electronics; An Introduction

1.1.1 Origin

Since the introduction of the integrated circuit in the late 1950s, the number of individual 

transistors that can be placed upon a single integrated circuit chip has approximately 

quadrupled every three years (Moore’s law- the number Of transistors on a single integrated 

circuit chip roughly doubles every 18 months). The fact that more functionality can be put on 

a chip when there are more transistors, coupled to the fact that the basic cost of the chip (in 

terms of $/cm2) has changed very little from one generation to the next (until recently), leads 

to the conclusion that greater integration leads to a reduction in the basic cost per function for 

high-level computation as more functions are placed on the chip. It is this simple 

functionality argument that has driven device feature reduction according to a complicated 

scaling relationship. In 1980, Hewlett-Packard produced a single-chip microprocessor 

containing approximately half million devices in its 1 cm2 area. This chip was produced with 

transistors having a nominal 1.25 mm gate length and was considered a remarkable step 

forward. In contrast, by 2007, the printed gate length of production microprocessor transistors 

was 48 nm and the physical gate length was closer to 25 nm. Research devices have been 

demonstrated down to 10 nm gate length or less. Clearly, current integrated circuit 

manufacturing is truly a nanoscale technology. For a 25 nm gate length Si device, the number
O

of atoms spanning the channel is on the order of a 100 or less. It has been concluded that one

can easily downsize the transistor to a gate length of 30 nm if macroscopic transport theory
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continued to hold. There were predictions [www.itrs.net] of scaling down to 10 nm gate 

length before a serious “brick wall” is encountered and 15 nm gate lengths are scheduled for 

production by 2010. Laboratory MOSFET devices with gate lengths down to 15 nm have 

been reported by Intel [1] and AMD [2] which exhibit excellent I-V characteristics, and 6 nm 

gate length p-channel transistors have been reported by IBM [3].

The (slow) death of Moore’s law has been the main driver of progress in today’s information 

and communications society. One of the possible routes by which the current technology can 

be improved, is called “Beyond Moore” and it includes radically new system architectures 

whose building blocks may be atomic and molecular devices, and also the substitution of 

Boolean logic- by more efficient algorithms, possibly based on quantum computation. Very 

clever designs are pushing the limits of today’s CMOS technology even further, since as 

Gordon Moore put it, “No Exponential is forever, but we can delay ‘forever’ ”. But there is 

no doubt that in the end the venerable CMOS micro- and even “nano-electronics” 

technology must give way to radically new approaches, that will be based in quantum physics 

and chemistry, like graphene electronics, or molecular electronics [4, 5] or spinotronics.

As in every business matter, the demise of a long-standing main actor in the play, and the rise 

of new stars must be viewed not as a catastrophic event, but rather as the scenario where a 

new wealth of opportunities arises. For instance, organic molecules with tailored shapes and 

functionalities can be made and assembled with the various techniques like such as the 

scanning tunneling microscope (STM), transmission electron microscope (TEM), 

mechanically controllable break junctions, atomic force microscopy (AFM), and high 

resolution transmission electron microscopy (HRTEM) to realize molecular circuits [6-14]. 

This fascinating and extremely powerful approach is expected to decrease the minimum 

feature size of electronic devices even below the 1 nm mark, giving rise to an increase of 

orders of magnitude in the number of devices that can be packed in a chip. The same
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quantum tunnelling effect that produces heating in today’s computers can be used to produce 

the main signal in a molecular FET, thereby reducing heating effects. Extremely fast 

memories can be fabricated by the use of molecules where precise control of the switching 

between two molecular states can be achieved by external means. Boolean logic gates can be 

fabricated that do not use the FET concept. Furthermore, precise control of the electronic 

states in a molecule should allow the replacement of Boolean by quantum logic, where 

extremely more powerful algorithms should lead to an exponential increase in the processing 

power of computers. The performance of the all-important contacts between a logic device 

and the circuitry in the chip will ultimately be controlled to unimaginable levels by suitable 

chemical bond engineering. The low performance of semiconductor optoelectronics will be 

possibly overhauled by dedicated circuits. In which, optically active molecules would be 

tailored to either receive or emit the electromagnetic radiation of given wavelengths,

1.1.2 Exotic effects and potential

Even though molecular electronics is a relatively new field the advances in this area of 

research have been significant Molecules have a series of advantages over the traditional 

silicon based lithographic techniques. Besides the obvious huge increase in packing density 

of electronic components, they can be synthesized easily and with low cost in many cases; 

they can be grown in three dimensions as opposed to the typical 2D semiconductor 

lithographic layout; they can self-assemble; they are expected to reduce heat and noise 

production and, most importantly, they can display a whole new world of properties and 

functionalities.

Recent growing interest in making electronic devices using molecules comprising of Carbon 

chains or benzene rings aims at replacing standard semiconductors with organic materials.
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They have the advantages of being produced with low-temperature low-cost chemical 

methods, instead of expensive high-temperature solid-state growth (e.g. molecular beam 

epitaxy) and patterning (lithography) techniques. In addition the endless possibilities of 

chemical synthesis, end-group and side-chain engineering give good expectation for new 

concept devices. From the electronic side negative differential resistance [15] and 

rectification [16] have already been proved at the molecular level and fully functional 

molecular transistors [17], memories and logic gates [18, 19] have been demonstrated 

suggesting a possible road-map to the post-silicon era. They should produce future 

generations of computers, together with magnetic data storage devices exceeding the 

Terabit/in2 storage limit. The readout of such high-density data storage media will be 

achieved using nanoscale devices with magnetic atomic point contacts [20, 21]. Since the 

seminal work of Reed et al. [10], several experiments have been performed on a variety of 

molecules [6, 15-17, 22-26]. Although the feasibility of single molecule devices has been 

shown, a number of issues have been raised by these experiments. Probably the most 

important of them is the nature of the contact between the molecule and the surface of the 

electrodes. One of the fundamental aspects of molecular electronics is that the bonding 

between a molecule and the current/voltage probes can dramatically change the current 

flowing through a device compare to conventional inorganic heterostructures. The bonding 

site and the bond angle usually depend on the layer density (coverage), and these can be 

further tuned by changing the anchoring groups. Ultimately we can say that molecules 

present great potential but also introduce new complications, especially from the fabrication 

point of view. Greater control and characterisation is necessary when designing devices.
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1.1.3 Computing electronic transport

Alongside of large experimental investigations and explorations on nanoseale devices, 

equally large efforts have been devoted to develop efficient computational methods for 

evaluating conduction characteristics of nanoscale devices. Simullteneously or many times 

way ahead of experimental progress, there have been theoretical/ computational works 

predicting and analysing the physics behind the transport of electrons through molecular 

junctions. This is a great theoretical challenge since advanced quantum transport algorithms 

must be combined with state of the art electronic structure methods. Modem theory of 

quantum transport has developed a range of methods for calculating transport in nanoscale 

conductors.

Various methods which are used for computing study of electronic transport can be divided in 

following categories:

1. Methods based on Landauer-type scattering formalism in combination with ground 

state DFT [27-35]. They are based upon the assumption that, regardless of the details 

of a possible transient, a steady state is always achieved. These methods are widely 

used for ballistic as well as non equilibrium conductance calculations.

