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2.1 Basic Origin 

Among different computational and theoretical techniques, one of the prestigious 

methods widely used for predicting ground state properties of materials with large number of 

electrons is density functional theory (DFT). Utilizing DFT, one can solve time-independent 

Schrödinger like Kohn-Sham equation for studying the properties of bulk, nano materials as 

well as complex systems of biomolecules with nano materials. This theory is the developed 

version of Thomas and Fermi model proposed in early twentieth century, and further treated 

by Hartree, Fock, Dirac and Slater. The foundation of DFT was formulated by the two famous 

theories, one proposed by Hohenberg and Kohn [1] and later by Kohn and Sham [2] which 

provides an inexpensive tool for calculating the ground state properties of many electron 

systems. DFT is widely utilized for evaluating the electronic band structure, adsorption and 

surface defect energy, electric dipole and quadruple moments, infrared and Raman spectra, etc.  

Figure 2.1: Growth of research papers based on DFT 

calculation (From web of science data 
www.webofknowledge.com). 
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The Figure 2.1 shows the growth of research articles till 2019 reporting DFT based 

calculations. The major advantage of DFT over other approaches is the reduction in the 3N 

degrees of freedom to 3 by incorporating overall electron density instead of number density for 

constructing the wave-function. However, it is a known fact that the DFT does not give an 

exact solution of the Schrödinger equation, instead several approximations are used for the 

exchange and correlation functional that determine the Coulomb interaction beyond 

electrostatic interaction. Such approximation includes local density approximation (LDA) and 

generalized gradient approximation (GGA), which enhances the calculation efficiency than 

traditional wave function based methods [3, 4].   

2.1.1 Many Body Problem 

At atomic level, the properties of crystalline solids are governed by quantum 

mechanics. Fundamental constituents of any material are the nuclei and electrons which 

suggest that all properties are related with the interactions taking place between electrons and 

ions. These electrons and ions do not obey classical mechanics, so to understand the 

interaction between nuclei and electrons we have to treat the system by quantum mechanical 

approach. The behavior of electrons and ions governed under quantum mechanical approach 

can be understood by solving the time independent Schrödinger equation given by [5] 

𝑯𝝍 = 𝑬𝝍                                             (2.1) 

Here, H is the Hamiltonian of the system, 𝝍 is the wave function and E is the energy eigen 

value of the system known as total energy of the system. The simplest case is the Hydrogen 

atom, which has only one electron and one proton. We can solve the above equation exactly 
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for this case and the energy of Hydrogen atom is -13.6 eV. However, in conventional solids, 

there are large number of electrons and ions, and thus it results into complex interactions 

between the electron and ions. So, the Hamiltonian of the system also acquires complex form 

and is given by 

        𝑯 = 𝑻𝑬 + 𝑻𝑰 + 𝑽𝑰𝑰 + 𝑽𝑬𝑬 + 𝑽𝑰𝑬                 (2.2)

  

𝑯 = −
ħ𝟐

𝟐𝒎𝒆
∑

𝝏𝟐

𝝏𝒓̅𝒊
𝟐𝒊 −

ħ𝟐

𝟐𝑴
∑

𝝏𝟐

𝝏𝑹̅𝒍
𝟐 +

𝟏

𝟐
∑

𝒆𝟐

𝟒𝝅𝜺𝟎

𝒁𝒍𝒁𝒍′

|𝑹̅𝒍−𝑹̅𝒍′|
𝒍,𝒍′
𝒍≠𝒍′

𝒍

 

                                                       +
𝟏

𝟐
∑

𝒆𝟐

𝟒𝝅𝜺𝟎

𝟏

|𝒓̅𝒊−𝒓̅𝒋|
𝒊,𝒋
𝒊≠𝒋

− ∑ ∑
𝒆𝟐

𝟒𝝅𝜺𝟎

𝒁𝒍

|𝒓̅𝒊−𝑹̅𝒍|
𝒍𝒊

 

  (2.3)             

Here, TE and TI are the kinetic energy of electrons and ions, while VII, VEE, and VIE are 

potential energy of two nuclei, two electrons and nuclei-electron system respectively. The 

indices i and l runs for electron and nuclei, me and M stands for the mass of electron and 

nuclei, Zl and Zl′ defines the charges on different nuclei, 𝒓̅𝒊 − 𝒓̅𝒋, 𝑹̅𝒍 − 𝑹̅𝒍′ and 𝒓̅𝒊 − 𝑹̅𝒍 

represents distances between electron-electron, nuclei-nuclei and electron-nuclei respectively. 

The solution of equation 2.1 gives the energy eigen state known as total energy of the 

system and from the total energy, we can calculate the ground state properties of materials at 

equilibrium condition. One has to note that the Hamiltonian presented in equation 2.3 requires 

only atomic mass, charge of electron, atomic number and mass of nuclei. The solution of 

equation 2.1 does not require any adjustable parameters hence is known as first-principle 

calculation. 
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In practice, for smaller system such as hydrogen we can solve the equation 2.1, 

whereas it is difficult to solve for large systems in which several approximations were 

proposed to solve many body Schrödinger equation. 

2.2 Wave Function Based Method to Solve Many Body Problem 

2.2.1 Born-Oppenheimer Approximation  

Ions are 103-104
 times heavier than electrons, so we can assume the movement of ions 

to be stationary with respect to electrons. According to Born-Oppenheimer (BO) 

approximation, wave function can be separated in two parts: (a) electronic part and (b) ionic 

part. Following the BO approximation, many body wave function can be expressed as [6]  

     𝝍 = 𝝌𝒊(𝑅̅) 𝜳𝑬(𝒓̅,  𝑹̅)     (2.4)

  

Here 𝜒𝑖(𝑅̅) represents ionic, while  𝛹𝐸(𝑟̅,  𝑅̅) stands for electronic wave function. Separated 

ionic and electronic part of wave function leads to following equations 2.5 and 2.6  

   [−
ħ𝟐

𝟐𝑴
∑

𝛛𝟐

𝛛𝑹̅𝒍
𝟐𝒍 + 𝑽𝑰𝑰(𝑹̅) + 𝑬𝑬(𝑹̅)] 𝝌𝒍(𝑹⃗⃗ ) = 𝑬𝝌𝒍(𝑅̅)            (2.5) 

