
Chapter 2

Eta-nucleon and Eta-prime-nucleon

Coupling constants in QCD and the

role of gluons

The complicated mass spectrum of light pseudoscalar mesons, especially, the large

mass of η′(958 MeV) meson is believed to be the consequence of the explicit break-

ing of SU(3)f symmetry and breaking of axial U(1) symmetry at the quantum level

[42]. Gluonic degrees of freedom play an important role in the �avor-singlet channel

through QCD axial anomaly. Since η and η′ both contain singlet component due

to mixing, the glue a�ects both. The gluon impacts the masses of these mesons as

well as the interactions of these mesons with other particles. There prevail dramatic

di�erences between these two mesons in reality. Large di�erence in their masses

despite having similar quark content, η′'s strong a�nity towards the glue, the devi-

ation of branching ratios of B,Ds → η, η′ from that predicted by models [43], decay

of baryonic resonances N(1535) and N(1650) via emission of η but not via emission

of η′ [44, 45] make these mesons di�er largely from each other and the interaction

of these mesons with other particles also di�er signi�cantly. The anomalously large

mass of η′ which makes it an unsuitable candidate for being a Goldstone boson of

spontaneously broken symmetry, indicate that η′ is essentially a mixture of both

light quarkonium and gluonium and this glue content may have an impact on η′

interaction with nucleons.
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Kroll and collaborators have concluded quite large, radiatively generated two gluon

Fock components in η′ wave function [46]. In [47], it has been contended that at

low energies (Q2 ≈ 2GeV2) only about 20% of the momentum of η and η′ mesons

is carried by gluons in the chiral limit, though at very high energies, ∼ M2
z , this

fraction evolves to 50%. In the case of nucleons, roughly 50% of the momentum is

carried by gluons at moderately high energies. This conclusion on momentum frac-

tion carried by gluons is drawn from results on valance quark distribution functions

of the hadron following conventional logic. A claim of a signi�cant glue content of

η′ by KLOE collaboration [48] is based on the �tting measurements on φ→ η′γ, ηγ

together with several radiative decays, such as V → Pγ and P → V γ involving η′,

η mesons. This is in con�ict with the analysis of radiative decays V → Pγ and

P → V γ by Escribano and Nadal [49], and Thomas [50], who found no evidence for

gluonic contribution in η or η′.

The range of the glue induced η′-nucleon interaction, determined by two-gluon e�ec-

tive potential, is found to be of the order of 0.3 fm. The reaction pp→ ppη′, occurs

at distances ∼ 0.2fm, via which threshold production of η′ occurs. At these dis-

tances, the quark-gluon degrees of freedom play a signi�cant role in the production

dynamics of these mesons [51, 52]. Thus, the gluon induced production mechanism

is important as the singlet component of η and η′ couple to glue.

Harland-Lang et al. [53] have considered the central exclusive production of η′, η

meson pairs in pp(p) collision in the perturbative regime. They show on phenomeno-

logical ground that the cross-sections for the production of η, η′ meson pairs in such

processes are strongly sensitive to the size of the gluon content of these mesons.

Bass and Moskal [54] have emphasized the fact that the magnitude of the scattering

lengths aηN and aη′N are much greater than aπN . They have further pointed out

that the search for η and η′ mesic nuclei will help understand the dynamics of axial

U(1) symmetry breaking in low-energy QCD. The binding energies and in medium

masses of the η and η′ are sensitive to the �avor singlet component in the mesons
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and hence to non-perturbative glue. Experiments at COSY [55], ELSA, GSI/FAIR

[56] have been set up to look for bound states of these mesons in nuclei. Gluons in

the proton play an essential role in understanding its internal spin structure [57, 58].

Thus, the knowledge of meson-nucleon interaction is important both for nuclear and

particle physics.

Due to short life-time of �avor neutral pseudoscalar mesons, experiments with me-

son beams or targets are di�cult and not feasible. Therefore, the meson-nucleon

interaction can be studied only via its in�uence on the cross-sections of the reactions

during which they are produced. For η and η′, quantitative information about the

interaction can be inferred from the shape of the excitation functions(plot of cross-

section versus energy) for the pp → ppη and pp → ppη′ reactions as well as from a

comparison of those to the pp→ ppπ0 reaction.

A reliable determination of the coupling constants gηNN and gη′NN would shed con-

siderable light on the axial U(1) dynamics of QCD [59, 60]. Also, gηNN and gη′NN

have essential roles in construction of realistic NN potential [61, 62], in estimates

of electric dipole moment of the neutron [63] and in analyses of photoproduction of

these mesons [64�66] and scattering involving nucleons and these mesons.