2. Another three alternate approaches are,

a. Use of Kohn-Sham effective single-particle version of a ‘master equation’ 

formulation of transport [36-38].

b. With the use of time dependent DFT (TDDFT), one obtains the current by 

calculating the time evolution of a system consisting of a molecule coupled to two 

finite metallic contacts and turning on a potential step, resulting in two different 

chemical potentials [39].

c. A method that uses large finite leads, and watches a capacitance discharge [40],
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Methods described above essentially begin from a static distribution, apply some change, and 

allow the system to evolve to a steady, but non-equilibrium distribution. For non-interacting 

electrons in the weak bias limit, all agree, both with each other and the standard approach, but 

likely disagree in the general case of interacting electrons in finite bias. Under certain 

limiting conditions, such as adiabatic approximations to TDDFT, and local approximations to 

ground-state DFT, they yield the same results.

Figure 1.1.1: Schematic diagram used for electronic transport calculation of nanostructures.

A schematic drawing of a molecular junction is shown in Fig. 1.1, where one or more 

molecules are sandwiched between two semi-infinite electrodes. Mainly, the junction used in 

molecular electronics has three parts:

(1) The electrodes or reservoirs,

(2) The backbone of the molecule, and

(3) The interfaces between lead and the molecule.

These three parts contribute to the total transmission of electrons through the junction. 

Changing any physical or chemical aspect of any part is manifested in drastic change in 

behaviour of electron transport through the junction. There have been large number of first
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principle investigations on various aspects of a molecular devices such as the material- 

dependent effects; structures and relaxation of electrodes [41-44], effect of electrode work 

function [45], Fermi level alignment [46, 47], interface/ contact dependence [48], effects of 

roughness of interface [49, 50], tilt-angle and temperature-dependence [51], effects of 

functional, anchoring and side groups [52, 53], importance of geometry over chemistry [54], 

effects of molecular symmetry [55], molecular conformation [56] and molecular length 

dependence [57-61],

The conductance properties of atomic chains of different length [62, 63, 64], atomic clusters 

of different sizes [65, 66], cage structures having different number and types of impurities 

[67], graphene sheets [68, 69], passivated and non-passivated nanoribbons [70, 71, 72] of 

different width and length, SW, DW and MW nanotubes [73, 74] of different diameter and 

chirality, nanotubes with impurities and defects [75], benzene [76.77], molecules made by 

number of phenyl rings [78] and having different groups attached on different sites of it [79], 

polyynes [80, 81], alkane and alkenes [82, 83, 84, 85] are very well studied, exploring new 

phenomenon and searching for science behind them and giving answers to many queries. 

There still remain many unanswered questions and there are also newly aroused questions 

from recent discoveries that should be addressed properly.

For a very small or no external bias voltage applied to the electrodes, one can assume the 

electrode-scatterer-electrode system in equilibrium. This linear regime is useful to study the 

adsorption induced modifications in electronic structure of electrode-molecule-electrode 

system which are more dominant than field induced modification. Due to nanometric size of 

molecules used as the scatterer in nanodevices, the length of the scatterer is essentially 

smaller than the mean free path of the electron. Therefore, the electrons incident on one 

electrode-molecule junction can be considered to reach at the other junction without
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experiencing any scattering within the scatterer. This type of electron transport is known as 

ballistic transport.

Mainly, Carbon based molecular devices, which have aromatic rings or alkanes and structures 

like fullerene, nanotubes, graphene, nanoribbon and graphane are widely considered, as they 

are characterized by an amazingly large variety of structures and the properties that originate 

from the combination of sp, sp2 and sp3 hybridisations of Carbon atoms. The main parameters 

that affect the transport properties of two probe molecular devices are related to:

(i) Change in geometry/chemistry of molecules.

(ii) Change in geometry of contact between molecule and electrode.

(iii) Change in chemistry/geometry/dimensions of electrodes.

The theoretical investigations which are reported in this thesis cover the above mentioned 

entire aspects in a detailed manner. Meaningful conclusions are drawn from our 

investigations. Effects of changes in molecular chemistry have been studied by replacing C 

by isovalent Si atoms in monatomic chains^are reported in chapter 2 and effects of change in 

molecular geometry keeping chemistry of molecules intact have been investigated by taking 

zigzag (ZZ), armchair (AC) and mixed (COMBO) geometries of molecules made from 2S, 

4H and 6C atoms are reported in chapter 3. Effects of change in contact geometry (contact 

angle) on transport properties have been studied by rotated molecule geometries as reported 

in chapter 3. Effects of change in edge structure of electrodes (graphene) have been studied 

and reported in chapter 4. The limitations imposed by the use of Al-nanorod as electrodes on 

transport through atomic chains have been investigated by taking bulk Al-electrode, in place 

of nanorod, which is reported in chapter 2. Comparison of transport properties of C atomic 

chains attached to Al-electrodes and graphene electrodes is also made in chapter 4.
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1.2 Basics of DFT and Methodology

1.2.1 Introduction

In quantum mechanics we leam that all information we can possibly have about a given 

system is contained in the system’s wave function. Prediction of the electronic and geometric 

structure of atoms, molecules and solids requires calculation of the quantum- mechanical 

total energy and subsequent minimization of that energy with respect to the electronic and 

nuclear coordinates. Because of the large difference in mass between the electrons and nuclei 

and the fact that the forces on the particles are the same, the electrons respond essentially 

instantaneously to the motion of the nuclei. Thus the nuclei can be treated adiabatically, 

leading to a separation of electronic and nuclear coordinates in the many-body wave 

function- the so-called Bom- Oppenheimer approximation. This reduces the many-body 

problem to the solution of the dynamics of the electrons in some frozen-in configuration of 

the nuclei.

Even with the introduction of Bom-Oppenheimer approximation, the many-body problem 

remains formidable. Further simplifications, however, can be introduced that allow total- 

energy calculations to be performed accurately and efficiently. These include density 

functional theory (DFT) to model the electron-electron interactions, pseudopotential theory to 

model the electron-ion interactions, supercells to model systems with aperiodic geometries 

and iterative minimization techniques to relax the electronic coordinates. Much of what we 

know about the electrical, magnetic, and structural properties of materials has been calculated 

using DFT, and the extent to which DFT has contributed to the science of molecules is 

reflected by the 1998 Nobel Prize in Chemistry, which was awarded to Walter Kohn [86], the 

founding father of DFT, and John Pople [87], who was instrumental in implementing DFT in
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computational chemistry. This approach of DFT forms the basis of the large majority of 

electronic-structure calculations in physics and chemistry [88-98].