   [−
ħ𝟐

𝟐𝒎𝒆
∑

𝛛𝟐

𝛛𝒓𝒊̅
𝟐̅̅ ̅̅𝒊 + 𝑽𝑰𝑬(𝒓̅,  𝑹̅) + 𝑽𝑬𝑬(𝒓̅)]𝜳𝑬(𝒓̅,  𝑹̅) = 𝑬𝑬𝜳𝑬(𝒓̅,  𝑹̅)              (2.6) 

As ions are considered stationary, the kinetic energy term for ions vanishes and ion-ion 

potential becomes constant in equation 2.5, whereas electron-ion interaction depends on 

position of electrons only.  
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2.2.2 Hartree Approximation 

After the separation of electronic and ionic wave functions by BO approximation, 

Hartree considered only electronic part of wave function and assumed that electronic wave 

function can be represented in terms of single particle function [7] given by  

    𝜳𝑯 = 𝜳(𝒓𝟏̅̅ ̅, 𝝈𝟏)𝜳(𝒓𝟐̅̅ ̅, 𝝈𝟐)…𝜳(𝒓𝑵̅̅̅̅ , 𝝈𝑵)   (2.7) 

where, 𝜳(𝒓𝒊̅, 𝝈𝒊) determines the wave function of ith electron, 𝑟𝑖̅ is the postion coordinate of ith 

electron with spin 𝝈𝒊.  

Using the Hamiltonian of equation 2.6 and wave function from equation 2.7, one can 

write the complete Schrödinger equation for electronic part as follow 

−
ħ𝟐

𝟐𝒎𝒆
𝜵𝒊 

𝟐𝜳𝒊 −
𝟏

𝟒𝝅𝜺𝟎
∑

𝒁𝒆𝟐

|𝒓̅𝒊−𝑹̅𝒍|
𝜳𝒊 +

𝟏

𝟒𝝅𝜺𝟎
𝒍 ∑ ∫

𝒆𝟐|𝜳𝒋|
𝟐

|𝒓̅𝒊−𝒓̅𝒋|
𝒅𝟑𝒓𝒋𝒋≠𝒊 =  ∈𝒊 𝜳𝒊     (2.8) 

In left hand side of the equation, first term is the kinetic energy, second term represents the 

ion-electron interaction (VIE) which depends only on the position of electron and the last term 

represents the Hartree potential VH. Equation 2.8 is known as Hartree equation and solution of 

equation is given by variational principle which provides exact ground state energy through 

minimization of expectation value of energy E. 

𝑬 =
⟨𝜳𝑯|𝑯|𝜳𝑯⟩

⟨𝜳𝑯|𝜳𝑯⟩
                    (2.9) 

Hartree reduces many body problem into one electron problem which is also known as 

independent electron approximation. However, independency of electron neglects correlations 

between electrons. Also, Hartee did not consider the asymmetric wave function for electrons; 



Background of Density Functional Theory                                 CHAPTER 2 
 

 

Page 20 

 

as the electrons are classified as Fermions, and according to the Pauli’s exclusion principle the 

asymmetric nature should be considered. 

2.2.3 Hartree-Fock Approximation 

To understand the asymmetric nature of wave function and the effect of correlation, 

Hartree and Fock considered the asymmetric wave function given by the equation below: 

𝜳𝑯𝑭(𝒓𝟏̅̅ ̅, 𝝈𝟏, … , 𝒓𝒊̅, 𝝈𝒊,  … , 𝒓𝒋̅, 𝝈𝒋, … ) = −𝜳𝑯𝑭(𝒓𝟏̅̅ ̅, 𝝈𝟏, … , 𝒓𝒊̅, 𝝈𝒊,  … , 𝒓𝒋̅, 𝝈𝒋, … )     (2.10) 

HF approximation is based on minimization of equation 2.9 by considering the above 

asymmetric wave function in the determinant form known as Slater’s determinant [8] 

𝜳𝑯𝑭(𝒓𝟏̅̅ ̅, 𝝈𝟏, … , 𝒓𝑵̅̅̅̅ , 𝝈𝑵) = |

𝜳𝟏(𝒓𝟏̅̅ ̅, 𝝈𝟏) 𝜳𝟏(𝒓𝟐̅̅ ̅, 𝝈𝟐)… 𝜳𝟏(𝒓𝑵̅̅̅̅ , 𝝈𝑵)

𝜳𝟐(𝒓𝟐̅̅ ̅, 𝝈𝟐) 𝜳𝟐(𝒓𝟐̅̅ ̅, 𝝈𝟐)… 𝜳𝟐(𝒓𝑵̅̅̅̅ , 𝝈𝑵)

𝜳𝑵(𝒓𝑵̅̅̅̅ , 𝝈𝑵) 𝜳𝑵(𝒓𝑵̅̅̅̅ , 𝝈𝑵)… 𝜳𝑵(𝒓𝑵̅̅̅̅ , 𝝈𝑵)
|           (2.11) 

The determinant of the wave function can be written as  

𝜳𝑯𝑭 =
𝟏

𝑵!
∑ (−𝟏)𝒑𝑷 𝜳𝟏(𝒙𝟏) 𝜳𝟐(𝒙𝟐)…  𝜳𝑵(𝒙𝑵)𝑷              (2.12) 

Where, x = (r̅, σ), P is the permutation number and p is number of interchanges making up 

this permutation. Substituting the determinant form of equation in variational principle 