2.1 A glimpse on studies of ηNN , η′NN coupling

constants

The pion-nucleon coupling constant has been studied widely and the value of gπNN '

13 is known with reasonable precision. The Goldberger-Treiman relation(GT rela-

tion) for pion reads [67],

fπgπNN = 2mNG
(3). (2.1)

Where, fπ is the pion-decay constant, mN is the mass of the nucleon, and G(3) is

renormalized axial vector coupling constant de�ned as,

〈N(p, s) | A(3)
µ | N(p, s)〉 = 2mNG

(3)sµ, (2.2)
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at vanishing momentum transfer. A(3)
µ = 1

2
(uγµγ5u−dγµγ5d)(here, notations u and d

imply u-quark and d-quark �elds respectively) and sµ = uγµγ5u/(2mN) is covariant

spin-vector of the nucleon(here, notation u implies four-spinor, representing a spin-

1/2 nucleon).

2mNsµ∆ψ = 〈p, s | ψγµγ5ψ | p, s〉. (2.3)

∆ψ(x) is a polarized PDF(Parton Distribution Function) [68],

∆ψ(x) = ψ↑(x)− ψ↓(x), (2.4)

where ψ↑(x)(ψ↓(x)) is the probability that the quark's spin is aligned(antialigned)with

the nucleon spin at a given x. ∆ψ =
∫ 1

0
dx∆ψ(x) is interpreted as the fraction of

proton's spin which is carried by quarks (and antiquarks) of �avor ψ. In [17], the

generalization of Goldberger-Treiman relation for η and η′, considering contributions

from physical η and η′ states only, has been done and values of gηNN and gη′NN were

achieved. The Goldberger-Treiman relation for η and η′ reads,

2mNG
a
A =

∑
P=η,η′

faPgPNN , a = 0, 8. (2.5)

The �avor-singlet Goldberger-Treiman relation derived by Shore and Veneziano re-

lates η(′)-nucleon coupling constant to the �avor-singlet axial charge of the nucleon

g
(0)
A extracted from polarized deep inelastic scattering [60, 69]. The relation in the

chiral limit reads,

mNg
(0)
A =

√
3

2
F0(gη0NN − gQNN), (2.6)

Where gQNN is the e�ective gluonic coupling constant, F0 renormalizes the �avor-

singlet decay constant. The large mass of η′ and the small value of g(0)
A indicates

to substantial violation of OZI rule in the �avor singlet channel, JP = 1+[51]. By

inserting phenomenological values of decay constants of η and η′ mesons and using

Eq. (2.5), the values of gηNN and gη′NN were estimated as 3.4 ± 0.5 and 1.4 ± 1.1

respectively in [17].

In [70], it was shown that the values obtained from direct generalization of GT rela-

tion for π0 to η, η′, di�er largely from the values gηNN = 6.8, gη′NN = 7.3 obtained by
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potential model [71]. In [17], chiral symmetry breaking was not considered. In [70],

the e�ect of chiral symmetry breaking was taken into account and with the use of

dispersion relation, the values of gηNN and gη′NN were estimated as (4.95−5.45) and

(5.6 − 10.9) respectively. These were in accord with those obtained from potential

models.

Other approaches for calculating these coupling constants include chiral quark soli-

ton model [72], �tting photoproduction data [66], potential model [73] and the QCD

sum rules approach [36, 74, 75]. Basic features of QCD sum rules have been dis-

cussed in Chapter 1. To determine any hadronic parameter, following are the main

steps in QCD Sum Rules technique:

1. Correlator is constructed by introducing interpolating �eld made out of funda-

mental quark and gluon �elds carrying same quantum numbers as that of the hadron

of interest.

2.Correlation function is calculated by Operator Product Expansion (OPE) at q2 →

−∞ using QCD degrees of freedom.

3. Phenomenological form is constructed by using hadronic parameters.

4. Matching of the non-analytic part of the phenomenological form with the OPE

calculation is carried to extract the hadronic parameter in terms of QCD parame-

ters.

QCD sum rules have been used in past to calculate η-nucleon coupling constant

gηNN in SU(3) symmetry limit [74] as well as with SU(3)- �avor violating e�ects

taken into account [76]; it has also been used to calculate singlet axial-vector cou-

pling constant of the nucleon without resorting to any instanton contribution [77].

In Ref [76], η was considered as a member of octet family η8 and no mixing with

the singlet η0 was taken into account for calculating gηNN .

