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2.1 Formulism of density functional theory   

Development of human civilization has always been dependent on evolution of devices used. 

The progress of our civilization therefore depends on the devices used today.1  To have advanced 

technology, demands have been rising to predict new materials and design the material 

.2 Prior to birth 

of density functional theory, the process of calculating properties of material beyond helium was 

seen as a challenging task.  

In this section, we briefly discuss the versatility of density functional theory based 

vancement in computer and 

algorithms has made characterization and designing of new materials possible through computer 

simulations.3 A range of computational methods can be applied to investigate the fundamental 

properties of various types of materials and to design new materials for advanced technologies.4-

7 In addition the computational physics bridges the gap between traditional experimental and 

theoretical methodologies.  

 A major challenge in theoretical physics and chemistry was the description of structure 

and dynamics of many-electron systems particularly in finding the solution of Schrödinger  

equation. Materials are composed of nuclei and electrons and the behaviour of nucleus can be 

treated classically due to their massive nature as compared to electrons. The wave function of 

nucleus is strongly localized and hardly overlaps whereas electrons exhibit quantum mechanical 

behaviour with overlapping orbitals. The electrons not only interact with the stationary nuclei 

through the attractive Coulomb force but also with each other by means of the repulsive 



CHAPTER 2 
The upbringing of density functional theory        
             

Coulomb force. This makes the electronic structure calculations a many body problem. In the 

middle of the sixties, on the basis of quantum mechanics, Hohenberg, Kohn and Sham 

established density functional theory of the quantum ground state.  First principles methods 

based on density functional theory have been realized for its unprecedented predicting power 

because they do not require experimental input where all physical quantities are computed self 

consistently by solving quantum mechanical equation.  Ever since the formulation of density 

functional theory, it has grown vast in popularity, and resulted in large amount of computational 

work in molecular and solid-state physics making it a mainstay for electronic structure 

calculations.8-10 Using DFT, one can approach any interacting problem by mapping it to a 

solvable non-interacting problem. The use of approximate functionals were shown to provide a 

useful balance between computational cost and accuracy. Nowadays, with the use of sufficiently 

powerful computers, one can perform electronic structure calculations for about 100 atoms per 

unit cell. The main advantage of first-principles methods is that they can be carried out without 

knowing any experimental data of the system.  The first- principles calculations in this thesis are 

mainly done within density functional theory (DFT).  

In general, a solid is regarded as a many electron system with non-distinguishable mutual 

interaction in a lattice composed of nuclei. In principle, the effective potential in Schrödinger  

equation includes: Coulomb potential due to the electronic charge distribution which is termed 

as Hartree potential, exchange potential arising due to the interaction described by the Pauli 

exclusion principle and correlation potential due to the effect of a given electron on the overall 

charge distribution.  Following density functional theory, electron density distribution function 
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n(r) is used instead of many electron wave function  (r1, r2, r3 , rn) to determine the energy 

E for any system consisting of nuclei and electrons.11 The solution of many body problem is 

reduced exactly to the solution for the ground state density distribution given by a one particle 

Schrödinger  equation. The formulation of Kohn sham equation using density functional theory 

is discussed in the following sections. 

2.1.1 Many body problem 

A solid can be treated as a collection of heavy nucleus and lightly bound electron 

particles. N+ZN electromagnetically interactive particles 

where Z is the atomic number and the system is a many body interaction problem. The ground 

state energies can be evaluated by solving the the time independent Schrödinger  equation:12  

 

         (2.1) 

 

where  is the wave function for all particles, and E is the energy eigen value of this system and 

 is the many particle Hamiltonian. The simplest case is the Hydrogen atom, which has only 

one electron and one proton. We can solve the above equation exactly for this case and the 

energy of Hydrogen atom is -13.6 eV. But in conventional solids, there are large number of 

electrons and ions, and thus it result into complex interactions between the electrons and ions. 