(equation 2.9) gives expectation value of Hamiltonian as 

𝑬 = ∑ ∫𝜳∗(𝒓⃗ ) [−
ħ𝟐

𝟐𝒎𝒆
∑ 𝜵𝒊

𝟐
𝒊 + 𝑽𝒍(𝒓⃗ )]𝜳(𝒓⃗ )𝒅𝟑𝒓𝒊  +  

𝟏

𝟐
∑ ∑ ∬

𝒆𝟐

𝟒𝝅𝜺𝟎

| 𝜳𝒊(𝒙𝒊)|| 𝜳𝒋(𝒙𝒋)|
𝟐

|𝒓⃗ −𝒓⃗ ′|
𝒅𝟑𝒓𝒅𝟑𝒓′

𝒊≠𝒋𝒊   

−
𝟏

𝟐
∑ ∑ ∬

𝒆𝟐

𝟒𝝅𝜺𝟎

𝜳𝒊
∗(𝒓⃗ )𝜳𝒋

∗(𝒓⃗ ′) 𝜳𝒊(𝒓⃗ 
′) 𝜳𝒋(𝒓⃗ )

|𝒓⃗ −𝒓⃗ ′|
𝒅𝟑𝒓𝒅𝟑𝒓′

𝒋≠𝒊𝒊,𝒋                                        (2.13) 
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The first term of above equation consist of  kinetic energy and interaction of external potential,  

the second term represents Hartree potential and the last term appeared due to the Pauli’s 

exclusion principle also known as exchange energy. Minimization of equation 2.13 leads to 

canonical form of Hartree-Fock equation 

[−
ħ𝟐

𝟐𝒎𝒆
∑ 𝜵 

𝟐
𝒊 − 𝑽𝒍(𝒓⃗ ) + 𝑽𝑯(𝒓⃗ )]𝜳𝒊(𝒓⃗ )                   

−
𝟏

𝟐
∑ ∑ ∬

𝒆𝟐

𝟒𝝅𝜺𝟎

𝜳𝒋
∗(𝒓⃗ ′) 𝜳𝒊(𝒓⃗ 

′) 𝜳𝒋(𝒓⃗ )

|𝒓⃗ −𝒓⃗ ′|
𝒅𝟑𝒓𝒅𝟑𝒓′

𝒋≠𝒊𝒊,𝒋 =  ∈𝒊 𝜳𝒊(𝒓⃗ )                                               (2.14) 

Involvement of exchange energy by taking asymmetric nature of wave-function improves 

Hartree method. However, total energy ∈𝒊 contains minimization over sum of N particle 

Slater’s determinant (equation 2.11) and this type of determinant are quite large; hence this 

approximation becomes computationally very costly for large as well as small systems.  

2.3 Density Based Method –Density Functional Theory 

Our aim is to calculate ground state energy of the many electron system by solving 

many body Schrödinger equation given in equation 2.6. For N number of electron there are 3N 

variables which leads to complex solution of equation 2.6, while in density based method, the 

interaction energy and potentials depend only on the density of electrons. 

2.3.1 Thomas-Fermi Theory 

Calculation of ground state energy using density based theory originated from the 

Thomas-Fermi (TF) theory for a many electron systems [9, 10]. In 1927, TF proposed that the 

total energy of the system can be written as a functional of electron density. In this method, the 

basic variable is electron density instead of single particle wave function or orbitals. TF theory 
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can approximate the kinetic energy and potential of N interacting electrons by following 

equation 

     𝑻𝑻𝑭 = 𝑪𝒌 ∫𝒏(𝒓̅)
𝟓

𝟑𝒅𝟑𝒓                (2.15) 

Where, 𝑪𝒌 =
𝟑

𝟏𝟎

ħ𝟐

𝒎𝒆
(𝟑𝝅𝟐)

𝟐

𝟑 and 𝑛(𝑟̅) is the density of electrons. TTF is the local approximation 

to the kinetic energy that can be obtained by adding all free electron energy states up to Fermi 

wave vector. The TF theory gives total energy in equation 2.16 as a functional by adding 

above kinetic energy, electrostatic energy and interaction of external potential as a functional 

of electron density 

𝑬 = 𝑻𝑻𝑭 + ∫𝑽𝑰𝑬(𝒓̅) 𝒏(𝒓̅)𝒅𝟑𝒓 +
𝟏

𝟐
∬

𝒆𝟐

𝟒𝝅𝜺𝟎

𝒏(𝒓⃗ ′) 𝒏(𝒓⃗ )

|𝒓⃗ −𝒓⃗ ′|
𝒅𝟑𝒓𝒅𝟑𝒓′             (2.16) 

This energy is known as TF energy and TF equation can be obtained by minimization of above 

energy with constraint recognized by Lagrange multiplier µ which gives the proper number of 

particle. 

𝟓

𝟑
𝑪𝒌𝒏(𝒓̅)

𝟐

𝟑 + ∫
𝒆𝟐

𝟒𝝅𝜺𝟎

𝒏(𝒓⃗ ′)

|𝒓⃗ −𝒓⃗ ′|
𝒅𝟑𝒓′ = 𝝁   

𝝁 =
𝟓

𝟑
𝑪𝒌𝒏(𝒓̅)

𝟐

𝟑 + 𝑽(𝒓̅)               (2.17) 

This is the basic equation of TF theory and it can be solved self consistently. Here, TF have 

not included the exchange energy in the above equation. Further, this method has been 

extended by Dirac to include the exchange interaction and to include the correlation to kinetic 

energy functional [11, 12]. The TF theory does not show any shell structure as well as it does 

not describe the behavior of electrons for atoms to complex systems. 
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2.3.2 Hohenberg and Kohn Theorems 

In this section, we will describe the two basic theorems of DFT given by Hohenberg 

and Kohn. Hohenberg and Kohn developed these two inventive theorems [1]. They showed 

that all the ground state properties of systems with many electrons can be calculated as a 

functional of electron density. Functional represents function of function that gives a number 

i.e. path for function to a finite number. Since the density of the electron depends only on three 

variables which reduces the complexity of calculations.  

Theorem I: The external potential V(r) is a unique functional of electron density n(r). As 

result, the total ground state energy E of any many electron system is also unique functional of 

n(r), 𝑬 = 𝑬[𝒏]. 

The external potential corresponding to the density of electrons can be used to get 

unique Hamiltonian which is used to solve many electron Schrödinger equation. For the proof 

of above theorem, the best way is to assume two external potentials Vext
(1)(r) and Vext

(2)(r) 

which differ by a constant and give same density n(r). These different potentials give two 

Figure 2.2: Schematic representation of first Hohenberg and Kohn 
theorem. Here, the HK theorem completes the circle, while other smaller 

arrow shows the solution of Schrödinger equation. Image adapted from 
ref. [13]. 