In the present work, we calculate the coupling constants of both physical η and

η′ mesons with a nucleon using quark-�avor basis which turns out to be more ap-

propriate for working with a singlet component. Light-cone expansion of a quark
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propagator naturally gives emission of anomalous gluons which couple to η and η′

mesons. This is a characteristic contribution to gηNN and gη′NN having implication

for nucleon spin problem [58].

2.2 Formalism and construction of Sum Rules

The content of this section and forthcoming sections is based on our work in [78].

General methods of calculating meson-nucleon coupling constants have been devel-

oped in Refs. [36, 74, 75, 79, 80]. Consider the correlator of the nucleon current

between vacuum and one η(′)-state,

Π(q, p) = i

∫
d4xeiqx〈0 | T{JN(x), JN(0)} | η(′)(p)〉, (2.7)

where JN is the standard proton current [24].

(2.8)JN = εabc[uaTCγµu
b]γ5γ

µdc,

Here a,b,c are color indices. The η(′)NN coupling constant gη(′)NN is de�ned through

the coe�cient of the pole as[79]:

u(qr)(/q −Mn)Π(q, p)(/q − /p−Mn)u(ks) |q2=M2
n,(q−p)2=M2

n
= iλ2gη(′)NNu(qr)γ5u(ks),

(2.9)

where k = q−p, u(qr) is a Dirac spinor and λ is the coupling constant of the proton

current with one-proton state [24].

(2.10)〈0 | JN(0) | q〉 = λu(q).

The correlator Π(x, p) in the coordinate space is written as [74],

Π(x, p) = −iεabcεa′b′c′{γ5γ
µDd

cc′γ
νγ5{Tr[iSaa′(x)(γνC)T iSTbb′(x)(Cγµ)T ]

−Tr[iSab′(x)γνCiS
T
ba′(x)(Cγµ)T ]} − γ5γ

µiScc′γ
νγ5{Tr[iSab′(x)γνC(Du

ba′)
T (Cγµ)T ]

−Tr[iSaa′(x)(γνC)T (Du
bb′)

T (Cγµ)T ]− Tr[Du
aa′(γνC)T iSTbb′(x)(Cγµ)T ]

+Tr[Du
ab′γνCiS

T
ba′(x)(Cγµ)T ]}}.

(2.11)
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Dq
cc′ is de�ned as,

Dq
cc′ =

δcc′

12
Aq +

δcc′

12
(γµγ5)Aqµ −

δcc′

12
(γ5σ

µν)Aqµν . (2.12)

For de�nitions of Aq, Aqµ and Aqµν , see Eq.(2.17). Following Ref. [79] we de�ne the

projected correlation function

(2.13)Π+(q, p) = u(qr)γ0Π(q, p)γ0u(ks).

Π+ can be regarded as a function of q0 in the reference frame in which q = 0. The

even and odd parts of the Π+ satisfy dispersion relations as,

ΠE
+(q2

0) = − 1

π

∫
dq′0

q′0
q2

0 − q′20
ImΠ+(q′0),

ΠO
+(q2

0) = − 1

π

∫
dq′0

1

q2
0 − q′20

ImΠ+(q′0). (2.14)

On taking Borel transform [24, 79] with respect to q2
0 they take the form

B̂[ΠE
+(q2

0)] =
1

π

∫
dq′0q

′
0e
−q′0

2

M2 ImΠ+(q′0),

B̂[ΠO
+(q2

0)] =
1

π

∫
dq′0e

−q′0
2

M2 ImΠ+(q′0), (2.15)

where M is the Borel mass parameter. The RHS of Eq. (2.15) is expanded in terms

of the observed spectral function. The absorptive part of the projected correlation

function can be written as,

ImΠ+(q, p) = −u(qr)iγ5u(ks)πλ2g(q0,p
2)
{ δ(q0 −Mn)

q0 − Ek − ωp
+
δ(q0 − Ek − ωp)

q0 −Mn

}
+
{
θ(q0 − sη(′)) + θ(−q0 − sη(′))

}
ImΠOPE

+ (q, p),

(2.16)

where sη(′) is the e�ective continuum threshold.