Therefore, the Hamiltonian of the system also acquires complex form and given by 

       (2.2) 

were  and are the kinetic energy operators for the nuclei and electrons respectively, , 

 and  are the potential energy due to the electron-electron interactions, electrons-nuclei 
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interactions and nuclei-nuclei interactions respectively. The many body Schrödinger equation 

reads: 

 

     (2.3)             

 

where i and l are indices running for electron and nuclei, me and M stands for the mass of electron 

and nuclei, and  define the charges on different nuclei, ,  and  

represent distances between electron-electron, nuclei-nuclei and electron-nuclei respectively. 

The solution of the equation 2.1 is the eigen state and energy eigen value which is the total 

energy of the system from which the ground state properties of materials at equilibrium 

condition can be obtained. The Hamiltonian in equation 2.3 involves atomic mass and charge of 

electron, atomic number and mass of nuclei, therefore the solution of equation 2.1 does not 

require any adjustable parameter owing to which the method is known as first-principles 

calculation. In practice, for smaller system such as hydrogen the equation 2.1 is easily solvable, 

but is difficult to solve for large systems and for that several approximations were proposed. 

2.2 Wave function based methods to solve many body problem 

2.2.1 The Born-Oppenheimer approximation 

The nuclei are heavier and move slowly than the electrons, Born and Oppenheimer13 

assumed that the nuclei can be treated as static with reference to moving electrons and hence 
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their kinetic energy can be neglected and wave function can be separated in two parts namely 

electronic part and ionic part leading to many body wave function:13   

        (2.4)  

Here  represents ionic, while  stands for electronic wave function. Following 

equations are separated ionic and electronic parts of wave function: 

                (2.5) 

                 (2.6) 

Here, in the above two equations derived from equation 2.2, where the first term of equation 2.2 

vanishes under Born-Oppenheimer (BO) approximation and the last term will be a constant.14 

The residual Hamiltonian will now be read as:  

      (2.7) 

 The Hamiltonian operator ( ) can be modified as a sum of kinetic energy of electrons, 

the electron-electron interaction ( ) and the interaction with the external potential ( ):  

         (2.8) 

 

where the electron kinetic energy operator   for the electrons is: 

             (2.9) 
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and the potential energy   due to electron-electron interactions is: 

            (2.10) 

The external potential of interest is the electron-nuclei interaction and is given by  

          (2.11) 

were ri is the coordinate of ith electron and  is the external potential.  

 

2.2.2 Hartree approximation 

In Hartree approximation, the electron-electron interaction has its footing on the classical 

electrostatics where the Coulomb repulsion accounts in some form. In classical electrostatics, a 

distribution of electronic charge n(r) produces an electrostatic potential through Poisson's 

equation: 

(2.12) 

The electrons experiencing this potential will have a potential energy called Hartree potential 

:15 

                                              (2.13) 

The solution of equation 2.9 in Hartree units, will have the form: a potential energy 

  , which is called the Hartree potential 

                  (2.14)  

With the inclusion of Hartree potential one can write the complete Schrödinger  equation for 

electronic part as follows:  
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     (2.15) 

The first term on the left-hand side of the equation is the kinetic energy of electrons, the second 

term represents the ion-electron interaction (VIE) which depends only on the position of electron 

and the last term represents the Hartree potential VH. Equation 2.11 is known as Hartree equation 

and solution is given using variational principle which provides ground state energy by 

minimization of expectation value of energy E. 

                (2.16) 

Hartree reduced many body problem into one electron problem which is also known as 

independent electron approximation which neglected correlations between electrons and the 

asymmetric wave function nature for electrons.  

2.2.3 Hartree-Fock (HF) approximation 

Being Fermions and following 

function and the effect of correlation for electrons cannot be ignored. Hatree and Fock 

considered the asymmetric wave function given by the following equation: 

     (2.17) 

In HF approximation, minimization of equation 2.15 is done by considering the above 

.16  

   (2.18) 
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The determinant of the wave function can be written as  

     (2.19) 

where, , P is the permutation number and p is number of interchanges for making up 

this permutation. Substituting the Slater determinant of many body wave function in equation 

2.15 gives expectation value of Hamiltonian as 

  

                                           (2.20) 

Minimization of equation 2.17 leads to Hartree-Fock equation; 

 

 

                                                        (2.21) 

