
Chapter 1

Introduction

Many years of experimental discoveries and simultaneous theoretical attempts to

understand the particle physics phenomena re�ect human's keen interest and cu-

riosity towards the comprehensive knowledge of fundamental constituents of matter

and their interactions. Most of the mass of the visible matter around us comes from

composite objects called "Hadrons", mainly the nucleons. In the standard model of

particle physics [1], hadrons are classi�ed into two families: "mesons- bound states of

a quark and an antiquark" and "baryons- bound states of three quarks". Quarks and

gluons together called the fundamental constituents of hadrons. Gluon, the spin-1

boson is a fundamental quanta of strong interaction like the photon is of electro-

magnetic interaction but gluon carries color charge while photon is charge neutral.

The area of hadronic physics studies strongly interacting matter in all its manifes-

tations in connection with the underlying gauge theory, Quantum Chromodynamics

(QCD). The �eld owns a long and exciting history starting from the phenomenology

of hadron- hadron interaction to the present day ideas on the quark-gluon structure

of hadrons [2].

Strong interaction physics poses many basic questions on our present-day under-

standing of the structure of matter which is of utmost signi�cance. Our knowledge

about the structure of the nucleons, the primary building blocks of atomic nuclei

and hadronic matter in the universe, is still far from complete. Experimental data
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from polarised DIS experiments show that the quark spins account for only about

30% of the total nucleon's spin which is in con�ict with the constituent quark model

[3]. What exactly accounts for remaining 70% of the spin is one of the most impor-

tant objectives of high energy spin research [4]. Despite the availability of enormous

information on the partonic substructure of hadronic matter, understanding of ex-

actly how quarks and gluons evolve into a hadron via dynamics of con�nement is

also an open key issue. The theory which describes strong interaction is not yet

under quantitative control analytically due to associated non-perturbative nature

[5]. Precise calculations are essential in understanding a wide range of hadronic

phenomena.

In this intricate sphere of hadrons, studies involving pseudoscalar mesons, mainly

η and η′ mesons grab large attention of the scienti�c community due to following

reasons:

• Understanding of the low-energy dynamics of the pseudoscalar mesons is a

persistent problem in the hadronic world.

• Light pseudoscalar mesons, at a fundamental level, are so-called Goldstone

bosons of spontaneously broken chiral symmetry. Questions like how the tran-

sition from partons to Goldstone mode occurs, what is their partonic substruc-

ture are important objectives.

• Despite having similar quark content, the masses of η and η′ mesons di�er so

much.

• SU(3)f breaking e�ects induce mixing of η − η′. There is also a small mixing

with π0 and ηc.

• While pions and kaons �t well into their status of Goldstone bosons of broken

chiral symmetry, η and mainly η′ are too massive to be pure Goldstone bosons.
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• η′ is associated with U(1) axial anomaly, hence it has a strong a�nity towards

glue.

• Due to association with non-perturbative gluon dynamics, the interactions of

these mesons with other hadrons are characterized by OZI violation. Their

coupling constants with nucleons are vulnerable to OZI-violation.

• Although η′ is predominantly �avor-singlet and η is largely octet, η bound

states in nuclei are sensitive to singlet component of η and hence to non-

perturbative glue and axial U(1) dynamics.

• QCD axial anomaly plays a major role in the "proton spin puzzle" by �avor-

singlet Goldberger-Treiman relation.

• Rigorous studies on exclusive processes involving η and η′ are important tools

to test the QCD approaches. They also give important information about the

quark-gluon structure of these mesons.

In this chapter, we highlight some important aspects of the physics of η and η′

mesons.

1.1 η and η′ Mesons: discovery, basic properties

After the discovery of new "resonances" in the late '50s in pion-nucleon scattering,

e�cient theoretical models were needed in order to organize and understand the

plenty of new data. A model proposed by Sakata [6] considered nucleons and Λ

as the basic building blocks of matter. In this scheme, mesons with zero isospin

were needed to accompany pions and kaons. That was the earliest hint towards the

existence of the pseudoscalar η and η′ mesons. η meson was predicted in a famous

"Eight-fold way" model given by Gell-Mann and Ne'emann independently in 1961-

62 [7, 8] which considers SU(3)f symmetry as a basic underlying symmetry for
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organizing mesons and baryons. In 1962, η was discovered in pion-nucleon collisions

at the Bevatron [9]. A More fundamental theoretical model, "the Quark Model

" was given by Gell-Mann and Zweig in 1964 [3]. The fundamental particles were

called "Quarks" and up, down and strange quarks together form a three-dimensional

representation of the symmetry group SU(3) in the model. Any higher dimensional

representation can be built by combining the fundamental representation 3 and its

conjugate 3. The direct sum decomposition of the SU(3) symmetry among u, d, s

quarks result into, 3× 3 = 1⊕ 8. The ninth resonance in the pseudoscalar multiplet

was predicted and later discovered independently by two groups in 1964 [10, 11] and

is known as η′.