Mixing of decay constants and eigenstates are discussed in Chapter 1. For de�ni-

tions of some important quantities f (q)
M ,f (s)

M (see Eqs.(1.15-1.17)) ,h(q)
M , h(s)

M (see Eq

.(3.14)). In QCD, the correlator is calculated via the operator product expansion
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(OPE) at the deep space-like region q2 → −∞. In the present approach, using

vacuum saturation hypothesis, the quark-antiquark component with the η(′) meson

is factored out from the correlator. The rest of the correlator is time-ordered prod-

ucts of quark �elds [74]. This is a light-cone expansion of the correlation function

which is the �rst step in calculating Wilson coe�cients of short-distance expansion

(SDE). In the second step, SDE of light-cone operators is performed [79, 80]. Addi-

tionally, contribution to the correlator arising from radiatively generated anomalous

gluons from quark propagators has also been taken into account. There are three

kinds of nonlocal bilinear quark operators which contribute to the vacuum-to-meson

matrix elements as given below. While the results on SDE of the matrix element

of axial-vector type nonlocal quark operators have been taken from Ref. [74], the

other two results, namely, those concerning pseudoscalar and tensor type nonlo-

cal quark operators, have been calculated by us based on parametrization given in

Refs. [81, 82]. Finally, quark-gluon mixed contribution to the matrix element are

obtained by moving a gluon �eld-strength tensor from a quark propagator into the

quark-antiquark component with a η(′) meson. Our calculation of this matrix ele-

ment is based on results and parametrization of Refs. [80, 82]. We list below the

results of the vacuum-to-η(′) matrix elements of the light-cone operators used in this

paper (q = u, d):

Aq = 〈 0 | q(0)iγ5q(x) | η(′)(p)〉 =
hq

2
√

2mq

(
C

S

){
1− ip · x

2
− (p · x)2

6
+
i(p · x)3

24

}
,

Aqµ = 〈 0 | q(0)γµγ5q(x) | η(′)(p)〉 =
fq√

2

(
C

S

){
1− ip · x

2

}{
ipµ −

iδ2p · xxµ
18

+
5iδ2x2pµ

36

}
,

Aqµν = 〈 0 | q̄(0)γ5σ
µνq(x) | η(′)(p)〉 = i

hq

12
√

2mq

(
C

S

){
pµxν − pνxµ

}
×
{

1− ip · x
2
− 3(p · x)2

20
+
i(p · x)3

30

}
,

〈 0 | qa(x)gGn
µν(

x

2
)qb(0) | η(′)(p)〉 = i

(
C

S

)
(tn)ab

16
√

2

{
fqγ5a1(pνγµ − pµγν)p · x+
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a2/p(pµxν − pνxµ)− f3πγ5p
α(pµσαν − pνσαµ)(1− ip · x

2
)

−fqεµναβγαpβ
δ2

3
(1− ip · x

2
)
}
, (2.17)

where
(
C
S

)
=
(

cosφ
sinφ

)
, a1 =

(
0.0074
0.0062

)
, a2 =

(
0.0136
0.0149

)
for
(
η
η′

)
, φ is mixing angle in quark-

�avor scheme [17]. The relevant gluonic term can be extracted from the light- cone

expansion of the quark propagator [83]:

〈0 | T{q(x)q(0)} | 0〉 =
Γ(−ε)

32π2(−x2)−ε
xµγλγ5g

2

∫ 1

0

du

∫ u

0

dv[(1− 2u

− 2v)Gµν(ux)G̃ν
λ(vx)− G̃µν(ux)Gν

λ(vx)] + .......

→ Γ(−ε)
32π2(−x2)−ε

g2xµγλγ5t
atbGa

µ
ν(0)Gb

νλ(0)

∫ 1

0

du

∫ u

0

dv(−2u

− 2v) + .....

→ Γ(−ε)αs
72× 4π(−x2)−ε

GG̃/xγ5 + ......

(2.18)

for dimension d=4− 2ε, GG̃ is evaluated at the origin in the spirit of short distance

expansion and ellipsis stand for other structures. Here GG̃ = 1
2
εµνρσGa

µνG
a
ρσ, ε

0123 =

+1. De�ning matrix element [84],

(2.19)〈0 | αs
4π
GG̃ | η(′)(p)〉 = aη(′) ,

we can write:

(2.20)〈0 | T{q(x)q(0)} | η(′)〉 =
Γ(−ε)

72
(−x2)εaη(′)/xγ5 + ..........

where

aη = −
m2
η′ −m2

η√
2

sinφ cosφ(−fq sinφ+
√

2fs cosφ),

aη′ = −
m2
η′ −m2

η√
2

sinφ cosφ(fq cosφ+
√

2fs sinφ). (2.21)

The removal of divergence requires renormalization and we do this in MS scheme.

In Π(q, p) the operator GG̃ originates from only d-quark line and there is no contri-

bution where gluons originate from two di�erent quark lines.
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Figure 2.1: Feynman diagrams considered for the correlation function Π(q, p).The dotted
line stands for the meson.