This is an improvement over Hartree method due to the involvement of exchange energy 

considering the asymmetric nature of wave-function. However, total energy  involves 

. This type of 

determinant is quite large; hence this approximation is computationally quite costly for large as 

well as small systems.  
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2.3 Density based method: Density functional theory 

The ultimate aim is to evaluate the ground state energy of many electron system by 

solving many body Schrödinger  equation given in equation 2.3. For a system with N number 

of electrons, there exist 3N variables leading to complex solution of equation 2.3. The density 

functional theory relies on density-based method where the interaction energy and potentials 

depend only on the density of electrons which reduces the computational cost by a large amount. 

2.3.1 Thomas-Fermi theory 

The first approach for solving many body systems to calculate ground state energy using density-

based theory originated from the Thomas Fermi (TF) theory.17,18 In 1927, Thomas and Fermi 

proposed that the electron density can be used as basic variable instead of single particle wave 

function or orbitals and the total energy of the system can be written as a functional of electron 

density. The kinetic energy of N interacting electrons by following equation can be written in 

terms of electron density  as: 

           (2.22) 

The total energy can be written as a functional of electron density by adding the kinetic energy, 

electrostatic energy and external potential as a functional of electron density 

             (2.23) 

where E is the Total energy. The total number of particles can be obtained by the minimization 

of above energy with constraint recognized by Lagrange multiplier as: 
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  ;              (2.24) 

The equation 2.23 can be solved self consistently. Here, Thomas-Fermi theory does not include 

the exchange energy. Dirac extended this method to include the exchange interaction and 

correlation functional.19,20 However, the shell structure and behaviour of atoms of complex 

systems were not considered in Thomas-Fermi theory. 

2.3.2 Hohenberg and Kohn theorem 

In 1964 Hohenberg and Kohn formulated two theorems21 which form the foundation of density 

functional theory calculations. Schematic of Hohenberg and Kohn (HK) theorems is  shown in 

Figure 2.1.22 The first theorem is stated as follows; 

For any system of interacting particles in an external potential Vext(r), the potential 

Vext(r) is determined uniquely, except for a constant, by the ground state particle density   

n(r 21,23 

According to Theorem I, the ground state of a system is unique functional of density. Thus, 

given the charge density, the Hamiltonian operator could be uniquely determined and the wave 

function  and all materials properties can be computed. The proof of Theorem 1 is presented 

below:  

Consider two different external potentials  and  differing by more than a constant 

and leading to different ground state wave functions, (1) and (2) respectively. Let us assume 

same ground state density n(r) for both potentials. The two external potentials lead to two 

different Hamiltonians, (1) and (2). Since (2) is not the ground state of (1). 
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                                 (2.25) 

The last term can be rewritten as: 

                 (2.26) 

 

       (2.27) 

                                                          

so that 

       (2.28) 

It is reasonable to interchange the labels 1 and 2. 

                                      (2.29) 

Adding equations (2.25) and (2.26) gives  

Figure 2.1: Schematic representation of first Hohenberg and Kohn theorem. Here, the HK 
theorem completes the circle, while arrow shows the solution of Schrödinger equation. 

Image adapted from ref.22 



CHAPTER 2 
The upbringing of density functional theory        
             

                 (2.30) 

Which contradicts our assumption and proves that there can only be one external potential Vext(r) 

that produces the ground state density n(r), and conversely that the external potential Vext(r) is 

uniquely determined by the ground state density. 

The second theorem is stated as follows; 

 

Theorem II: 

lowest energy if and only if the input density is the true ground state density   

 We may now consider a system with the ground state density n(1)(r) corresponding to the 

external potential Vext
(1)(r). The universal functional can be written as: 

     (2.31) 

where      (2.32) 

Further, the universal functional is equal to the expectation value of the ground state Hamiltonian 

which has wave function (1) and corresponding density n(1)(r) 

 

     (2.33) 

 

Therefore a different density, n(2)(r) corresponds to a different wave function (2), implying that 

the E(2) of this state is greater than E(1), since 

 

    (2.34) 
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Thus, the energy given by equation (2.31) evaluated for the correct ground state density n0(r) is 

indeed lower than that corresponding to any other density n(r). The above variational principle 

is known as the second Hohenberg-Kohn theorem. The universal functional F[n] yields the 

lowest energy if and only if the input density is the true ground-state density n0. 