Table 1.1: Properties of η and η′ mesons

Light un�avored
mesons
S = C = B = 0

JPC Mass in MeV Full width Γ main decay modes

η-meson 0−+ 547.862± 0.017 1.31± 0.05 KeV η → 2γ, η → 3π

η′-meson 0−+ 957.78± 0.06 0.198± 0.009 MeV η′ → 2γ,η′ → π+π−η,
η′ → ρ0γ

In the case of light mesons, made entirely out of (u, d, s) quarks, nine pseudoscalar

mesons can be obtained by combining quarks and antiquarks in all possible com-

binations. Fig. (1.1) shows the pseudoscalar meson nonet. Particles in the same

horizontal line have the same strangeness S, and on the same diagonal line share the

same Charge Q. The pseudoscalar mesons (π's, η, K's, K) are members of SU(3)

octet and η′ is mainly SU(3) singlet. η and η′ mesons have I=0 (iso-singlet). In

the quark model, hadrons are labeled with two kinds of quantum numbers:one set

comes from poincarè symmetry-JPC where J,P,C stand for total angular momen-

tum, p-symmetry (parity), c-symmetry (charge conjugation) respectively. Another

is �avor quantum numbers. This arrangement of hadrons was one of the major
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breakthroughs in physics. Basic properties of pseudoscalar mesons η and η′ are

given in Table. 1.1 [12].

Figure 1.1: The pseudoscalar meson nonet in the quark model

1.2 Symmetries and pseudoscalar η and η′

1.2.1 SU(3)f symmetry and its breaking

The quark part of the QCD Lagrangian is written as [13],

Lψ = ψa(iγµ(∂µ + igAµ)−m)ψa, a = 1.....Nf . (1.1)

When all Nf quarks have same mass m, the above Lagrangian is invariant under

SU(Nf ) transformations. The in�nitesimal transformations of �elds are:

δψa = −iδαA(TA)abψ
b,

δψ
a

= iδαAψb(T
A)ba,

δAµ = 0.

The generators TA satisfy

[TA, TB] = ifABCT
C , A,B,C = 1......N2

f − 1 (1.2)
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and there are N2
f − 1 conserved currents.

jAµ (x) = −i ∂L
∂(∂µψa)

(TA)abψ
b,

jAµ (x) = ψaγµ(TA)abψ
b,

∂µjAµ = 0.

The generators also called the "charges",

QA =

∫
d3xjA0 (x) (1.3)

commute with the Hamiltonian,

[QA, H] = 0. (1.4)

This implies the existence of multiplet with equal mass. This mode is called the

Wigner-Weyl mode of realization of symmetry. In reality, quarks have di�erent

masses. In such case, the Lagrangian in Eq. (1.1) cannot remain invariant under

SU(Nf ) transformations hence the associated Noether current is not conserved. This

cause explicit breaking of the �avor symmetry and hadrons with degenerate masses

in SU(Nf ) multiplets are not observed. In the case of light quarks u,d and s, only

approximate symmetry can be expected as masses of u and d quarks are of the order

of 5 ∼ 10 MeV and that of s-quark is ∼ 100 MeV which are relatively smaller than

the typical hadronic scale ∼ 1GeV . In the case of pseudoscalar mesons, π,K, η, η′

mass di�erences are much larger than that of vector mesons as the dynamics of chiral

symmetry breaking plays the role. Using approximate �avor symmetry, Gell-Mann-

Okubo mass formula [14] gives a relation for mass di�erences in a given multiplet.

1.2.2 SU(3)f5 symmetry and its breaking

Chiral symmetry is an important symmetry of massless QCD. In the QCD La-

grangian, the handedness of massless quarks is not a�ected by strong interactions.