For system with more than one electron (i.e., a many-body problem) Schrodinger’s equation 

becomes

y N
ft2Vf2

2m
+ v(ri) ) + £*<;' ^(ri> rj) V(ri,r2...,rN) = F'F(r1,r2...,rN) (1.2.1)

Where N is the mrniber of electrons and (/(r^) is the electron-electron interaction. For a 

Coulomb system one has

= d-2.2)

Note that this is the same operator for any system of particles interacting via the Coulomb 

interaction, just as the kinetic energy operator

? = (1-2-3)

is the same for any nonrelativistic system. Whether our system is an atom, a molecule, or a

solid thus depends only on the potentiali^r,). For a molecule or solid e.g.,

P = 2>C.l) = &t]^i (1.2.4)

Where the sum on k extends over all nuclei in the system, each with charge Qk = Zke and 

positionRfc. It is only the spatial arrangement of the Rk (together with the corresponding 

boundary conditions) that distinguishes, fundamentally, a molecule from a solid. Similarly, it 

is only through the term U that the (essentially simple) single-body quantum mechanics of 

differs from the extremely complex many-body problem. These properties are built into DFT 

in a very fundamental way.
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The usual quantum-mechanical approach to Schrodinger’s equation (SE) can be summarized 

by the following sequence

SE <¥|...|¥>
t?(r) => r2..., rN) - -•-> observables (1.2.5)

i.e., one specifies the system by choosing v(r), plugs it into Schrodinger’s equation, solves 

that equation for the wave function^, and then calculates observables by taking expectation 

values of operators with this wave function. One among the observables that are calculated in 

this way is the particle density

n(r) = Nj d3rz f d3r3... f d3rN V*(rlt r2..., rN)¥(r1( r2..., rN) (1.2.6)

DFT explicitly recognizes that nonrelativistic Coulomb systems differ only by their 

potentialv(r), and supplies a prescription for dealing with the universal operators f and 

Donee and for all. Furthermore, DFT provides a way to systematically map the many body 

problem, withO , onto a single-body problem, without!/. All this is done by promoting the 

particle density n(r) from just one among many observables to the status of key variable, on 

which the calculation of all other observables can be based.

The density-functional approach can be summarized by the sequence

n(r) =* V(rv r2..., rN) =* v(r) (1.2.7)

i.e., knowledge of n(r) implies knowledge of the wave function and the potential, and hence 

of all other observables.

1.2.2 The Hohenberg-Kohn>Sham theorem 

1.2.2.1 The Hohenberg-Kohn (HK) theorem

The Hohenberg-Kohn (HK) theorem [88, 89] states that for ground states Eq. (1.2.6) can be 

inverted: given a ground state density n0(r)it is possible, in principle, to calculate the

12



corresponding ground-state wave function^(r1(r2,.,,rN). This means that % is a 

functional ofh0. Consequently, all ground-state observables are functional ofh0, too.

(a) The nondegenerate ground-state (QS) wave function is a unique functional of the GS 

density:

»F0(ri, r2..., rN) = ^[ngCr)] (1.2.8)

This is the essence of the HK theorem. As a consequence, the GS expectation value of any 

observable 6 is a functional ofh0(r), too:

Oo = O[n0] = {^[n0]|5|¥,[n0]} (1.2.9)

The GS energy is one of the most important observable. This energy 

Eo = E[no] = {^[noP^M (1.2.10)

Thus, The ground-state energy of a many-body system is a unique functional of the particle 

density, Eo=E[n(r)]

(b) The functional E[n(r)] has its minimum relative to variations 8n(r) of the particle density 

at the equilibrium density «o(r)

E = E [/i0(r)] = min {E [»(»•)]}

SE[n(r)\) _Q
Sn(r) in(r)=n[](-r) (1.2.11)

DFT allows one, in principle, to map exactly the problem of a strongly interacting electron 

gas (in the presence of nuclei) onto that of a single particle moving in an effective nonlocal 

potential. Although this potential is not known precisely, local approximations to it work 

remarkably well. At present, we have no arguments to explain why these approximations 

work however theorists performed total-energy calculations using these potentials and
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showed that they reproduced a variety of ground-state properties within a few percent of 

experiment. Thus, the acceptance of local approximations to DFT has only emerged, a 

posteriori, after many successful investigations of many types of materials and systems.

1.2.2.2 The Kohn-Sham energy functional

The Kohn-Sham total energy functional for a set of doubly occupied electronic states t^ean 

be written as

V2$£d3r + J Vion(r)n(r)d3r + y J n(r)n(r')
ir-r'i d3rd3r

+ Exc[n(r)] + Eion({Rl})

(1.2.12)

Where Eion is the Coulomb energy associated with interactions among the nuclei (or ions) at 

positions{R/}, Vion is the static total electron-ion potential, n(r) is the electronic density 

given by

n(r) = 2 I£hMr)l2 (1-2-13)

And Exc [n(r)] is the exchange-correlation functional. Only the minimum value of the Kohn- 
Sham energy functional has physical meaning. At the minimum, the Kohn-Sham energy 

functional is equal to the ground state energy of the system of electrons with the ions in 

positions{R/}.

1.2.2.3 Kohn-Sham equations

The minimum value of the total-energy functional is the ground-state energy of the system, 

and the density that yields this minimum value is the exact single-particle ground state
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density. Kohn and Sham then showed how it is possible, formally, to replace the many- 

electron problem by an exactly equivalent set of self-consistent one-electronequations.

It is necessary to determine the set of wave functions that minimize the Kohn-Sham energy 

functional. These are given by the self-consistent solutions to the Kohn-Sham equations [89]:

Where ipiis the wave function of electronic state i, £/ is the Kohn-Sham eigenvalue, and Vu is 

the Hartree potential of the electrons given by

The exchange-correlation potential, Vxc, is given formally by the functional derivative

The Kohn-Sham equations represent a mapping of the interacting many-electron system onto 

a system of non- interacting electrons moving in an effective potential due to all the other 

electrons. If the exchange-correlation energy functional were known exactly, then taking the 

functional derivative with respect to the density would produce an exchange-correlation 

potential that included the effect of exchange and correlation exactly.

The Kohn-Sham equations must be solved self-consistently so that the occupied electronic 

states generate a charge density that produces the electronic potential that was used to 

construct the equations. Thus the Kohn-Sham equations are a set of eigenequations, and the 

terms within the brackets in Eq. (1.2.12) can be regarded as Hamiltonian. The bulk of the 

work involved in a total-energy pseudopotential calculation is the solution of this eigenvalue 

problem once an approximate expression for the exchange-correlation energy is given.

{[-£-] F2 + VtonCr) + VH(r) + ^c(r)}^i(r) = £t^(r) (1.2.14)

(1.2.15)

(1.2.16)
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The simplest method for describing the exchange-correlation energy of an electronic system 

is to use the local-density approximation (LDA) and this approximation is almost universally 

used in total-energy pseudopotential calculations [99-100]. In the LDA the exchange- 

correlation energy of an electronic system is constructed by assuming that the exchange- 

correlation energy per electron at a point r in the electron gas, is equal to the exchange- 

correlation energy per electron in a homogeneous electron gas that has the same density as 

the electron gas at point r. Thus

ExcMr)] = f axc(r)n(r)d3r (1.2.17)

SExc[n(r)] _ d[n(r)zXc (r)] 
Sn(r) dn(r)

(1.2.18)

With

%c(r)-4°cm(r)[n(r)] (1.2.19)

The LDA assumes that the exchange-correlation energy functional is purely local and ignores 

corrections to the exchange-correlation energy at a point r due to nearby inhomogeneities in 

the electron density.