2.3.3 The Kohn-Sham equation 

The Hohenberg-Kohn theorems4 allow to express the energy into two parts, the system 

dependent  and the unknown functional F[n] as expressed in equation 2.28. 

Kohn and Sham devised proposed unknown F[n]. The Kohn-Sham perturbed DFT into a 

practical tool by construction of an auxiliary system of non-interacting quasiparticles that have 

the density same as that of true interacting problem. By formulating good approximations to 

these functional, direct minimizations of the energy would be possible.  

Figure 2.2: The connection between many body and the independent particle system is 
provided by Kohn  Sham, where HK0 defines Hohenberg and Kohn theorem applied to 

non-interacting system.  
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If there exists a system of non-interacting electrons with the same density as of 

interacting system, according to Hohenberg-Kohn theorem, the total energy for the interacting 

system can be written as:  

       (2.35) 

where T[n], V[n] and Vext(r) are the kinetic energy functional, Coulomb potential functional and 

external potential respectively. Since the single particle system and the interacting system are 

assumed to have the same density, adding and subtracting Ts[n] (the non-interacting kinetic 

energy) and EH[n] (the Hartree energy) to (2.24), gives 

   (2.36) 

 

 (2.37) 

where the exchange-correlation energy is defined as: 

   (2.38) 

Here the difference in kinetic energy T[n] Ts[n] is the kinetic contribution to correlation and the 

difference V[n] EH[n] is the electrostatic and Hartree-Fock exchange contribution to 

correlation. Though the exchange correlation potential spans all important quantum many-body 

effects, the evaluation of exact exchange correlation functional is very challenging. Therefore, 

approximations are done by simple functionals as discussed in Section 2.5.  

The Hartree energy EH[n] in equation 2.27 is the classical electrostatic energy for a 

charge distribution n(r) given by equation 2.10. The non-interacting kinetic energy Ts, density 
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n(r) and particle count N of the non-interacting system can be evaluated from the single particle 

wave functions as: 

                (2.39) 

       (2.40) 

     (2.41) 

 

Ts[n] whereas all other terms are 

functionals of the density, then solution of equation 2.39 is the problem of minimization with 

respect to density n(r). 

 (2.42) 

 

From equation (2.35) and (2.37): 

     and           (2.43) 

which leads to the Schrödinger like equations: 

                   (2.44) 

where the i are the eigen values, and HKS is the effective Hamiltonian 

                  (2.45) 

 

                 (2.46) 
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Equations (2.44)-(2.46) are the well-known Kohn-Sham equations, where the total 

energy EKS and density n(r) are given by (2.36) and (2.40). These are independent particle 

equations and the potential can be found using the density self consistently. The exact ground 

state density and energy can be obtained if exact functional Exc[n] is known.   

2.4 Exchange and correlation functionals 

 
   Formulating approximations for exchange correlation energy (Exc) has been an active 

field of research in density functional theory. Different flavours of functionals are developed for  

particular cases where they have been validated by comparison with experimental data. Among 

them, the most widely used approximations are the local density approximation (LDA) and the 

generalized gradient approximation (GGA). The exchange correlation functionals are calculated 

as: 

     (2.47) 

where Fxc is the enhancement and its parameters depend on whether the functional is LDA or 

GGA or any other high level functionals. 

2.4.1 Local density approximation (LDA) 

 
In local density approximation (LDA), the functional is assumed to have dependency on 

electron density of homogeneous electron gas (HEG).24 It is the most widely used approximation 

for exchange-correlation energy. It is assumed that the infinitesimal volume of a system has 
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same exchange correlation energy as that of homogeneous electron gas at the same density. The 

exchange and correlation energy under LDA is defined as: 

                       (2.48) 

 

Taking spin into account one can have spin polarized generalization of the approximation 

(LSDA) which is given as: 

       (2.49) 

 

             (2.50) 

Homogeneous electron gas is a system analogous to ideal metal in neutral state with 

electrons moving in background of positive charge distribution. The electron density n = N/  is 

assumed to remain constant everywhere. LDA yields correct geometrical parameters while bulk 

moduli and phonon frequencies are accurate upto few percent. However, the density varies 

rapidly in realistic systems for which LDA does not yield correct physical properties. The form 

of the exchange and correlation energy functionals are known exactly or at least to very high 

accuracy for homogeneous electron gas model.  