If mu = md = ms = 0, the Lagrangian given in Eq.(1.1) is invariant under below
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in�nitesimal SU(3)f5 transformation of �elds:

δψa = −iδαA(TA)abγ5ψ
b. (1.5)

and

δψa = −iδαAψbγ5(TA)ba. (1.6)

with δAµ = 0. The invariance of Lagrangian under the interchange of left and

right-handed quarks leads to chiral symmetry. The associated Noether current is

conserved.

∂µjA5µ = 0. (1.7)

Because quark masses are not zero, in reality, the chiral symmetry breaks under

axial �avor transformations and associated Noether current is not conserved. In the

case of light quarks (u, d, s), if only approximate SU(3)f5 symmetry prevails then as

a consequence there must be the presence of the parity doublets of approximately

equal mass hadrons (axial transformations change the parity of the �eld). But,

no such parity doublets are observed. This indicates that the Wigner-Weyl mode

of realization of chiral symmetry in which ground state of the theory respects the

symmetry is not valid [15]. The ground state is not invariant under the symmetry

group transformation and the symmetry is said to be spontaneously broken. The

generators of the group do not annihilate the vacuum:

QA
5 | 0〉 6= 0. (1.8)

This is the Nambu-Goldstone mode of realization of chiral symmetry [15]. The im-

mediate consequence is the existence of eight massless pseudoscalar particles which

are Nambu-Goldstone bosons. However, the octet of pseudoscalar mesons is not

massless. This is because quarks are not massless in the real world and the sym-

metry which is spontaneously broken is not exact, but only approximate. These

Nambu-Goldstone bosons acquire small masses compared to massive hadrons and

in the chiral limit, they are massless. In the pseudoscalar nonet, πs, Ks �t well in
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this picture but the case of η and η′ is much di�erent as they su�er from an axial

U(1) anomaly.

1.3 η − η′ mixing

The basic SU(3) symmetry theory of quarks which considers only strong force, pre-

dicts following particles

η8 =
1√
6

(uu+ dd− 2ss) (1.9)

η1 =
1√
3

(uu+ dd+ ss). (1.10)

η1 belongs to singlet and η8 is purely octet. However, signi�cant mixing of these

eigenstates occur and the actual quark composition of these mesons are linear com-

bination of η8 and η1.

U(θp)

(
η8

η1

)
=

(
η
η′

)
, (1.11)

where θp is a mixing angle and

U(θp) =

(
cos θp − sin θp
sin θp cos θp

)
(1.12)

The η is considered to be close to η8 and η′ to η1. Eq.(1.11) describes the mixing in

the singlet-octet basis [16�18]. The mixing of η− η′ in the quark �avor basis can be

written as, (
η
η′

)
= U(φ)

(
ηq
ηs

)
, (1.13)

where U(φ) is the unitary matrix given as

U(φ) =

(
cosφ − sinφ
sinφ cosφ

)
, (1.14)

and | ηq〉 = 1√
2
| uu+ dd〉, | ηs〉 =| ss〉. One can transform one orthogonal basis into

another basis. η − η′ mixing is a subject of huge interest and it has been studied

in phenomenology widely. De�nition of meson decay constants and consistent ex-

traction of mixing parameters from experimental data involves the aspect of η − η′
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mixing. The decay constants of mesons η and η′ are de�ned as [18, 19],

〈0 | J iµ5 | P (p)〉 = if iPpµ(i = 1, 8, q, s, P = η, η′), (1.15)

where
1√
2

(u(0)γµγ5u(0) + d(0)γµγ5d(0)) = jqµ5, (1.16)

s(0)γµγ5s(0) = jsµ5. (1.17)

In Eq. (1.16), the current is an isoscalar combination of u-and d-quark currents

while in Eq.(1.17), it is the s-quark current. In the singlet-octet basis, the axial

quark-currents are written as,

J8
µ5 =

1√
6

(uγµγ5u+ dγµγ5d− 2sγµγ5s), (1.18)

J1
µ5 =

1√
3

(uγµγ5u+ dγµγ5d+ sγµγ5s). (1.19)

The general parametrization of mixing of octet and singlet decay constants gives

[18, 19], (
f 8
η f 1

η

f 8
η′ f 1

η′

)
=

(
cos θ8 − sin θ1

sin θ8 cos θ1

)(
f8

f1

)
. (1.20)