1.2.3 Exchange and correlation

The wave function of a many-electron system must be antisymmetric under exchange of any 

two electrons because the electrons are fermions. The antisymmetry of the wave function 

produces a spatial separation between electrons that have the same spin and thus reduces die 

Coulomb energy of the electronic system. The reduction in the energy of the electronic 

system due to the antisymmetry of the wave function is called the exchange energy. It is
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straight forward to include exchange in a total energy calculation, and this is generally 

referred to as the Hartree-Foek approximation.

A more accurate scheme than Thomas-Fermi approximation for treating the kinetic-energy 

functional of interacting electrons,7 [n] , is based on decomposing it into one part that 

represents the kinetic energy of noninteracting particles of density n, i.e., the quantity called 

above 7s[n], and one that represents the remainder, denoted Tc[n] (the subscripts s and c 

stand for ‘single-particle’ and ‘correlation’, respectively)

nn] = :rc[n]+rs[nj (1.2.20)

7s[n] is not known exactly as a functional of n but it is easily expressed in terms of the 

single-particle orbitals <pi(r) of a noninteracting system with density n, as

Tsln] = -^Z?fd*rFi(rWi2(l>i(r) (1.2.21)

Because of noninteracting particles, total kinetic energy is a sum of the individual kinetic 

energies. Since all <pt(r) are functionals of n, this expression for Ts is an explicit orbital 

functional but an implicit density functional,7S[n] = 7s[{0i[n]}], where the notation 

indicates that Ts depends on the full set of occupied orbitals^*, each of which is a functional 

of n.

We now rewrite the exact energy functional as

E[n] = T[n] + U[n] + F[n] = Ts[{$j[n]}] + UH[n] + Exc [n] + F[n] (1.2.22)

Where by definition Exc contains the differences T — Ts (i.e. Tc) and U — UH. This definition 

shows that a significant part of the correlation energy Ecis due to the difference Tc between 

the noninteracting and the interacting kinetic energies. But still Exc is unknown — although 

the HK theorem guarantees that it is a density functional. This functional,Exc [n], is called the 

exchange-correlation (xc) energy. It is often decomposed asExc = Ex + EC, where Ex is due
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to the Pauli principle (exchange energy) and Ec is due to correlations. (Tc is then a part of Ec.) 

The exchange energy can be written explicitly in terms of the single-particle orbitals as

ExmM}] q2^ r fji ' 
2 Ljk J o. r j a r (1.2.23)

This is also known as Fock term.

The Coulomb energy of the electronic system can be reduced below its Hartree-Foek value if 

electrons that have opposite spins are also spatially separated. In this case the Coulomb 

energy of the electronic system is reduced at the cost of increasing the kinetic energy of the 

electrons. The difference in the many-body energy of an electronic system and the energy of 

the system calculated in the Hartree-Fock approximation is called the correlation energy. It is 

however extremely difficult to calculate the correlation energy of complex system. Density- 

functional theory, try to provide a simple method for describing the effects of exchange and 

correlation in an electron gas. Hohenberg and Kohn proved that the total energy, including 

exchange and correlation, of an electron gas (even in the presence of a static external 

potential) is a unique functional of the electron density.

1.2.4 Pseudopotentials

The fundamental idea of pseudopotential is its application to replace the strong Coulomb 

potential of the nucleus and the effects of the tightly bound core electrons by an effective 

ionic potential acting on the valance electrons. Pseudopotential can be generated in an atomic 

calculation and then used to compute properties of valance electrons in molecules or solids, 

since the core states remain unchanged.

Pseudopotential theory allows one to replace the strong electron-ion potential with a much 

weaker potential - a pseudopotential- that describes all the salient features of a valance
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electron moving through the solid, including relativistic effects. Thus the original solid is 

now replaced by pseudo valance electrons and pseudo-ion cores. These pseudopotentials 

experience exactly the same potential outside the core region as the original electrons but 

have a much weaker potential inside the core region.

Fig. 1.2.1: Schematic illustration of all-electron (solid lines) and pseudo electron (dashed 
lines) potentials and their corresponding wave functions. The radius at which all-electron and 
pseudo electron values match is designated rc.

1.2.4.1 Need of Pseudopotentials

Use of pseudopotentials make implementation of Plane wave basis set in first principle 

calculations possible. Although Bloch’s theorem states that the electronic wave functions can 

be expanded using a discrete set of plane waves, a plane-wave basis set is usually very poorly 

suited to expanding electronic wave functions because, a very large number of plane waves 

are needed to expand the tightly bound core orbitals and to follow the rapid oscillations of the 

wave functions of the valance electrons in the core region. An extremely large plane-wave 

basis set would be required to perform an all-electron calculation, and a vast amount of
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computational time would be required to calculate the electronic wave functions. The 

pseudopotential approximation allows the electronic wave functions to be expanded using a 

much smaller number of plane-wave basis sets.

It is well known that most physical properties of solids are dependent on the valance 

electrons to a much greater extent than on the core electrons. The pseudopotential 

approximation exploits this by removing the core electrons and by replacing them and the 

strong ionic potential by a weaker pseudopotential that acts on a set of pseudo wave functions 

rather than the true valance wave functions. An ionic potential, valence wave function and the 

corresponding pseudopotential and pseudo wave function are illustrated in above Fig. 1.2.1. 

The valence waveftmctions oscillate rapidly in the region occupied by the core electrons due 

to strong ionic potential in this region. These oscillations maintain the orthogonality between 

the core wave functions and the valence wave functions, which is required by the exclusion 

principle. The pseudopotential is constructed, ideally, so that its scattering properties or phase 

shifts for the pseudo wave functions are identical to the scattering properties of the ion and 

the core electrons for the valance wave functions, but in such a way that the pseudo wave 

functions have no radial nodes in the core region.

The phase shift produced by the ion core is different for each angular momentum component 

of the valence wave function, and so the scattering from the pseudopotential must be angular 

momentum dependent. The most general form for a pseudo potential is

VNL = 'Zim\lm)Vi(lm\ (1.2.24)

Where, \lm > are the spherical harmonics and Vi is the pseudopotential for angular 

momentum /. Acting on the electronic wave function with this operator decomposes the wave 

function in to spherical harmonics, each of which is then multiplied by the relevant 

pseudopotential V*.
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Fig. 1.2.2: A schematic representation of the potentials (red lines) and wave functions (blue 
lines) for an atom. The real potential and wave function are shown with thin lines, while 
pseudopotential and wave function are shown in thick lines. Outside the cutoff region/ core 
region (vertical black lines) the two are identical, and the scattering from the two potentials 
are indistinguishable.

A pseudopotential that uses the same potential for all the angular momentum components of 

the wave function is called a local pseudopotential. A local pseudopotential is a function only 

of distance from the nucleus. While nonlocal pseudopotential uses a different potential for 

each angular momentum component of the wave function.

A general form of pseudopotential is

Vps=Vpsi0C+2lSVlPl (1.2.25)

Where Vps ;oc is the local part of the pseudopotential, 5 V/is the Ith component of the nonlocal 

part of the pseudopotential, and

Pi = Zlm=-iUm)(lm\ (1.2.26)
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is the projection operator to an angular momentum state /. Kleinman and Bylander suggested 

a form of a fully nonlocal separable pseudopotential[ 16],

Vpf ^VpsM+hm ^svtHsv&U
« \SVl\0ln)

(1.2.27)

Where0fOT )’s are the wave functions of a pseudo atom.