We get the following result for the correlator:

Π(q, p)

=
fq√

2

(
C

S

){ i

6π2

[
/p
(

log (−q2)
{
q2 − 2q · p− δ2

}
+
δ22q · p
q2

− 3 log (−q2){
q2 − q · p− δ2

}
− 8δ2q · p

3q2

)
+ /q
(

log (−q2)
{

2q · p− p2
}
− 2(q · p)2

q2

+δ2
{p2

q2
− 2(p · q)2

q4

}
− δ22q · p

q2
− 2δ2

3

{q · p
q2
− p2

2q2
+

(q · p)2

q4

})]
γ5

+
i〈g2G2〉
144π2

[
/p
(
− 4

q2
− 3q · p

q4
+

8δ2

9q4

)
+ /q
(p2 − 2q · p

q4
− 4(q · p)2

q6
− 32δ2q · p

9q6

)]
γ5

− iδ2

18π2

[
/p log (−q2) +

2/qq · p
q2

− /qp2

q2
− /pq · p

q2
+

2/q(q · p)2

q4

]
γ5

}
−
i/qγ5aη(′) log (−q

2

µ2
)

6π2

{
3 + log (4)− 2γ − 1

2
log
(−q2

µ2

)}
+

ihq〈qq〉
18
√

2mq

(
C

S

)
×

{2/p

q2
+

1

q4

[
4/qp · q − 2/qp

2 +
8/q
(
q · p

)2

q2
− 3

5

(
− /pp2 +

12

q2

{
/qp

2p · q +
/p(p · q)2

3

−
2/q(p · q)3

q4

})]}
γ5 −

ihq〈qgσ ·Gq〉
24
√

2mqq4
×
(
C

S

){
/p−

4/qq · p
q2

}
γ5 +

hqiγ5

8π2
√

2mq

×
(
C

S

){
log (−q2)(q2 − q · p) +

1

3

[
p2 log (−q2) +

2(q · p)2

q2

]
−

1

3

[3p2p · q
2q2

− (p · q)3

q4

]}
− 〈g2G2〉 iγ5hq

192π2
√

2mq

(
C

S

){ 1

q2
+
p · q
q4
− 1

3

[p2

q4
− 4(p · q)2

q6

]}
+

iγ5f3π

4π2
√

2

(
C

S

)
×
{
p2 log (−q2) +

2(q · p)2

q2
− 4p2 log (−q2)− 3p2(q · p)

q2
+

2(q · p)3

q4
+

4p2(q · p)
q2

}
+ σαβpαqβγ5 ×

{ hq

12
√

2π2mq

(
C

S

)
×
[
− log (−q2)

4
+

(p · q)
4q2

−

3

10

(p2

q2
− 2(p · q)2

q4

)
+

1

30

(4(q · p)3

q6
− 3p2q · p

q4

)
+
〈g2G2〉
288q4

(
1 +

2q · p
q2

)]
− 〈qq〉 2fq

3
√

2
×

29



(
C

S

)[ 2

q2
+

2q · p
q4

+
10δ2

9q4
+

20δ2p · q
9q6

]
+

2fqδ
2〈qq〉

9
√

2q4

(
C

S

)
×
[
1 +

2p · q
q2

]
−〈qgσ ·Gq〉fq

4
√

2q4

(
C

S

)[
1 +

2q · p
q2

]}
. (2.22)

From Eqs. (2.15) and (2.16), we get

1

π

∫
dq′0e

(− q′20
M2 )B̂ImΠ+(q′, p) = u(q)iγ5u(q − p) λ2

Ek + ωp −Mn

{
e−

M2
n

M2 g(Mn,p
2)

−e−
(Ek+ωp)

2

M2 g(Ek + ωp,p
2) + cont.

}
,

1

π

∫
dq′0q

′
0e

(− q′20
M2 )B̂ImΠ+(q′, p) = u(q)iγ5u(q − p) λ2

Ek + ωp −Mn

{
e−

M2
n

M2 g(Mn,p
2)Mn−

e−
(Ek+ωp)

2

M2 (Ek + ωp)g(Ek + ωp,p
2) + cont.

}
, (2.23)

where last terms stand for the continuum contributions. Similarly, we can get

Borel transform of OPE expression Π(q, p)OPEeven and Π(q, p)OPEodd . In the region of

M2 where sum rules work, we can equate the coe�cients of u(q)iγ5u(q − p) in the

phenomenological expression Eq. (2.23) to the coe�cients of the same in OPE ex-

pressions and transfer the continuum contribution to the OPE side. The coe�cient

of u(q)iγ5u(q − p) in the OPE expression for Π+odd gives:

B̂
[
ΠOPE−cont.