𝑽𝒆𝒙𝒕(𝒓⃗ ) 𝒏𝟎(𝒓⃗ ) 

𝜳𝒊(ሼ𝒓⃗ ሽ) 𝜳𝟎(ሼ𝒓⃗ ሽ) 

HK 
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different Hamiltonians H(1) and H(2) and two distinct wave functions ψ(1)
ext(r) and ψ(2)

ext(r) 

respectively. 

  According to variational principle, ψ(2)
ext(r) cannot be the ground state of H(1), so we 

can write 

𝑬(𝟏) = 〈𝜳(𝟏)|𝑯(𝟏)|𝜳(𝟏)〉 < 〈𝜳(𝟐)|𝑯(𝟏)|𝜳(𝟐)〉                    (2.18) 

For the sake of simplicity, we consider here the non-degenerate system (proof for degenerate 

system is given in ref. [14]. The last term of equation 2.18 can be written as  

   〈𝜳(𝟐)|𝑯(𝟏)|𝜳(𝟐)〉 = 〈𝜳(𝟐)|𝑯(𝟐)|𝜳(𝟐)〉 + ∫𝒅𝒓[𝑽𝒆𝒙𝒕
(𝟏) (𝒓) − 𝑽𝒆𝒙𝒕

(𝟐) (𝒓)]𝒏𝟎(𝒓)           (2.19) 

In the similar way we can write the equation for H(2) as below 

     〈𝜳(𝟏)|𝑯(𝟐)|𝜳(𝟏)〉 = 〈𝜳(𝟏)|𝑯(𝟏)|𝜳(𝟏)〉 + ∫𝒅𝒓[𝑽𝒆𝒙𝒕
(𝟐) (𝒓) − 𝑽𝒆𝒙𝒕

(𝟏) (𝒓)]𝒏𝟎(𝒓)         (2.20) 

By adding above two equations 2.19 and 2.20 we get 

𝑬(𝟏) + 𝑬(𝟐) < 𝑬(𝟐) + 𝑬(𝟏)                   (2.21) 

This equation shows that the initial guess of two external potential giving same charge density 

becomes false and proves the theorem.  

Theorem II: The functional 𝐸[𝑛] for the total energy has a minimum equal to the ground state 

energy at the ground state density. 

External potential is determined uniquely using density and that unique potential 

determines the electronic wave function and all the other observables can be determined 
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uniquely. From this, every property can be expressed in term of density and total energy which 

can be written as  

          𝑬[𝒏] = 𝑻[𝒏] + 𝑬𝒊𝒏𝒕[𝒏] + ∫𝑽𝒆𝒙𝒕(𝒓)𝒏(𝒓) + 𝑬𝑰𝑰 ≡ 𝑭[𝒏] + ∫𝑽𝒆𝒙𝒕(𝒓)𝒏(𝒓) + 𝑬𝑰𝑰    (2.22) 

Here, F[n] encapsulated is the interaction potential of electrons and kinetic energy of electrons 

for all systems. The ground state energy determined by unique ground state density is 

 𝑬(𝟏) = 𝑬[𝒏(𝟏)] = 〈𝜳(𝟏)|𝑯(𝟏)|𝜳(𝟏)〉                                    (2.23) 

Here, total energy can be written as functional of n(r). F[n] in equation 2.22 can be written as a 

functional of density n(r) 

𝑭[𝒏] = 𝑻𝒔[𝒏] +
𝟏

𝟐
∬

𝒆𝟐

𝟒𝝅𝜺𝟎

𝒏(𝒓⃗ ′) 𝒏(𝒓⃗ )

|𝒓⃗ −𝒓⃗ ′|
𝒅𝟑𝒓𝒅𝟑𝒓′ + 𝑬𝑿𝑪[𝒏]                    (2.24) 

By knowing F[n], we can vary density until minimization of total energy for the system. Thus, 

the knowledge of total energy is sufficient to determine the ground state energy and density. 

2.3.3 Kohn-Sham Equation-Density Functional Theory 

Hohenberg and Kohn approach is just the reformulation of many body interacting 

𝑽𝒆𝒙𝒕(𝒓⃗ ) 𝒏𝟎(𝒓⃗ ) 

𝜳𝒊(ሼ𝒓⃗ ሽ) 𝜳𝟎(ሼ𝒓⃗ ሽ) 

HK 𝑽𝑲𝑺(𝒓⃗ ) 𝒏𝟎(𝒓⃗ ) 

𝜳𝒊=𝟏,𝑵𝒆
(ሼ𝒓⃗ ሽ) 𝜳𝒊(ሼ𝒓⃗ ሽ) 

HK0 

KS 

Figure 2.3: Same as Figure 2.2 but for Kohn – Sham ansatz. HK0 defines Hohenberg and Kohn 

theorem applied to non-interacting system. The connection between many body and the 
independent particle system is provided by Kohn – Sham. 



Background of Density Functional Theory                                 CHAPTER 2 
 

 

Page 26 

 

systems in terms of electron density. Also HK theory approximated kinetic energy of electrons 

and exchange-correlation energy same as TF theory. To overcome this problem, Kohn and 

Sham (KS) have handled kinetic energy much better way than earlier theories. KS replaced the 

potential of interacting system by an auxiliary non-interacting system with assumption of same 

ground state density and then same ground state properties [2].  