The exchange-correlation (XC) functional is the sum of a correlation functional and an 

exchange functional: 

           (2.51) 

The per electron exchange energy for homogeneous system is: 
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               (2.52) 

 

                                      (2.53) 

In LDA, the exchange of uniform electron gas of a density equal to the density at the point where 

the exchange is to be assessed is used: 

                                   (2.54) 

However, a serious limitation of LDA is that it cannot provide estimation to the long-

ranged van der Waals (vdW) interaction.  

2.4.2 Generalized gradient approximation (GGA) 

 
Generalized gradient approximation (GGA) is an improvement over LDA where first 

order gradient terms are included in such away that the exchange-correlation energy is dependent 

on the local densities and their gradients.25 The functionals are defined in generalized form as: 

         (2.55) 

    (2.56) 

where is dimensionless quantity and is the exchange energy. 

The GGA has gained much attention owing to its moderate computational cost and simplicity. 

Among many functionals, the three most popular functionals were suggested by Becke,25 

Perdew and Wang (PW)26 and Perdew, Burke and Enzerhof (PBE).27 Many studies have 
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demonstrated that the GGA improves the LDA error in calculating cohesive energies of solids 

and molecules28 and gives more accurate equilibrium lattice parameters compared to LDA.29,30  

2.5 Density functional perturbation theory (DFPT) 

To describe the chemical structure and binding of atoms and molecules, the 

understanding of vibrational frequencies and displacement patterns is very important. 

Techniques such as Infrared, Raman and Inelastic scattering are used to measure vibrational 

frequency. The lattice dynamical behaviour of a material affects the polarizability, phonons, 

Raman and infrared spectrum, superconductivity and temperature dependent optical spectra.  

Density functional perturbation theory (DFPT) is a powerful theoretical technique within density 

functional theory framework to calculate such properties.31-33  

In DFPT, V, E, H, , n(r), etc. are subjected to perturbation. The external potential  is 

expanded as 

   (2.57)   

Similar expansion is done for E, H, , n(r), etc. The second order energy is an important 

parameter which is used to calculate the dynamical matrix for phonon frequency calculations 

and Born effective charges. One can write energy as functional of density as: 

                     
(2.58) 
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 Where the second order term of energy is obtained as variational with respect to first order wave 

function provided first order wavefunctions are orthogonal to the ground state wavefunctions 

                                                                                                            (2.60) 

The dynamical matrix is Hermitian and its eigenvalues  are real, and eigenvectors 

 are orthonormal. In addition, the phonon band structure    directly corresponds to 

density of states which provides the information of phonons in whole Brillouin zone (BZ).34-39 

 To obtain the information of the whole phonon spectrum, the scanning of Brillouin-zone 

is important. These scanning consists in -matrix diagonalization over the three-

dimensional net of wave vector , at n1, n2, n3 = - N,., N. In total, this includes 

Ni = (2N + 1)40 points in Brillouin zone. The phonon density of states (DOS) is determined by 

summation over all the phonon states and is defined by34,39,40 

                     (2.61) 

Here, D' is a normalization constant such that ; and g( )d  is the fraction of 

phonons with energies ranging from  to  + d .  The mesh index ( p ) is characterized by q  
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in the discretized irreducible Brillouin zone, where dqp provides the weighting factor 

corresponding to the volume of pth mesh in q-space. The contribution of different atoms to 

phonon density of states (DOS) is known from the partial atomic density of states (PDOS) which 

provide essentially aids in understanding the atomic level contribution to the total phonon DOS. 