The angles θ8 and θ1 are signi�cantly di�erent due to SU(3)f breaking e�ects. In

the quark-�avor basis [17],(
f qη f sη
f qη′ f sη′

)
=

(
cosφq − sinφs
sinφq cosφs

)(
fq
fs

)
. (1.21)

Although the relations between decay constants appear analogous in the both basis,

it is found that in the quark-�avor basis [18],

〈0 | Jsµ5 | ηq〉 ' 0, 〈0 | Jqµ5 | ηs〉 ' 0. (1.22)

Above relation approximately holds, but similar relation for octet-singlet basis does

not hold. The phenomenological analysis [20] gives φq ' 39.4 and φs ' 38.5. The

negligible di�erence between φq and φs leads to the relation φq = φs = φ. The

well-known UA(1) anomaly (discussed later in this chapter) plays a crucial role in

understanding the η − η′ mixing. The anomaly mediates ηq ↔ ηs transitions and
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leads to the mixing. In the quark model, η − η′ mixing is viewed as a mixture

of SU(3)f singlet and octet components in their wavefunctions. However, QCD

introduces one more dynamical degree of freedom, the gluon and SU(3)f singlet

can be made up of pure glue con�gurations like gg. The wavefunctions of η and η′

contain the possibility of gluonic admixture in it. η, being mainly octet have lower

possibility of glue con�gurations than η′ which is mainly singlet. Understanding of

η− η′ mixing phenomena is an essential element in understanding non-perturbative

features of QCD.

1.4 Nature of Quantum Chromodynamics

The results of deep inelastic scattering experiments revealed many aspects of quarks.

Numerous information on their spin, charge, interactions and on the structure of the

proton inspired to build a foundation of a theory which can describe the behavior of

quarks inside a hadron. QCD was proposed in 1973 by David Gross, Frank Wilczek,

and David Politzer as a gauge theory of strong interactions. It forms the SU(3) part

of SU(3) × SU(2) × U(1) standard model of particle physics. The Lagrangian of

QCD is written as [13],

LQCD =
n∑

f=1,2,3

ψf
i
(i /D −mf )ijψ

j
f −

1

4
Ga
µνG

µν
a −

1

2λ
(∂µAaµ)2 + Lghost. (1.23)

First term in the above equation represents non-interacting quarks with mass mf .

Dµ,ij = ∂µIij + igs(t.Aµ)ij (1.24)

is the covariant derivative which makes Lagrangian invariant under local gauge trans-

formations. Aaµ are coloured vector �elds. The second term in the Lagrangian is a

kinetic term for Aaµ �eld. Ga
µν is non-abelian �eld strength tensor and written as

Ga
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν (1.25)

In Quantum Electrodynamics (QED), the �eld strength tensor is given by,

Fµν = ∂µAν − ∂νAµ (1.26)
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There lies an important di�erence between these two �eld-strength tensors. Ga
µν

contains one extra term which is needed in order to make Lkinetic invariant under

local gauge transformation. This extra term signi�es interesting physics of strong

interactions. it tells that gluons not only mediate the strong interaction but also

are self-interacting particles. This leads to "asymptotic freedom" at high energies or

short-distances and "con�nement" at low energies or large-distances. The non-linear

interactions between gluons in QCD has "anti-screening" e�ect which leads to the

weaker coupling constant at shorter distances. In other words, in the limit of very

high energy, quarks are quasi-free and this "asymptotic freedom" makes perturba-

tive calculations possible in QCD in that region. "Con�nement" makes inter-quark

coupling larger at low energies and it becomes impossible to detach individual quarks

from hadrons. In QCD, the vacuum polarization e�ects are extremely strong, unlike

QED. This makes QCD vacuum extremely complex, full of spontaneously appear-

ing, disappearing and interacting virtual gluons and virtual quark-antiquark pairs.

Due to these peculiarities, the main challenge in QCD thus becomes to establish

a connection between hadrons (which are observed) and perturbatively calculable

quarks and gluons degrees of freedom that appear in the Lagrangian (which are

never observed in isolation).