For this groundbreaking work, Walter Kohn was awarded Noble prize in chemistry in 

1998. The approach of KS is summarized in Fig. 2.3. The KS approach is just separate kinetic 

energy term from equation 2.24, which reformulate the many body equation as follows: 

     𝑬[𝒏(𝒓̅)] = ∫𝑽(𝒓̅)𝒏(𝒓̅)𝒅𝟑𝒓 + 𝑻𝒔[𝒏] +
𝟏

𝟐
∬

𝒆𝟐

𝟒𝝅𝜺𝟎

𝒏(𝒓⃗ ′) 𝒏(𝒓⃗ )

|𝒓⃗ −𝒓⃗ ′|
𝒅𝟑𝒓𝒅𝟑𝒓′ + 𝑬𝑿𝑪[𝒏]   (2.25) 

Here, 𝑻𝒔[𝒏] is now independent kinetic energy and 𝑉𝑒𝑥𝑡(𝒓⃗ ) is replaced by 𝑉(𝒓⃗ ), which is the 

potential between electrons and nuclei. Last term of equation 𝑬𝑿𝑪[𝒏]  is the exchange and 

correlation energy accounts for the many body quantum mechanical effect. Now by 

minimization of the energy by taking the functional derivatives of equation 2.25 gives  

𝜹𝑬[𝒏]

𝜹𝒏(𝒓̅)
− 𝝁 = 𝟎                 (2.26) 

𝜹𝑻𝒔[𝒏]

𝜹𝒏(𝒓̅)
+ 𝑽(𝒓̅) + 𝑽𝑯(𝒓̅) + 𝑽𝑿𝑪(𝒓̅) − 𝝁 = 𝟎                          (2.27) 

Here, 𝑽𝑯(𝒓̅) is the Hartree potential in terms of electron density and 𝑽𝑿𝑪(𝒓̅) =
𝜹𝑬𝒙𝒄[𝒏]

𝜹𝒏(𝒓̅)
 solution 

of equation will give the electron density and further it leads to total energy of system. 

However, there are two unknown terms in equation 2.27, one is 𝑻𝒔[𝒏] and other one is 

exchange correlation potential 𝑽𝑿𝑪(𝒓̅) arising from Pauli and Coulomb interaction. To 

overcome this problem, KS have considered density as square of orbitals of the system 
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𝒏(𝒓̅) = ∑ | 𝜳𝒊(𝒓̅)|
𝟐𝑵

𝒊=𝟏                        (2.28) 

Where, KS orbitals are determined by 𝜳𝒊(𝒓̅). KS Kinetic energy can be written as a single 

particle by following expression 

𝑻𝒔[𝒏] = −
ħ𝟐

𝟐𝒎𝒆
∑ ⟨ 𝜳𝒊(𝒓̅)|𝛁

𝟐| 𝜳𝒊(𝒓̅)⟩
𝑵
𝒊 = −

ħ𝟐

𝟐𝒎𝒆
𝜵𝟐             (2.29) 

Here, 𝑇𝑠[𝑛] is responsible for density oscillation of shell structure and it has large part of the 

total kinetic energy of system. Here, 𝑬𝒙𝒄[𝒏] is the sum of electron exchange and 

correlation energy i.e. 𝑬𝒙𝒄[𝒏] =  𝑬𝒙[𝒏] + 𝑬𝒄[𝒏], where Slater’s determinant  𝐸𝑥[𝑛] is 

generally given by Slater’s determinant (equation 2.11). By solving equation 2.25 we get 

[−
ħ𝟐

𝟐𝒎𝒆
𝜵𝟐 + 𝑽𝒆𝒇𝒇(𝒓̅)]  𝜳𝒊(𝒓̅) =∈𝒊 𝜳𝒊(𝒓⃗ )                   (2.30) 

Here, 𝑽𝒆𝒇𝒇(𝒓̅) is known as effective potential and determined by sum of exchange potential 

(𝑉𝑒𝑥𝑡(𝑟̅)), Hartee potential 𝑉𝐻(𝑟̅) and exchange-correlation potential (𝑉𝑋𝐶(𝑟̅)). Equation 2.30 

is Kohn-Sham equation and it is exactly same as the many body Schrödinger equation. 

Solution of KS equation gives exact ground state energy and it describes behavior of one 

electron moving in multiple electron system by effective potential. Solution of equation 

depends only on density of electrons and it has only 3 variables which reduces computational 

costs gradually. This makes KS theory become powerful tool in determination of ground state 

properties of materials. However, the form of exact exchange-correlation energy functional is 

still unknown and for that different approximation was taken into account such as local density 

approximation (LDA) and generalized gradient approximation (GGA).  
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2.4 Self-Consistency in Kohn-Sham Equation 

𝒏(𝒓̅) = ෍| 𝜳𝒊(𝒓̅)|
𝟐

𝑵

𝒊=𝟏

 

ቈ−
ħ𝟐

𝟐𝒎𝒆
𝜵𝟐 + 𝑽𝒆𝒇𝒇቉  𝜳𝒊(𝒓̅)

=∈ 𝜳 (𝒓⃗ ) 

Problem solved! We can now calculate energy, forces, etc. 

Calculate new density 
n’(r) 

YES 

NO 

Initial guess of 𝜳𝒊(𝒓⃗ ) 

 Self-consistent? 

Calculate VH and VXC 

𝑽𝒆𝒇𝒇(𝒓̅) = 𝑽(𝒓̅) + 𝑽𝑯(𝒓̅) + 𝑽𝑿𝑪(𝒓̅) 

𝑽(𝒓̅) 
Known/constructed 

Generate 
new 𝒏(𝒓̅) 

Figure 2.4: Schematic flow chart to find the solution of KS equation. [From 
Quantum Espresso Tutorial]. 
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Above section describe in detail the KS theory and the derivation of KS equation. In 

practice, the solution of KS equation is obtained numerically by changing density of electrons 

and effective potential to achieve the self-consistency. Figure 2.4 presents the self-consistent 

process to solve KS equation in schematic manner. For the solution of KS equation, we must 

know the effective potential. Hartree potential and exchange correlation potential depends on 

electron density and this density yield correlation energy where initial guess of density is 

made. An approximation to initial guess for electron density is adding up densities of isolated 

atoms arranged in corresponding material. 

The effective potential has been calculated and new density is obtained from unknown 

wave function 𝜳𝒊(𝒓̅). In self-consistency, first initial guess is made for electron density. This 

can be done by specifying nuclear coordinates which gives V(r) and for exchange. If new 

density is equal to old density then self-consistency is achieved otherwise new effective 

potential is obtained from new electron density. Once ground state density is obtained, total 

energy of system is calculated by the following equation [14] 

   𝑬[𝒏] = 𝟐∑ 𝝐𝝊 −
𝒆𝟐

𝟐
∫𝒅𝒓 𝒅𝒓′ 𝒏(𝒓)𝒏(𝒓′)

|𝒓−𝒓′|
+ 𝑬𝒙𝒄[𝒏] − ∫𝒅𝒓𝒏(𝒓)𝑽𝒙𝒄(𝒓) + 𝑬𝑬𝒘𝒂𝒍𝒅

𝑵𝒆/𝟐
𝝊=𝟏          (2.31) 

𝑬𝑬𝒘𝒂𝒍𝒅 is the nuclear-nuclear interaction energy and can be obtained by Ewald summation 

method.  