In total energy calculations, the exchange-correlation energy of the electronic system is a 

function of the electron density. If the exchange-correlation energy is to be desired 

accurately, it is necessary that outside the core regions the pseudo wave functions and real 

wave functions be identical, not just in their spatial dependences but also in their absolute 

magnitudes, so that the two wave functions generate identical charge densities. Adjustment of 

the pseudopotential to ensure that the integrals of the squared amplitudes of the real and the 

pseudo wave functions inside the core regions are identical guarantees the equality of the 

wave functions and pseudo wave functions outside the core region.

Fig. 1.2.3: Relation between transferability and smoothness depending on rc for given 
pseudopotential.
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Here, transferability is a measure of the ability of pseudopotential to give accurate description 

of element in varying environments. And softness depends on the requirement of plane waves 

to represent the wave functions. Need of a reasonably small set of plane waves suggests 

softness while need of large number of plane waves suggest that pseudopotential is harder. 

Many systematic and successful procedures for the development of accurate and transferable 

pseudopotentials have been developed. Where, proper balance between transferability and 

softness of pseudopotentials is achieved. [101-107]

1.2.4.2 Norm conserving pseudopotential

As shown in above Fig. 1.2.2 ^pseudo has no oscillations in core region unlike^. This 

pseudo wave function inside the cut off radius must conserve the norm.

Ioc\%seudo |Zr2dr = J0rc|Tpv\2r2dr (1.2.28)

The most frequently used pseudopotential in first-principles calculations is the norm- 

conserving pseudopotential technique developed by Hamann et al. [102], Bachelet et al. 

[103], as well as the improved version by Troullier and Martins [104]. Where, the added 

constraint of norm conservation is introduced in order to preserve transferability. The pseudo­

wave function obtained using these pseudopotentials have the following characteristics (as 

shown Fig. 1.2.2).

a. There are no nodes in the pseudo-wave function.

b. The pseudo-wave function agrees with the all-electron wave function outside the inner- 

shell radius of rc.

c. The eigenvalue of the valence electron state using pseudopotentials is in accordance with 

the eigenvalue calculated including the inner shell electrons.
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Several groups have proposed modified schemes for generating pseudopotentials aimed at 

reducing the number of plane waves required to describe properly the electron-ion interaction 

either focusing on producing improved smoother wavefunctions in the pseudizing process or 

smoother potentials [105-107]. In all the applications presented here, optimized well-tested 

norm conserving pseudopotentials have been used. [108]

1.2.5 Supercell approximation

The supercell approximation allows one to deal with aperiodic configurations of atoms within 

the framework of Bloch’s theorem. One simply constructs a large unit cell containing the 

configuration in question and repeats it periodically throughout space. By studying the 

properties of the system for larger and larger unit cells, one can gauge the importance of 

induced periodicity and systematically filter it out.

Concept of Periodic Supercell

Even after application of Kohn-Sham equations there still remains the formidable task of 

handling an infinite number of noninteracting electrons moving in the static potential of an 

infinite number of nuclei or ions. Introduction of periodicity and application of Bloch’s 

theorem to the electronic wave functions help to solve two difficulties: (i) calculating wave 

function for each of the infinite number of electrons in the system and (ii) to expand each 

wave function extended over the entire solid using finite basis set.

Bloch’s theorem states that in a periodic solid each electronic wave function can be written as 

the product of a cell-periodic part and a wavelike part,

xpi (r) = exp[ik, r] (r) (1.2.29)

The cell-periodic part of the wave function can be expanded using a basis set consisting of a 

discrete set of plane waves whose wave vectors are reciprocal lattice vectors of the crystal,
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fi(r) = Eg Q,c exp[iG.r] (1.2.30)

- Where the reciprocal lattice vectors G are defined by G.l =2itm for all / where / is a lattice 

vector of the crystal and m is an integer. Therefore each electronic wave function can be 

written as a sum of plane waves,

A (r) = Eg Q,k+c exp[i(k + G). r] (1.2.31)

Bloch’s theorem states that the electronic wave functions at each k point can be expanded in 

terms of a discrete plane-wave basis set. In principle, an infinite plane-wave basis set is 

required to expand the electronic wave functions. However, the coefficients q ^+g for the

plane waves with small kinetic energy {^Z/2mj 1^ + ^l2 aK typically more important than

those with large kinetic energy. Thus the plane wave basis set can be truncated to include 

only plane waves that have kinetic energies less than some particular cutoff energy. Moreover 

application of the Bloch theorem allows the electronic wave function to be expanded in terms 

of a discrete set of plane waves. Thus, introduction of an energy cutoff to the discrete plane- 

wave basis set produces a finite basis set. The truncation of the plane-wave basis set at a 

finite cutoff energy leads to an error in the computed total energy. However, it is possible to 

reduce the magnitude of the error by increasing the value of the cutoff energy until the 

calculated total energy has converged.

When the plane waves are used as a basis set for the electronic wave functions, the Kohn- 

Sham equations assume a particularly simple form. Substitution of Eq. (1.2.31) into (1,2.3) 

and integration over r gives,

I* + GI2<W + Vton (G - G') + MG- G') + VXC(G - G )| Ci k+G' = £iciM+G

(1.2.32)
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In this form, the kinetic energy is diagonal, and the various potentials are described in terms 

of their Fourier transforms. Solution of Eq. (1.2.32) proceeds by diagonalization of a 

Hamiltonian matrix whose matrix elements Hk+Q k+G' are given by the terms in the brackets 

above. The size of the matrix is determined by the choice of cutoff energy,

(AV2m)l* + G|2.

Nonperiodic systems using idea of supercell

Fig. 1.2.4: Supercell used for A1 (pink sphere) bulk crystal with Si point defect (blue sphere)

Calculations using plane-wave basis sets can only be performed on the systems containing 

defects or crystal surface if a periodic supercell is used. Otherwise a continuous plane-wave 

basis set would be required which is computationally impractical. The supercell for a point- 

defect calculation is illustrated in Fig. 1.2.4. The supercell contains the defect surrounded by
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across the vacuum region. Moreover the crystal slab must be thick enough so that the two 

surfaces of each crystal slab do not interact through the bulk crystal.

Vx Vx Vx

Vx Vx Vx

Vx Vx Vx
Fig. 1.2.6: Supercell with large vacuum in all three directions, used for SC6H4S molecules 
with S atoms shown by bigger dark yellow spheres, C atoms shown by smaller bright yellow 
spheres and H shown by blue spheres.