1.5 Axial U(1) anomaly and η′ meson

As a result of spontaneously broken axial SU(2) symmetry, pions become the corre-

sponding Goldstone bosons. If the third �avor is taken into account, all the mesons

in pseudoscalar octet become Goldstone bosons of spontaneously broken SU(3)f5

symmetry. Under the axial U(1) group, quark �elds transform as [15],

ψ(x)→ eiβγ5ψ(x). (1.27)

In the case of massless quarks, a Goldstone boson is expected due to spontaneously

broken axial U(1) symmetry. Quark mass term in the Lagrangian breaks the sym-
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metry explicitly and corresponding Goldstone boson will not be massless. η′, which

is singlet under SU(3)f , have similar quark content as η and have right quantum

numbers to be a Goldstone boson of spontaneously broken axial U(1) symmetry but

is heavy, having mass ∼ 958 MeV, almost twice the mass of the η. Hence, it cannot

be associated with this symmetry. Axial U(1) symmetry is not realized in the real

world. Either it does not exist or it is more badly broken than SU(3)f5. This is axial

U(1) problem [21]. It is an established fact that this symmetry su�ers an anomaly

which is called Adler-Bell-Jackiw anomaly [22, 23]. An anomaly in the theory arises

when certain conservation law, which is valid in classical theory, gets violated upon

quantization. Noether current associated with the symmetry of Lagrangian in clas-

sical �eld theory is not conserved when quantum corrections are taken into account.

In QCD, the anomalous divergence of singlet axial current is represented as [18, 24],

∂µ(ψγµγ5ψ) = 2imψψγ5ψ −
αs
4π
Ga
µνG̃

aµν , (ψ = u, d, s), (1.28)

G̃aµν =
1

2
εµνρσGa

ρσ, ε
0123 = +1. (1.29)

Here Ga
µν is the non-abelian �eld strength tensor and G̃aµν is its dual. Thus, gluons

enter in the η′ physics by an anomaly equation. In the limitmψ → 0, η′ remains mas-

sive due to the occurrence of this anomaly. In the above equation, R.H.S term shows

total divergence and integration over Euclidean space must vanish as gauge �elds

vanish at in�nity. Then, how does this divergence have an e�ect? This dilemma

was solved by t'Hooft by instanton con�gurations [25, 26]. Thus, a large mass of η′

is associated with axial U(1) anomaly and non-perturbative gluon dynamics.

1.6 OZI rule and η,η′ mesons

OZI rule was independently proposed by Susumu Okubo, George Zweig, and Jugoro

Iizuka [27�29]. It explains why certain decay modes are suppressed though it is

kinematically favored. For example, the decay φ → π+ + π− + π0 is suppressed
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over φ → K+ + K− which has much lower Q values. Decay of φ → π+ + π− + π0

is suppressed but the decay of ω → π+ + π− + π0 is allowed. The occurrence of

this phenomena is related to the nature of QCD. Due to asymptotic freedom, the

coupling constant decreases with increasing energy and for suppressed channels,

gluons must have high energy thus coupling becomes weak. In the case of η and η′

mesons, the non-perturbative glue through U(1)A dynamics plays an important role

resulting in OZI-violating interactions of these mesons.

Figure 1.2: Quark line diagrams for (a) OZI allowed decay ω → 3π and (b) OZI forbidden
decay φ→ 3π.

1.7 QCD Sum Rules

Due to con�nement phenomena, quarks and gluons are bound inside hadrons and

this hinders direct experimental measurements of the fundamental QCD parameters.

Lagrangian of QCD as shown in Eq. (1.23), can be used analytically only in the

region where perturbation theory works. Understanding of QCD dynamics at dis-

tances ∼ 1
ΛQCD

is essential in order to extract all the properties of hadrons in terms

of their fundamental constituents. QCD sum rule formalism, invented by Shift-

man, Vainshtein and Zakharov [30] is an analytical approach which depends upon

the �rm relation between QCD Green function, speci�cally their Operator Product

Expansion (OPE) beyond perturbation theory and their hadronic correlators. The
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underlying idea of this technique is to approach non-perturbative regime of QCD

from the perturbatively calculable side i.e. to begin with short distances and move

to large distances where con�nement e�ects are signi�cant. OPE beyond perturba-

tion theory [31] and quark-hadron duality [32] are two main pillars of QCD sum rule

formalism. Operator Product Expansion was proposed by K. Wilson. It introduces

the dynamics of quark-gluon con�nement. The two-point current correlator in QCD

can be written as [33],

∏
(q2) = i

∫
d4x expiqx〈0 | T{J(x)J(0)} | 0〉, (1.30)