2.5 Exchange and Correlation Functional 

In practice, DFT solves many body problem using KS equation with approximation 

taken into account for exchange and correlation potential term. Different types of 
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approximation such as LDA, GGA, meta-GGA etc. have been taken for this potential [2]. The 

exchange interaction term defined as  

𝑬𝒙[𝒏] = ⟨𝜳[𝒏]|𝑽𝑬𝑬|𝜳[𝒏]⟩ − 𝑼[𝒏]              (2.32) 

is the repulsion between electrons and can be calculated from KS wave function, which further 

gives Hartree contribution and an exchange interaction. Slater determinant is used to evaluate 

the KS wave function and Fock orbitals gives exchange energy [15]. This exchange energy is 

totally different from the HF approximation. The differences between HF exchange and KS-

DFT exchange are subtle. They can be thought of as having two different sources.  

1) The KS exchange is defined for a given density, and so the exact exchange of a 

system is the exchange of the KS orbitals evaluated on the exact density. The HF 

exchange is evaluated on the HF orbitals for the system. 

2) To eliminate the density difference, we can compare KS EX[nHF] with that from HF. 

The remaining difference is due to the local potential for the KS orbitals. 

The correlation term can be determine by the following expression 

𝑬𝒄[𝒏] = 𝑭[𝒏] − 𝑻𝑺[𝒏] − 𝑼[𝒏] − 𝑬𝑿[𝒏]                      (2.33) 

Till date, exact formalism of exchange correlation is still not available. Better approximations 

such as LDA, GGA etc are taken account for this exchange and correlation term. 

2.5.1 Local Density Approximation (LDA) 

First approximation developed by Kohn and Sham is local density approximation 

(LDA) which is very successful in predicting electronic band structure of solids and 

molecules. It is assumed that the electron density varies very slowly in space, therefore 
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electron gas in a small volume element (d3r) is considered locally uniform. LDA which gives 

its resemblance with not so praised Slater approximation to HF is quite successful. Therefore, 

one could use the exchange-correlation energy of the homogeneous electron gas to evaluate 

Exc. The exchange-correlation energy functional and potential can be written as: 

𝑬𝒙𝒄
𝑳𝑫𝑨[𝒏(𝒓)] = ∫𝒅𝒓  𝒏(𝒓) 𝝐𝒙𝒄

𝑳𝑫𝑨[𝒏(𝒓)]                      (2.34)

  

   𝑽𝒙𝒄[𝒏(𝒓)] = (𝑬𝒙𝒄[𝒏] + 𝒏
𝜹𝑬𝒙𝒄[𝒏]

𝜹𝒏
)
𝒏=𝒏(𝒓)

                 (2.35) 

where, Exc[n] is the exchange-correlation energy per electron in an homogeneous electron with 

density n. Using quantum Monte Carlo simulations this functional for homogenous electron 

gas were obtained by Ceperly and Alder [16]. Further, Perdew and Zunger [17] and Ortiz and 

Ballone [18] have been parameterized above functional. For system in which electrons placed 

in infinite region of space, uniform positive external potential LDA is good approximation. 

Kinetic and exchange energies of such a system can be easily calculated by KS wave functions 

which are represented by Slater determinants of plane waves. However, there are some 

drawbacks in LDA mainly in strongly correlated systems such as LDA fails for transition 

metals s. In the field of quantum chemistry, LDA overestimates intermolecular bonds and 

molecular binding energy. To overcome this problem several efforts have been put to find 

better functional. For a system that contains an odd number of electrons, pure LDA performs 

badly, since it makes no difference between polarized and unpolarized densities.   
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2.5.2 Generalized Gradient Approximation (GGA) 

In complex systems, electron density may vary with the volume element, so LDA can 

fail to determine ground state properties. To overcome this problem, gradient correction in 

density is required to improve the LDA [19]. In GGA, not only density is considered but also 

the gradient of density is considered for evaluating the exchange and correlation term 

   𝑬𝒙𝒄
𝑮𝑮𝑨[𝒏(𝒓)] = ∫𝒅𝒓 𝒏(𝒓) 𝝐𝒙𝒄

𝑮𝑮𝑨(𝒏(𝒓), 𝛁𝒏(𝒓),… )             (2.36) 

Exchange and correlation is now semi empirical functional and degree of non-locality have a 

dependency of electron density.  GGA favors density inhomogeneity more than LDA by the 

non-locality of the exchange with most common densities. This approximation assumes a 

gradient in the charge density. It can be written as  

𝑬𝒙𝒄[𝒏] = ∫𝜺𝒙𝒄(𝒏) |𝒏=𝒏(𝒓)𝒏(𝒓)𝑭𝒙𝒄[𝒏(𝒓),𝛁𝒏(𝒓)]𝒅𝒓                      (2.37) 

For more simplification in calculation, 𝐸𝑥𝑐  and 𝐹𝑥𝑐 must be parameterized analytic functions. 

Perdew, Burke, and Ernzerhof have parameterized 𝐸𝑥𝑐  and 𝐹𝑥𝑐 from first principles calculation 

[20]. In predicting bond dissociation energy and the transition-state barrier, GGA is better than 

LDA (not always). To satisfy several further exact conditions, Perdew-Wang 1991 (PW91) 

[21] designed functional which is an analytic fit to this numerical GGA. Plane waves and 

pseudo potentials which form a very natural alliance are a hallmark of the method. 