Similarly, for the calculation with molecules one has to keep large enough vacuum in all 

three directions around the molecule to avoid the interactions between adjacent replicas of 

molecule. We have studied molecules in this way as illustrated in Fig. 1.2.6.
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1.2.6 Algorithm
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1.3 Electronic Transport Calculations

1.3.1 Electron Transport in bulk

Let us first consider the mechanism of electron conduction in a macroscopic system. In 

solids, such as metals and semiconductors, electrons in the vicinity of the Fermi level are 

accelerated by an applied electric field, and undergo inelastic scattering with energy 

dissipation caused by lattice vibration (phonon) and collisions with impurities. While 

repeating the process in which electrons are accelerated and inelastically scattered, electrons 

in general proceed in the direction of the electric field (drift conduction) and reach drift 

speed, which is proportional to the magnitude of the electric field. As a result, for a 

conducting wire that is longer than the mean free path of electrons (which is the average 

distance that electrons proceed without being subjected to scattering; 10-50 ran for metallic 

bulks at room temperature), Ohm's law holds; electric conductance is inversely proportional 

to the length of the wire and proportional to its cross-sectional area. To bring the essential 

concepts of the physics behind electron transport, let us consider a simple model that consists 

of a metallic sample of length L, section A and whose electronic structure is well described 

by a single electronic band with dispersion relations*. Here, because of scattering events with 

impurities, or with lattice vibrations, electrons may change from one k state to another. The 

scattering rate is quantified by the relaxation timer*, which is the average time an electron in 

state k travels between two scattering events [109], Suppose first that the sample is in 

thermodynamic equilibrium so that no net current can be measured. The electrons in the 

system will fill the states in the band following the Fermi distribution function/*. Now if a 

finite voltage V is supplied by an external source, across the length L of the sample then a 

static and uniform electric field of modulus E = —V/L is felt in the material. This field 

causes the electronic population of the material to no longer be in equilibrium. Rather, the
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states will be filled according to a new distribution function^. The electric field will also 

cause a net motion of electrons, so that there will be a finite current density

J = -2ef^vkdk (1.3.1)

Where h Vsk

If the material is isotropic, the current density is parallel to the electric field. If, in addition, E 

is small enough, the expression for the modulus of the current can be simplified to [109]

J = (tE = 2e2NFtjE = 2 e2NFvPlE (1.3.2)

Here, cris the conductivity of the material, Npis the density of states at Fermi energy, 

l = TFvFis the average length traversed by an electron between two scattering events. The 

conductance of the sample

G = ja = 2ezNpVpAj (1.3.3)

depends on the ratio l/L. for nanostructures, in which nanowires shorter than the mean free 

path(i.e. the cases where L « I ) are connected to electrodes, most of electrons proceed 

without inelastic scattering; instead, they penetrate the nanowires ballistically from one end 

to the other. This type of conduction is called ballistic transport of electrons. In this case the 

above expression must be replaced by

G =ja = 2e2NpVFA (1.3.4)

In the case of the ballistic transport, the conductance is independent of the length of the 

nanowires. Furthermore, when the diameter of the cross section of the nanowires becomes as 

small as the Fermi wavelength of electrons (for example, the Fermi wavelength for gold is 

0.52 nm) and thus energy levels are quantized, electrons can pass through the nanowires only 

via the quantized energy levels. Therefore, a conduction phenomenon that is significantly
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different from that having the general macroscopic diffusive-transport characteristics of 

solids, are observed in ballistic transport.

Conversely, the diffusive regime happens when L » l so that each electron that enters the 

sample on one side will scatter many times before leaving it from the other side. The 

conductance is in. this case small. Notice that the room-temperature mean free path of a metal 

is of the order of a few nanometres, so that the transport regime of a typical metallic sample 

is diffusive. In contrast, the room temperature mean free path in a doped semiconductor is 

much longer, of the order of tens of nanometres. The transport regime of some key 

components in microelectronic chips is currently crossing over from the diffusive to the 

ballistic regime.

1.3.2 Electron Transport in Nanoscale systems: The Concept of 
Conduction Channel

We assume now that the section A is so small that the metallic sample can be regarded as a 

one-dimensional bar. The criterion to decide if this is so is that the transverse length d is 

smaller than the Fermi wavelength (for a metal, XP «1 nm; for a doped semiconductor, 

XF * 10-100 nm). If this is the case, then the conductance is related to the conductivity 

through the equation

G =jg = 2ezNpVpj (1.3.5)

Which reduces to G = 2e2NFvF if the sample is ballistic. For a realistic material with a 

complicated electronic structure, there are M bands that cross the Fermi energy. Further, the 

one-dimensional density of states at the Fermi energy can be expressed as Np = l/hvF so 

that the Fermi velocity cancels out and the conductance can be written as
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G = M[2e2/h) = MG0
(1.3.6)

where Ga = 2eVft is defined as the conductance quantum unit and M is the number of bands

that cross the Fermi energy . These bands can be viewed as tracks that the electrons can use 

to move through the sample and are therefore called conduction channels. Imagine finally 

that the ballistic bar is connected to two identical electrodes that supply the voltage bias V to 

the bar, and are the source and drain of electrons. There will clearly be a mismatch between 

the electronic eigenstates of the electrodes and the bar that will be felt by the electrons when 

they cross the contacts. This mismatch at both sides is a source of scattering for the electrons 

that cross the contacts, which can be quantified by the transmission probability Tn that an 

incoming electron will scatter to channel n at the bar, or that an outgoing electron at channel 

n, will leave the bar[110-112]. The complete understanding of transport properties requires 

the knowledge of the transmission coefficients along each conducting channel which vary 

between zero and one. Then the generalized form of the conductance of a system is

G = G0EnTn (1.3.7)

1.3.3 The Concept of Junction

The above example of a ballistic bar that bridges two bulk materials is an example of one of 

the central concepts. A junction is a solid state device which consists of two metallic bulk 

materials, called electrodes that sandwich something called the extended molecule, as we 

depict schematically in Fig. 1.3.1. The extended molecule can be anything that permits some 

electron flow between the electrodes: another material, vacuum, a molecule, a quantum dot,
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etc. The small regions in space where the extended molecule and the electrodes attach to each

other are called the contacts.

Fig. 1.3.1: Schematic diagram used for electronic transport calculation of nanostructures.

The electrodes are subjected to a voltage bias V, supplied by an external power. It is usually 

assumed that the whole voltage drop occurs at the region in space that comprises the contacts 

and the extended molecule, which is therefore called the scattering region. Transport in the 

extended molecule can be ballistic or diffusive, depending on whether its length is larger or 

shorter than the mean free path. In the first case, the voltage drop occurs only at the contacts, 

while in the second, part of this voltage drop also occurs within the extended molecule. 

Correspondingly, the resistance in the case of ballistic transport is entirely due to the contacts 

(this is called contact resistance), while in the case of diffusive transport it is due both to the 

contacts and to scattering events within the extended molecule.