where J(x) is the local current constructed from the quark and gluon �elds ac-

commodated in QCD Lagrangian. Analogously, this current can also be written

in the form of the hadronic �elds with identical quantum numbers. A relation be-

tween these two descriptions follows from the Cauchy's theorem in complex energy

plane (quark-hadron duality). The above correlator contains perturbative as well

as non-perturbative information manifesting quark-gluon con�nement. In the OPE

[33], ∏
(q2) |QCD= C0Î +

∑
N=0

C2N+2(q2, µ2)〈0 | Ô2N+2(µ2) | 0〉, (1.31)

here, µ2 is the renormalization scale. The Wilson coe�cients C2N+2(q2, µ2) carry the

information on short-distance e�ects [34], calculable in pQCD and vacuum conden-

sates encapsulate non-perturbative long-distance e�ects. Thus, factorization of long-

and short-distance physics is achieved in the OPE. Non-vanishing vacuum expecta-

tion values of quark and gluon �elds, the condensates 〈0 | qq | 0〉, 〈0 | Ga
µνG

a
µν | 0〉,

etc. cannot be obtained from �rst principles analytical calculations. Values of some

condensates are estimated from the current algebra studies such as Partially Con-

served Axial-vector Current (PCAC). The �rst term in the Eq. (1.31) is the lowest

dimension unit operator and it is purely perturbative. The operator of the next

lowest dimension (three) is qq. The value of qq is determined using PCAC relation,

(mu +md)〈uu+ dd〉 = −m2
πfπ, (1.32)
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where mπ is the pion mass and fπ is the pion decay constant. The value of gluon

condensate is closely related to the semiclassical QCD vacuum structure instanton

e�ects [25]. Apart from quark and gluon condensates there prevail a plethora of

higher order condensates. Dispersion relation connects the two-point function with

the physical states [24].

phys∏
(q2) =

1

π

∫ ∞
0

Im
∏

(s)

s− q2
ds. (1.33)

An enormous wealth of data coming from the world of low-energy hadronic physics

are understood in QCD via dispersion relations. Borel transform in QCD sum rules

were also suggested by the inventors of QCDSRs [30]. The operator B̂ is written as,

B̂ = lim
n→∞Q2→∞

(Q2)n+1

n!
(− ∂

∂Q2
)n, (1.34)

with M2 = Q2

n
�xed and q2 = −Q2. Upon Borel transform,

∏
(M2) ≡ B̂

∏
(Q2) =

1

πM2

∫ ∞
0

dsIm
∏

(s)e−s/M
2

. (1.35)

with

B̂(
1

Q2
)n =

1

(n− 1)!
(

1

M2
)n−1, (1.36)

B̂(
1

s+Q2
) = e−s/M

2

, (1.37)

. Borel transformation technique gives several advantages.

• It improves factorially the convergence of the power series. Due to this, pre-

diction of lowest-lying states' properties is more reliable.

• The exponential weight function in the Eq.(1.35) makes the integral over imag-

inary part well-convergent and enhances the lowest-lying state's contribution

while suppresses the contributions coming from higher order resonances expo-

nentially.

Thus the procedure of QCD sum rule formalism has following important steps.
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• Hadrons are represented in terms of the interpolating quark currents.

• Correlation function is calculated by an Operator Product Expansion (OPE),

an approach which separates short-and long-distance parts.

• Short-distance part is calculated by using perturbative technique.

• Long-distance part is parameterized in terms of universal vacuum condensates

or light-cone distribution amplitudes depending upon the problem.

• Result of QCD calculation is matched with the result obtained by summing

over hadronic states by the Borel transformed dispersion relation.

QCD sum rules come in wide variety [35]. There are Laplace sum rules, �nite energy

sum rules, the Gaussian transform sum rules, etc. Eq.(1.35) represents a Laplace

sum rule which is suitable for the prediction of the properties of lowest-lying mesons

or baryons. Thus, the method of QCDSR is very useful in hadronic physics as it

can determine properties of lowest hadronic states from close to the �rst principles

[36].