2.5.3 Pseudopotentials 

In many cases it is convenient to perform DFT calculations by describing explicitly the 

valence electrons only. This simplification can be achieved by introducing so-called 

‘pseudopotential’. When we consider the electronic charge densities associated with all core 
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states or all valence states, we realize that the core electrons are tightly bound to nucleus, while 

the valence electrons tend to localize further away. The separation of core states from valence 

states suggests that we should be able to perform DFT calculations on poly-atomic systems by 

keeping the core electrons as they appear in the isolated atom [22]. If the core is to be held 

‘frozen’, then there is not much point in describing the Kohn–Sham wave functions of core 

states. The next step is therefore to completely remove the core electrons from our description. 

This choice leads to saving of substantial computational cost. In practice, the distinction 

between core and valence is not a strict one, and depends on the level of accuracy that one is 

trying to achieve. 

After deciding which electrons should be considered as the valence states, the 

procedure for eliminating the core electrons is not trivial and requires some care. For a start, 

near the nucleus, the valence electronic wave functions must undergo a change of sign in order 

to be orthogonal to the core states. If we simply ignore the core states, then the valence states 

would not exhibit the correct ‘nodal structure’ near the nucleus. A second issue is that, even if 

we were able to obtain the correct oscillating features in the wave functions, then it would be 

very difficult to describe them using a real-space grid or a plane wave basis.  

In this case the description of the oscillations would be very poor, thereby undermining 

the accuracy and the numerical stability of the calculations. This issue can be fixed by using a 

fine real space grid or a higher kinetic energy cut-off in the case of a plane wave basis, but this 

would result into time-consuming calculations. The difficulties associated with the nodal 

structure of the valence wave functions can be overcome at once by replacing the oscillating 
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part of the wave function by a smooth and nodeless curve. This wave function is typically 

referred to as the ‘all-electron wave function’. 

The introduction of pseudo-wave function which is smooth in the pseudization region 

eliminates the problems connected with the nodal structure of all-electron wave function. The 

remaining question now is how to obtain such a smooth pseudo wave function directly by 

solving the Kohn–Sham equations.  The strategy underlying the pseudopotential method is to 

construct a modified nuclear potential which satisfies the following conditions: (i) outside 

pseudization region the modified potential coincides with the original Kohn–Sham potential 

(obtained from a calculation including all the electrons); (ii) inside pseudization region, 

potential is modified in such a way that the solution of the Kohn–Sham equation yields 

precisely the pseudo-wave function. There are mainly two kinds of pseudopotentials: Norm-

Conserving and Ultrasoft type. There are few requirements for ab-initio pseudopotential given 

by Hamann, Schluter and Chiang [23]. The ultra-soft pseudopotentials fulfill the goal of 

accurate calculations by a transformation which expresses the problem in terms of a smooth 

and an auxiliary function around each ion core. 

2.6 Density Functional Perturbation Theory 

The lattice dynamical properties such as phonons, Raman intensities and infra-red 

absorption cross sections, electron-phonon interaction depend upon a system response to some 

form of perturbation. Density functional perturbation theory (DFPT) has ability to calculate 

such properties by knowledge of microscopic quantum mechanical mechanisms within the 

density functional framework. Predictions of material’s vibrational properties are very 

important apart from their electronic structure. For perfect prediction of vibrational frequencies 
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infrared, Raman spectroscopy, and inelastic scattering techniques are used. The resulting 

vibrational spectra are very important to describe the chemical structure and binding of atoms 

and molecules.  

Gonze [24] and Baroni [25] have formalized DFPT systematically. The Baroni 

formalism is based upon self-consistent solution of a series of equations that may be solved 

using Green’s function method while the perturbative expansion of the KS energy functional is 

given by Gonze formalism which leads to a variational problem. Second order force constants 

with respect to atomic displacements and electric fields can be calculated by DFPT. Any 

arbitrary wavelength can be calculated by response to a perturbation. The first derivative of the 

total energy with respect to the nuclear coordinates can be calculated using the Hellmann-

Feynman theorem. The BO Hamiltonian depends on R via the electron-nucleus interaction  

                           𝑽𝒏𝒆[〈𝑽𝒏𝒆〉 = ∫𝒅𝒓 𝒏(𝒓)𝒗𝒆𝒙𝒕(𝒓) ⇒ ∫𝒅𝒓𝒏𝑹(𝒓)𝒗𝑹(𝒓)]                             (2.38) 

The classical interaction between nucleus is Vnn, whose energy for the nuclear configuration R 

is EEwald
R .  

                𝑭𝑰 = −∫𝒏𝑹(𝒓)
𝝏𝑽𝑹(𝒓)

𝝏𝑹𝑰
𝒅𝒓 −

𝝏𝑬𝑹
𝑬𝒘𝒂𝒍𝒅

𝝏𝑹𝑰
                        (2.39) 

where nR(r) is the electron charge density for the nuclear configuration R: 

    𝒏𝑹(𝒓) = 𝑵𝒆 ∫𝒅𝒓𝟐 …𝒅𝒓𝑵𝒆|𝜳𝑹(𝒓, 𝒓𝟐, … , 𝒓𝑵𝒆)|
𝟐                                   (2.40) 

To make the parametric R dependence explicit, notations are changed from Vext(r) to VR(r) and 

from n(r) to nR(r). The Hessian of the BO energy surface is obtained by differentiating the 

Hellman-Feynman forces with respect to the nuclear coordinates: 
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𝝏𝟐𝑬(𝑹)

𝝏𝑹𝑰𝝏𝑹𝑱
≡ −

𝝏𝑭𝑰

𝝏𝑹𝑱
= ∫𝒅𝒓 

𝝏𝒏𝑹(𝒓)

𝝏𝑹𝑱

𝝏𝑽𝑹(𝒓)

𝝏𝑹𝑰
+ ∫𝒅𝒓 𝒏𝑹(𝒓)

𝝏𝟐𝑽𝑹(𝒓)

𝝏𝑹𝑰𝝏𝑹𝑱
+

𝝏𝟐𝑬𝑹
𝑬𝒘𝒂𝒍𝒅

𝝏𝑹𝑰𝝏𝑹𝑱
           (2.41) 

The calculation of the Hessian thus requires the calculation of the ground-state electron charge 

density, nR(r), as well as of its linear response to a distortion of the nuclear geometry, 

∂nR(r)/∂RI. 