Theories developed by Landauer [110] and Kubo [113] make up the basic theory of 

electronic transport through metals and semiconductors which is widely used today. The 

contents of the two theories differ in that; Landauer's theory provides intuitive and simple 

formulas, while Kubo's theory is a universal theory in which involved mathematical 

techniques are required. The former is powerful for low-dimensional problems, particularly
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We sketch an example in Fig.1.3.2, where the two electrodes are subjected to a very small 

bias voltage V that shifts their Fermi energy levels by±eF/2. As shown in the Fig. 1.3.2, the 

eigenstates at the extended molecule have discrete energy spectra, while the electrodes have 

continuum of energy states. These two spectra are separated by energy barriers at the 

contacts. The population of electrons in the electrodes can be described by Fermi distribution 

functions, whereby all states up to the respective Fermi energy are filled. Because of the 

Fermi exclusion principle, only those electrons from the left electrode that have energy in the 

window (—eV/2, +eK/2) can hop into the extended molecule and eventually to the right 

electrode. There is no way to define Fermi energy at the extended molecule since it is in 

contact with two electron reservoirs at different chemical potentials. Hence, the extended 

molecule is a system out of equilibrium whose distribution function is not the Fermi function. 

In the case of the figure, there is a single state at the extended molecule in the energy 

window(—eVJ2, +eV/2), which is separated from the pristine Ef by the energy Ec. Electrons 

coming from the left electrode must hop into this state and then move on to the right 

electrode. Up to now, we have assumed that the energy levels at the extended molecule are 

discrete, but this is not exactly true: the coupling to the electrodes furnishes them with a finite 

line width T, see Fig. 1.3.3. In other words, the residence time of an electron at the extended 

molecule can be estimated fromAtf = ft, where T is the probability per unit time that an 

electron hops into or outside the extended molecule. The transparent regime corresponds to 

those cases where the energy barriers are low enough that the electrons hop into and out of 

the extended molecule easily and frequently; the discrete energy levels become wide 

resonances, whose width T is of the order of the width of the electronic bands at the 

electrodes, W. The tunnelling regime corresponds to the opposite case, where the barriers are 

quite high, and electrons can only reach the extended molecule via tunnelling events. In this 

case, the discrete energy levels are sharp resonances, e.g., their line width T is approximately
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a S-function. Incoming electrons from one electrode will have a chance to pass to the other 

only if their energy is finely toned to the energy of one of the resonances, an effect which is 

called resonant tunnelling. To summarize, residence times are short in the transparent regime 

and long in the tunnelling regime. When the residence time in a molecular junction or 

quantum dot is long, two additional complications may occur. First, electrons may suffer 

scattering events with an atomic vibration or with another electron, changing its energy. In 

this case, the phase of the wave function changes and quantum coherence effects are lost or at 

least blurred. This is the sequential tunnelling regime. In contrast, if inelastic scattering 

events are absent or rare, the junction is in the coherent tunnelling regime.

1.3.5 The Landauer formalism: equilibrium transport

gtfczZ

h /VW» 

aA/W
re~ikzz

V(r)
A i

| telkzZ
| /VW* lt=T(li)

IH1-T)h

0 L

Fig. 1.3.4: Schematic representation of incoming and outgoing wavefunctions scattered by a 
potential V(r)

The major feature of Landauer's theory is the introduction of electrodes at both ends of a one 

dimensional conductor for dc conduction, where the conductor is composed of a scatterer and 

left and right leads. This setup is in contrast to Kubo's model in which an infinitely long
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conductor is assumed. In actual experiment, since batteries or power sources are connected to 

a sample of a finite size via lead wires, Landauer's model is closer to the real situation. Let us 

consider a scatterer with finite transmission coefficient T. In Landauer approach, the current 

through a conductor It is expressed in terms of the probability that an electron can transmit 

through it:

h = mo (1.3.8)

Where, the current of the incident wave /,• can be written as,

/j = hkz/m (1.3.9)

The Landauer-Buttiker formalism [112] associates the conductance of a device with the 

quantum mechanical transmission probabilities of the one electron wave function as it 

approaches an arbitrary scattering potential [114]. The problem can be formulated in terms of 

incoming, and outgoing, |4>out) electron wavefunctions propagating along a one

dimensional wire (scattering channel) and scattered by a potential connecting the two leads. 

Due to the periodic nature of the wire, these wavefunctions have the form of Bloch waves

and in absence of a scattering potential, each one contributes with ^V/j, = ^oto the total

conductance [112]. We then define the scattering channel as the asymptotic part of the 

wavefunction deep inside the leads. If the system is multi-dimensional (quasi- ID, 2D or 3D), 

several possible Bloch waves with the same energy can propagate through the leads (multi­

channel problem). Once the i-th channel in the left hand-side reaches the scattering region it 

can be transmitted to any channel into the right hand-side lead or back scattered into any 

channels of the left hand-side lead. Fig. 1.3.4 provides a simple example of the transport 

problem formulated in terms of in-scattering and out-scattering channels: free electrons with 

energy E are injected from the left and are scattered by a step potential
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(1.3.10)
V(z) = 0 < z < ^

As we can see, an incoming electron with wave-vector kz is partially backscattered with 

wave-vector — kz and partially transmitted. The total wavefunction for this problem reads

I^Total > = + l<J>0L> + Kut) (1.3.11)

With

<z|d>in) = eik*z + re ikzZ, z < 0
(zl^Totai) = i <z|4>ol> = AeHzZ + Be~*zZ, 0 <z<L (1.3.12)

(zl^out) = teikzZ, z> L

Where wave vector kz is given bykz = — ^, whereas xz = .... can be real

(evanescent) or imaginary (propagating) depending on whether V > E or V < E respectively. 

The coefficients A, B, t and r are determined by solving the scattering equation,

ft2 d2
■^^T°tal + V^Total -E®Total (1.3.13)

And imposing the continuity of the total wave function and its derivative at the boundaries of 

the step potential. Finally

\t\z + |r|2 = 1

i.e., the flux is conserved.

(1.3.14)

The current through the scatterer It = |t
- IH2**£

(1.3.15)

UsingEq. (1.3.8) and (1.3.9) inEq. (1.3.15)

T = |t|2 (1.3.16)
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1.3.6 PWCOND

We have used PWCOND program [139] contained in quantum Espresso package [140], a 

method based on plane waves to solve the tip-nanocontact-tip electron scattering problem in 

real atomic contacts (as depicted in Fig. 1.3.1) and calculate from that the ballistic 

conductance of open quantum systems via the Landauer-Buttiker formula.. PWCOND 

follows the methodology derived by Choi and Ihm [141] for ab initio treatment of die 

behavior of electrons in nanostructures (resistive region) between semi-infinite realistic 

metallic probes. Nonlocality in pseudopotential is included in the calculation for actual solids 

including realistic metal probes. A major difficulty arises in dealing with the response of the 

conducting electrons to the nonlocality of the potential, which cannot be determined locally 

in the multiple scattering processes until the full solution is found. The problem is overcome 

by use of Kleinman-Bylander-type nonlocal pseudopotential in the Hamiltonian and deriving 

generalized inhomogeneous differential equations from the self consistent Kohn-Sham 

equation. Then the equations with the wave-function-matching method for a given electron 

energy E has been solved.

The course of formulism adopted in the calculation using PWCOND can be summarised as 

follow:

The efficient and still exact method derived by Choi and Ihm to calculate the transmission 

matrix of a large system for a given nonlocal potential is applied to the calculation of the 

conductance based on the Landauer formalism. The self-consistent potential is obtained 

performing ground state DFT calculations with a Norm-conserving Kleinman-Bylander 

Pseudopotentials for supercell containing the scattering region (of length L in z direction 

withO <z <L) containing some portions of left and right electrodes as leads. A supercell is 

periodic in xy plane having large vacuum between resistive region and its replicas. A general
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form of the Kleinman-Bylander pseudopotentials is discussed in Eqs. (1.2.25-1.2.27). Eq. 