1.8 Exclusive processes in QCD

Exclusive processes are a type of scattering processes in which kinematics of all ini-

tial and �nal state particles are speci�ed [37]. These processes allow one to decide

one well-de�ned physical process. Exclusive processes in QCD are of utmost signif-

icance as they carry all the complexity of perturbative as well as non-perturbative

QCD and give a deeper insight into the structure of hadrons. In the hard processes

with large momentum transfers, the properties of the hadronic amplitudes are con-

trolled by both the short- and the long-distance physics. Due to non-perturbative

interactions, hadrons are made up of quarks and gluons. The properties of exclusive

processes are closely related with the features of hadronic wave functions. Exclusive

16



reactions cover a wide range of processes from space-like and time-like form factors

measured in electron-hadron scattering and electron-positron annihilation to hadron

scattering reactions. The meson-photon Transition Form Factor (TFF) is a simplest

type of exclusive reaction in which only one hadron is involved. The process is,

γ∗(q1) + γ(q2)→ P (p). The TFF can be de�ned by an invariant amplitude [38](see

Eq.(1.39)),

Γµ = ie2FPγ(Q
2)εµναβεν(q2)q1αq2β. (1.38)

Here εν(q2) is the polarization vector of the real photon and Q2 = −q2
1. At large mo-

mentum transfer, collinear factorization is a well-known approach [39] by which the

transition form factor is calculated. Form factor can be written as a convolution of

"Hard-Scattering Amplitude" (HSA) and the "Distribution Amplitude" (DA). HSA

is calculable perturbatively and the soft part "the DA" requires non-perturbative

input.

Among the meson-photon transition reactions, the process γ∗γ → π0 is the simplest

hard exclusive process in which the behaviour of the TFF at large Q2 is determined

by the product of two electromagnetic currents near the light cone [40]. The form

factor Fγ∗γ→π0(q2
1, q

2
2) can be de�ned by the product of two electromagnetic currents

as,∫
d4y expiq1y〈π0(p) | T{jemµ (y)jemν (0)} | 0〉 = ie2εµναβq1αq2βFγ∗γ→π0(q2

1, q
2
2) (1.39)

Above equation involves a time-ordered product of two electromagnetic currents

at small light cone separations. Hence, it can be studied using Wilson's operator

product expansion [34]. With this expansion, the transition form factor can be

written as [41],

Fγ∗γ→π0(Q) =
∑
n

Cn(Q)Mn. (1.40)

The coe�cients Cn are universal and Mn's are matrix elements of local operators

between π0 and the vacuum. The leading contribution to the form factor corresponds

to the contribution of the leading twist-two operators and can be written in the
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factorized form,

Fγ∗γ→π0(Q2) =

√
2fπ
3

∫ 1

0

dxTH(x,Q2, µ, αs(µ))φπ(x, µ), (1.41)

where φπ(x, µ) is the pion distribution amplitude at the scale µ. The twist of an

operator appearing in the matrix element is de�ned as τ = d − j [13], where d

and j are the dimension and spin of the operators. The operators with lowest twist

dominate in the light cone expansion.

1.9 Objectives of the present study and organisa-

tion of thesis

This thesis focuses on the studies of coupling constants of η and η′ mesons with nucle-

ons and electromagnetic transition form factors of η, η′. From the previous sections,

it is clear that the phenomenology of η and η′ mesons carry interesting physics.

The studies on aspects involving production and interactions of these mesons have

applications both in nuclear and particle physics.

In chapter 2, the coupling constants of η and η′ mesons with nucleon are calculated.

These calculations are done by using a well-known QCD sum rules approach. Using

quark-�avor basis, coupling constants are calculated at physical points by linear

extrapolation of results calculated at non-physical points. Light-cone expansion of

a quark propagator contains anomalous gluons which couple to η, η′ mesons. By

explicitly including this contribution, the e�ects are studied and analyzed. The

reliable determination of gηNN and gη′NN have implications in understanding U(1)A

dynamics of QCD, in the "proton spin problem", in construction of realistic NN

potential and in estimates of electric dipole moment of neutron.

In chapter 3, The Transition Form Factors of η and η′ mesons are studied and

the sub-leading power corrections to these TFFs from twist-six contributions are

calculated. These corrections are calculated in the standard collinear factorization
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approach. Meson mass and quark mass corrections which give rise to SU(3)f break-

ing e�ects are also taken into account. Obtained results are superimposed on the

results of these TFFs up to twist-four available in the literature. TFFs act as an

important tool to test some approaches of QCD. In the case of η and η′, these TFFs

have a special role in determining their quark-gluon structure and �xing their dis-

tribution amplitude and these are essential inputs for the study of various exclusive

processes.

In chapter 4, the summary of the present thesis is given. It highlights the main

�ndings of the research and also inspires further study by stating hits and misses of

the present study.
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