It is defined as follow: 

                       (2.62) 

2.6 Dispersion correction to density functional theory  

The Kohn Sham formulation of DFT is to study the electronic structure of materials 

inorder to provide reasonable prediction for distinct properties of molecules and solids. 

However, various approximations such as LDA, GGA and hybrid functional failed to account 

long-range van der Waals (vdW) interaction.41-43 The vdW interaction plays an important role 

in initial stage of physical absorption, crystal growth and chemical reaction. To assess the vdW 

interaction, efforts have been devoted to formulate recipes for the non-local exchange-

correlation term.19  

The vdW correction to total energy is given by  

                (2.63) 

where  is general Kohn Sham energy functional and the empirical vdW dispersion 

correction to the correlation functional  is given by44 
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                       (2.64) 

where   is global scaling factor which depends on the functionals, Nat is the total number of 

atoms,  defines the dispersion coefficient for atom pair ij, and Rij is interatomic distance. The 

damping function  is given by 

                                      (2.65) 

where,  is the sum of atomic vdW radii.  and  are defined as:  

                               (2.66) 

                                                 (2.67) 

The results are precisely tested on systems including elements up to xenon and large 

hydrocarbons with many hydrogen atoms showed. 

2.7 Elastic properties 

 
Response of crystals to the external forces is determined by the elastic properties of 

materials characterized by , shear modulus, bulk modulus . 

Elastic constants which reveal the bonding character of atoms, atomic planes and structural 

stability of materials, are also linked thermodynamically to the specific heat, thermal expansion 

and Debye temperature.45  
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The total energy of strained system , having volume V can be expressed as:

             (2.68) 

where 
 
is the total energy of crystal at initial stage with volume V0 without strain. elast is 

the elastic energy and P is the pressure defined by:  

         (2.69)

The strained lattice  vector  is related to the unstrained lattice ( ) by , where I is 

the identity matrix and is the strain tensor. The elastic constants (Cijkl) can be defined using 

elastic energy elast  

      (i, j, k, l = 1, 2, 3)             (2.70) 

or, in the Voigt's two suffix notation: 

         (i, j = 1, 2, 3, 4, 5, 6)             (2.71) 

Since in Equation (2.68), the (V-V0) term follows linear relationship with strain, it is possible to 

derive elastic constants from the second order derivatives of Etot:  

                                                         (2.72) 

Elastic tensor of cubic crystal has only three independent elastic constants, C11, C12 and C44:  

             (2.73)

All the three elastic constants of cubic crystal can be determined by solving three equations 

implying that three types of strain must be applied to the crystal. Bulk modulus of crystal can be 
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evaluated by fitting Etot(V) with the third order Birch-Murnaghan equation of state46 where the 

Etot is computed for different values of strain. Bulk modulus is finally derived using: 

         (2.74) 

To evaluate the elastic tensors, volume conservative tetragonal strains are applied where one 

varies the axial ratio  leading to the strain tensor: 

 or in Voigt notation         (2.75) 

where  . The elastic energy resulting from tetragonal strain to second order in 

1 can be written as:  

        (2.76) 

Etot l) is fitted to a N degree polynomial P which is decided by the number of deformed 

structures (N - 1). The value of (C11-C12) is obtained from computation of 

second of derivative of P: 

      (2.77) 

The mechanical stability of a system can be studied by evaluating elastic constants from the 

ground state total energy calculations. A given crystal cannot exist in a stable or metastable 

phase if their elastic constants do not follow the stability criteria determined by themselves. The 

mechanical stability criteria for cubic crystals at ambient conditions are:47,48  
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, ,  and                     (2.78) 

and the isotropic bulk modulus (B) is given by: 

                  (2.79) 

The Born criteria for 2D hexagonal structure are:49  

 C11 > 0.0, C11-C12 >0.0 and C66 > 0.0        (2.80) 

The elastic modulus (E), shear modulus (GH), 

( ) and anisotropic ratio (A) play an important part in determining the strength 

of the material50 and are calculated using  following relations: 

                                  (2.81) 

                                          (2.82) 

where Voigt shear modulus is:  

                         (2.82) 

 

and Reuss shear modulus is:   

                                             (2.84) 

 

                         (2.85) 
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