(1.2.27) can also be written as,

10B = VpS)loc + Tilm Zi\Wim ){Wim | (1.3.17)

Where, Zt is the sign of (0fm |d7,|0?m) mdWlm = 0?n/J|<0?m|dl/;|0?m)|.

Now, for this system the self consistent Kohn-Sham equation [112] becomes

EW) = ?2W) + Vloc(r)tp(r) + ZfWfa(r-r“-RJ

aim Bi

x j d^rlW^Cr-^-RJTiPir)

(1.3.18)

Where r“ is the position of the ath atom in the supercell, /?x’s are lattice vectors in the xy 

plane, and Vioc (r) is the total screened local potential, which is the sum of local ionic 

pseudopotentials, the electrostatic potential due to valence electrons, and the exchange- 

correlation potential within the LDA. As in the xy plane the system is repeated periodically 

and in this plane the scattering states propagating at the energy E have the Bloch form and 

can be classified with a KL index. Different K± do not mix and can be treated separately. 

Furthermore we consider sufficiently large supercells in the xy plane and limit the calculation 

to the two-dimensional F point,K± = 0 by applying Bloch theorem we can split Eq. (1.3.18) 

into a system of equations of \|/ and Caim:

EW) 2m
VzW) + Vioc(r)xP(r) + T CalmZf Y

mmrni
aim Rj_

(1.3.19)
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And

Calm =fdzr [W^ (r - r“)]^(r') (1.3.20)

The general solution of these inhomogeneous differential equations can be written as:

i>(r)='Znan1pn(r)+Y,almCalmiJcclm(r) (1.3.21)

Here, a^’s and Caim ’s are determined from eq. (1.3.20) and boundary conditions on planes at 

z = 0 an z = L. xpn are linearly independent solutions of the homogeneous equation derived 

from eq. (1.3.19) by assumption that all Calm !s are zero. While, tyalm (r) is the particular 

solution for each (a,l,m) of the inhomogeneous equation derived from Eq. (1.3.19) by 

assuming one of theCa;m’s as one and other coefficients zero.

As 4>n(r + Rl) = ipn(r)eiKl'Rl and there is no periodic boundary conditions imposed along 

the z direction, we can write,

*n(r) = 1gl ^n(GLlz)e^M^ (1.3.22)

Where, Gj_’s are the 2D reciprocal lattice vectors in the xy plane. The same way, we can 

represent the local potential as

Vioc (r) = Z6l Vioc (G±. z)eiGi n (1-3.23)

And similarly, (r + R±) = xpaim (r)elKlMl and there is no periodic boundary condition 

imposed along z direction, we can write,

Vaim (r) = lex -ipaim (Gllz)ei^+G^ (1.3.24)

Now, for the better numerical accuracy, following scheme is used to calculate!^ (Gx,z) :

The unit cell is divided in N slabs along the z direction, where N is the number of real-space 

grid points along the z direction used in FFT. Each pth slab of thickness L/N is assigned z- 

independent potential function l^(rx) such that the analytic Fourier transformation to
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momentum space exactly reproduces Vloc (G) for allG’s used in self-consistent calculation, 

i.e.

ViociG) = 52U [f Vp(Gl) (1.3.25)

Here zp = pL/N and Gz = 2nq/L with condition^-+ 1 < q < [j].

Thus, when the nonlocal part of the pseudopotentialWj^, the local potential Vloc (G) and the 

energy E are given, we calculate^, (6X), linearly independent solutions of the hoinogeneous 

equation for p'h slabip% and particular solution of the inhomogeneous equation for plh 

slabi/^,m. From the orthonormality amongt/^’s and^m’s for a given p, the recurrence 

relations between the coefficients of the pth and (p+l)th slabs are obtained and using these 

recurrence relations ipn(r) and $aim(r) are found respectively, which gives the ip(r) 

solutions ofeq. (1.3.19) in resistive region(0 <z<h).

Similarly inside the electrode unit cell of length d, the general solution of the inhomogeneous 

eq. (1.3.19) can be obtained and expressed as

= 2n Q-n.k^n "F Ytalm ^a/m(1,3.26)

Algebraic equations containinga^’s andQ(m^’s can be arranged into a matrix form

AX = eikdBX (1.3.27)

Here, A and B are complex general matrices and X is a column vector eontaininga^’s 

andCaiTO fc’s. These generalised eigenvalue problem is solved to obtain eigenvalueseifcd’s and 

corresponding eigenvectors^’s with the LAPACK package. In general, the resulting k is a 

complex number with real k’s showing propagating modes and non-zero imaginary parts 

giving evanescent modes. These propagating and evanescent modes constitute a complex
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band structure of the region [142], Similarly complex band structure of resistive region is 

found from previously obtained tpn (r) and i/W (r) for resistive region.

Thus the quantum mechanical current I along the z direction in electrode region for a state \|/ 

is given by,

/ = Im
+|Y ZfCalm f dz' [ (r'- r“)]^(r')

oz n~j£ J*z~rai J

(1.3.28)

We now assume that a rightward propagating state \pk is incident from the left electrode 

region and there is no incident wave from right electrode region i.e. the left electrode is 

assumed to be attached to a source while right electrode is attached to a drain. Now, the wave 

function of the system can be defined as

( , V1*Pk + rkk,xPk ,

k'ZL
^ antf!n + ^ Calm 'Palm < 

n aim

J1' hli’^Pk /
v k’€R

z < 0 

0 <z<L 

z>L

(1.3.29)

Here, L and R represent the leftward and rightward propagating states, respectively. Now, 

this scattering wave function of the whole wire obtained by joining smoothly the solutions in 

the resistive region with the propagating and the evanescent modes of the electrodes at two 

interfaces respectively is solved by matching the boundary conditions at the z = 0 an z = L. 

At z = 0 plane, for atoms a, which are shared by both z < 0 and 0 < z < L regions, we have

Calm ~ Caim,k + Hk'eL^kk'Calm,k‘ (1.3.30)

Similarly, at z = L plane, where z>L and 0 < z < L regions shares a atoms,
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(1.3.31)

With all these boundary conditions, a set of inhomogeneous linear algebraic equations is 

constructed. The number of equations in the set is the same as that of the undetermined 

coefficients in f. After solving this set of equations we get tkk> for all rightward propagating 

modesi/^’s. The properly normalised transmission coefficient Tk of the stats ipk is,

Here, lk is the probability current per wire of the state ipk given by eq. (1.3.28) and the 

summation over R' suggest that summation is over the rightward propagating modes not 

including the evanescent modes so that the matrixTfc is of the dimensions MR X ML where MR 

and Ml are the number of propagating modes in right and left electrodes, respectively. The 

multichannel generalization of the Landauer conductance formula is related to Tk as

Tfc — j^Qlk'eR’k’lhk’l2) (1.3.32)

(1.3.33)

Here, — is called the quantum of conductance and denoted byG0.
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