+odd

]
= M2

{ fqp
2

3
√

2π2

(
C

S

)
−
aη(′)

6π2

[
3 + ln 4− 3γ + lnM2

]
+

hq

8
√

2π2mq

(
C

S

)
×[5

6
Mn −

7

6
Ek

]}
E0

(sη(′)
M2

)
+

hq

8
√

2π2mq

(
C

S

){1

3
(Mn − Ek)2

[
2Mn + Ek

]
+

2

5
Ekp

2
}
− f3π

4
√

2π2

(
C

S

)
2(Mn − Ek)2

{
2Mn − Ek

}
− 4

3
√

2
fq

(
C

S

)
〈qq〉×{

Mn + Ek

}
+

fqδ
2

6
√

2π2

(
C

S

){
Mn − Ek

}4

3
Ek +

1

M2

{ 1

18
√

2
fq

(
C

S

)
×

〈αs
π
G2〉
[
Mn − Ek

][
Mn − 5Ek

]
+

hq〈qq〉
9
√

2mq

(
C

S

)[
Mn − Ek

][
4Ek − 2Mn

]
−

hq〈αsπ G
2〉

48× 18
√

2mq

(
C

S

)[
19Mn − 17Ek

]
+

fq√
2

(
C

S

)[
Mn + Ek

][14

27
〈qq〉δ2

+
1

4
〈qgσ ·Gq〉

]}
, (2.24)

where Ek =
√
M2

n + p2, ωp =
√
m2
η(′)

+ p2. The continuum contribution has been

parameterized in a standard way [24] through E0(x)=1 − e−x. Unlike the case of

gπNN , here we have retained terms up to O((Mn − Ek)
3). We have numerically
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checked that the short-distance expansion, as given in Eq.(2.17), works. We also

use nucleon mass sum rule [24]:

Mnλ
2e−M

2
n/M

2

=
1

4π2
{−M4〈qq〉E1(

s0

M2
) +

π2

6
〈qq〉〈αs

π
G2〉} ≡ B̂[Πm]. (2.25)

At the physical point, where both the nucleon lines and the meson line are on mass-

shell with p2=−m2
η(′)

+
m4

η(′)

4M2
n
, RHS of Eq. (2.15), combined with Eq. (2.16), takes 0

0

form and hence cannot be used to determine the coupling constants directly in this

approach. However, we can determine gη(′)NN at di�erent kinematical points and

extrapolate the results to the physical point. Working with Π+odd, from the ratio of

the two sum rules the coupling constant can be obtained as:

g(Mn,p
2)

Mn(Ek + ωp −Mn)
=
B̂[ΠOPE−cont.

+odd ]

B̂[Πm]
− M4

(Ek + ωp)2 −M2
n

d

dM2
(
B̂[ΠOPE−cont.

+odd ]

B̂[Πm]
).

(2.26)

Following values of parameters have been used for estimation of gη(′)NN (all quantities

are in GeV unit) [24, 74, 76, 77, 79]: 〈qq〉=−(1.65± 0.15)× 10−2, 〈αs
π
G2〉=0.005±

0.004, δ2=0.2±0.04, fq=(1.07±0.02)fπ, fs=(1.34±0.06)fπ, sη(′)=2.57±0.03, s0=2.5,

f3π=0.0045, φ=40◦ ± 1◦, hq
mq

= −4 fq
f2π
〈qq〉 [85], 〈qgσ ·Gq〉=m2

0〈qq〉, m2
0=0.8± 0.1.

2.3 Analysis of sum Rules and results

We have plotted the coupling constant g obtained from Eq. (2.26) in Figs. (2.2)

and (2.3) as a function of M2 for di�erent values of p2. Our chosen range of the

Borel mass is 0.8 GeV2 < M2 < 1.8 GeV2 for η′ and 1.5 GeV2 < M2 < 2.5 GeV2

for η. This is done with an eye to keep continuum contribution and contribution

of 1/M2 terms less than 30 % and to keep gη′NN not too low. A similar analysis

with the even correlation function ΠE
+ gives a large continuum contribution and the

large contribution of 1/M2 terms, hence the result is not reliable. In Table. 2.1,

we have displayed our results for coupling constants, coupling constants without

gluonic contribution, the gluonic contribution to the coupling constants and the

31



contribution coming from the OZI-rule violating s-quark (fs term in aη(′) , see Eq.

(2.21)). It is clear from the Table that though the gluonic contribution and the

OZI rule violating contribution from s-quark are small at the physical point, they

become signi�cantly large o� the physical point and eventually become dominant

at far o� physical point for η′. These coupling constants o� the physical point

will be important for some processes such as the photo-production of mesons o� a

nucleon target. We have made error estimates of our results as follows: Errors due

to di�erent phenomenological parameters, as given above, and error due to �nite

slope and �nite range of the Borel mass have been shown separately. Error due to

deviation from linear extrapolation is small and is neglected.

gηNN = 0.96+0.16
−0.17(M2)+0.14

−0.15(rest),

gη′NN = 0.76+0.27
−0.08(M2)+0.24

−0.24(rest). (2.27)

The �avor-singlet Goldberger-Treiman relation for QCD was derived by Shore and

Veneziano [69](written in our notation),

(2.28)Mng
(0)
A =

√
3

2
[f 0η′(gη′NN + g

(η′)
gluon) + f 0η(gηNN + g

(η)
gluon)]

Using our results for gη(′)NN and g
(η(′))
gluon, and f 0η(′) from Ref. [60], we get g(0)

A =

(0.23 − 0.28) in the range of medium to maximum values of the parameters. The

comparison of our estimation of g0
A with literature is given in Table. 2.2.

Table 2.1: Values of gηNN and gη′NN obtained at di�erent non-physical points and extrap-
olated to the physical point. Values of coupling constants due to gluonic operator αsGG̃,
contribution without gluonic operator and s-quark contribution as it appears in aη(′) are
also shown.

gηNN (M2=2GeV2) gη′NN (M2=1.3GeV2)

p2 −m2
η/2 −3

4
m2
η −m2

η +
m4
η

4M2
n
−m2

η′/2 −2
m2
η′

3
−3

4
m2
η′ −m2

η′ +
m4
η′

4M2
n

gtotal 1.88 1.32 0.96 3.07 1.69 0.94 1.03
gno-gluon 1.45 1.26 1.13 1.22 1.31 1.44 1.42
ggluon 0.43 0.06 -0.17 1.85 0.38 -0.50 -0.39
gs 0.82 0.12 -0.34 1.11 0.23 -0.3 -0.24
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Table 2.2: Comparison of g
(0)
A estimated by us with the literature.

Reference g0A
This Work(QCDSR+GT relation) 0.23-0.28
COMPASS (Q2 = 3GeV 2) [86] 0.26-0.36

NNPDFPoll.1(Q2 = 10GeV 2) [87] 0.25± 0.10
Theory [77] 0.39± 0.05± 0.04

Lattice QCD [88] 0.405

Table 2.3: Comparison of our results on gηNN and gη′NN with results for the same from
recent literature.

Ref. gηNN gη′NN Comment

Present work (0.64− 1.26) (0.44− 1.27) QCD sum rule
[70] (4.95− 5.45) (5.6− 10.9) GT relation+ Dispersion relation
[17] (3.4± 0.5) (1.4± 1.1) Theory (GT relation)
[65] 2.241 − Photoproduction
[60] (3.78± 0.34) (1− 2) Theory
[64] (0.39, 0.92) − Photoproduction+(Isobar model, Dispersion relation)
[66] 0.89 0.87 Fitting photoproduction data
[76] 4.2± 1.05 − QCDSR at unphysical point
[72] 4.399± 0.365 2.166± 0.312 Chiral quark-soliton model
[73] 6.852 8.66 Potential model

2.4 Summary and conclusion

We have used QCD sum rules, a well-tested approach in hadron physics, to calcu-

late gηNN and gη′NN .The �avor-singlet contribution has been facilitated by use of

quark-�avor basis. A characteristic contribution from radiatively generated gluonic

operator αsGG̃ was explicitly included. Finally, the values of the coupling constants

at the physical point were estimated from linear extrapolation of results obtained

at two other points. Anomalous glue, which gives excess mass to the would-be

Goldstone bosons η and η′ on the one end and a fraction of spin to the nucleon

on the other end, also gives substantial contribution to the coupling constants of

these mesons to the nucleon. Radiatively generated gluons, which eventually go to

the mesons, are attached to the valance d-quark for the proton and to the valance

u-quark for the neutron. Though interpolating �elds of nucleons consist of u- and

d-quark �elds only, the coupling constants of the nucleon with η and η′ contain a

term proportional to fs. This can be considered as OZI-violating contribution to
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Figure 2.2: Plots of our results for gηNN as a function ofM2(thick solid line). Also plotted
are our results on gηNN without contribution from gluonic operator αsGG̃ (long-dashed
line),only due to αsGG̃(thin solid line) and due to the part with fs in aη(short-dashed

line). Figs.(a) and (b) are for η when p2 is -
m2
η

2 and -
3m2

η

4 respectively.

the meson-nucleon coupling constant and is substantial for both η and η′ mesons.

Though η is largely octet, the gluon contribution to the gηNN turns out to be sig-

ni�cant. The branching ratios for N*(1535) to decay to ηN and πN �nal states are

approximately equal, about 45%, even though the latter channel has larger phase

space. The result is interpreted as evidence for a possible gluon anomaly contribu-

tion to the decay by Olbrich et al. [89]. Understanding of non-perturbative gluon

dynamics and axial U(1) anomaly has a vital role in future development of hadron

physics and nuclear physics and our results on gηNN and gη′NN will be useful for

this.
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Figure 2.3: Plots of our results for gη′NN as a function ofM2(thick solid line). Also plotted
are our results on gη′NN without contribution from gluonic operator αsGG̃ (long-dashed
line),only due to αsGG̃(thin solid line) and due to the part with fs in aη′(short-dashed

line). Figs.(a) and (b) are for η′ when p2 is -
2m2

η′
3 and -

3m2
η′

4 respectively.

2.5 Appendix

Here, we give few important steps for calculation of correlation function for one of

the OPE diagrams given in Fig. (2.1). In order to show the steps, let us consider

diagram shown in Fig. (2.4). We use expressions (2.11, 2.12) and (2.17).
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Figure 2.4: A Feynman diagram with a quark condensate contributing to the correlation
function

∏
(x, p).

The quark Green's function is expanded as [90],

〈0 | T{ψai (x)ψ
b

k(0)} | 0〉 = δab[
i

2π2x4
/xik −

mψδik
4π2x2

− δik
〈ψψ〉

12
+
imψ〈ψψ〉

48
/xik

−δik
x2

192
〈ψgsσ.Gψ〉+ /xik

ix2

3227
mψ〈ψgsσ.Gψ〉 − [

λn

2
]ab(/xσαβ + σαβ/x)ik

i

32π2x2
gsG

n
αβ + ..]

(2.29)

Using Eqs. (2.12),(2.29) in Eq.(2.11),

Π(x, p) = iεabcεa′b′c′γ5γ
µδcc′i

/x

2π2x4
γνγ5

Tr[Cγµ
δba′

12
[(γσγ5)Aqσ + iγ5A

q − 1

2
σσδAqσδ]γνC(

−δab′〈qq〉
12

)],

(2.30)

Above equation, after a few simpli�cations, reduces to,

Π(x, p) = −4 ∗ 2i
〈qq〉γ5

π2x412
[xσγδ − xδγσ]Aqσδ. (2.31)

Factor of 4 in above equation appears due to contribution of all terms in the Eq.

(2.11). Using expansion for Aqσδ (see Eq. (2.17)),

Π(x, p) = −8i
〈qq〉γ5

π2x412
[xσγδ − xδγσ]×

i
hq

12
√

2mq

(
C

S

){
pσxδ − pδxσ

}{
1− ip · x

2
− 3(p · x)2

20
+
i(p · x)3

30

}
,

(2.32)
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For the purpose of fourier transform, we use following formulas [91].∫
eiqx

1

x2
= −4iπ2

q2
,

∫
eiqx

xαxβ
x4

= −2iπ2
[gαβ
q2
− 2qαqβ

q4

]
,

∫
eiqx

xαxβxρ
x4

= 4π2
[ 1

q4
{qαgρβ + qβgρα + qρgαβ} −

4qαqβqρ
q6

]
,

∫
eiqx

xαxβxρxδ
x4

= −4iπ2
[ 1

q4
{gαδgρβ + gβδgρα + gρδgαβ} −

4

q6
{qαqδgρβ + qβqδgρα

+qρqδgαβ + qαqρgβδ + qβqρgαδ + qαqβgρδ}
]
, (2.33)

Upon Fourier transform, Eq. (2.32) reduces to,

Π(q, p) = −4i〈qq〉γ5
ihq

3π212
√

2mq

[
12
/p

q2
+

1

q4

(
(2p2−32p.q)/q+(8p.q−3p2)/p

)
+O(1/q6)

]
.

(2.34)

Above result shows the contribution of Fig. (2.4)to the total OPE result in the

momentum space. Other diagrams have been calculated in a similar manner and

Borel transformation have been performed as a next step.
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