In DFT, the ground state electronic density and wave functions are found by solving 

self-consistently a set of one-electron equations [25].  

          (−
ℏ𝟐

𝟐𝒎𝒆

𝝏𝟐

𝝏𝒓𝟐 + 𝑽𝑹
𝑺𝑪𝑭(𝒓))𝜳𝑹

𝒗 = 𝝐𝑹
𝒗𝜳𝑹

𝒗                                  (2.42) 

                    𝑽𝑹
𝑺𝑪𝑭(𝒓) = 𝑽𝑹(𝒓) + 𝒆𝟐 ∫𝒅𝒓′

𝒏𝑹(𝒓′)

|𝒓−𝒓′|
+ 𝑽𝒙𝒄[𝒏𝑹](𝒓)                                   (2.43) 

   𝒏𝑹(𝒓) = ∑ |𝜳𝑹
𝒗(𝒓)|𝟐𝒇𝒗

 
𝒗                           (2.44) 

where fv  is the occupancy of the νth state, Vxc is the exchange-correlation potential, nR(r) is the 

electronic-density, and VR(r) is the external potential acting on the electrons (actually a sum 

over an array of pseudo-potential). 

In equation 2.41 electron-density response, 
𝜕𝑛𝑅(𝑟)

𝜕𝑅𝐼
 can be evaluated by linearizing 

above three equations ((2.42), (2.43), and (2.44)) with respect to wave-function, density, and 

potential variations, respectively. Linearization of Eq. (2.44) leads to: 

             
𝝏𝒏𝑹(𝒓)

𝝏𝑹𝑰
= 𝟒𝑹𝒆∑ 𝝍𝑹

𝒗∗(𝒓)
𝝏𝝍𝑹

𝒗 (𝒓)

𝝏𝑹𝑰

𝑵𝒆/𝟐
𝒗=𝟏               (2.45) 

Since the external potential (both unperturbed and perturbed) is real, each KS eigen function 

and its complex conjugate are degenerate. As a consequence, the imaginary part of the sum 
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appearing in equation 2.45 vanishes, so that the prescription to keep only the real part can be 

dropped.  

The variation of KS orbitals 
𝜕𝛹𝑅

𝑣(𝑟)

𝜕𝑅𝐼
 is obtained by first order perturbation theory: 

        (𝑯𝑹
𝑺𝑪𝑭 − 𝝐𝑹

𝒗)
𝝏𝜳𝑹

𝒗 (𝒓)

𝝏𝑹𝑰
= −(

𝝏𝑽

𝝏𝑹𝑰
−

𝝏𝝐𝒗

𝝏𝑹𝑰
)𝜳𝒗                (2.46) 

where,    𝑯𝑹
𝑺𝑪𝑭 = −

ℏ𝟐

𝟐𝒎𝒆

𝝏𝟐

𝝏𝒓𝟐 + 𝑽𝑹
𝑺𝑪𝑭(𝒓)                (2.47) 

with the unperturbed KS Hamiltonian, 

        
𝝏𝑽𝑹

𝑺𝑪𝑭(𝒓)

𝝏𝑹𝑰
=

𝝏𝑽𝑹(𝒓)

𝝏𝑹𝑰
+ 𝒆𝟐 ∫𝒅𝒓′

𝟏

|𝒓−𝒓′|

𝝏𝒏𝑹(𝒓′)

𝝏𝑹𝑰
+ ∫𝒅𝒓′

𝜹𝑽𝒙𝒄(𝒓′)

𝜹𝒏(𝒓′)

𝝏𝒏𝑹(𝒓′)

𝝏𝑹𝑰
               (2.48) 

Equation 2.48 is first-order correction to the self-consistent potential, and 

          
𝝏𝝐𝑹

𝒗

𝝏𝑹𝑰
= 〈𝜳𝑹

𝒗 |
𝝏𝑽𝑹

𝝏𝑹𝑰
|𝜳𝑹

𝒗〉                    (2.49) 

the above equation is first order variation of the KS eigenvalue. Equations 2.45 – 2.59 form a 

set of self-consistent equations for the perturbed system analogous to the KS equations in the 

unperturbed case. Equations 2.42, 2.43, and 2.44 with the KS eigenvalue equation, is being 

replaced by the equation of a linear system, equation 2.46. The linear system, equation 2.46 

can be solved for each 
𝜕𝛹𝑅

𝑣

𝜕𝑅𝐼
 with the electron density response calculated from equation 2.45 

and the potential response 
𝜕𝑉𝑅(𝑟)

𝜕𝑅𝐼
 updated from equation 2.48 until self-consistency achieved. 

The computational cost for determining density response to a single perturbation is of the same 
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order as that needed to calculate the unperturbed ground state density. Now by putting 
𝜕𝜓𝑅

𝑣 (𝑟)

𝜕𝑅𝐽
 

and 
𝜕𝑉𝑅

𝜕𝑅𝐼
 in equation 2.48, one gets the Hessian of the BO energy surface. 

2.7 Dispersion Correction to Density Functional Theory  

The capacity of Kohn – Sham DFT is to study the electronic structure of materials 

attributed to provide distinct properties of molecules and solids with reasonably accurate 

predictions. For exchange correlation term various approximations such as LDA, GGA and 

hybrid functional are taken into account. However, long-range electron interaction which 

results into van der Waals (vdW) forces, GGA as well as hybrid functionals failed. [26-28]. 

For vdW correction, total energy is given by  

      𝑬𝑫𝑭𝑻−𝑫 = 𝑬𝑲𝑺−𝑫𝑭𝑻 + 𝑬𝒅𝒊𝒔𝒑                      (2.50) 

where 𝐸𝐷𝐹𝑇−𝐷  is general KS self-consistency energy and the empirical vdW dispersion 

correction to the correlation functional 𝐸𝑑𝑖𝑠𝑝  is given by  [29] 

𝑬𝒅𝒊𝒔𝒑 = −𝒔𝟔 ∑ ∑
𝑪𝟔

𝒊𝒋

𝑹𝒊𝒋
𝟔 𝒇𝒅𝒎𝒑(𝑹𝒊𝒋)

𝑵𝒂𝒕
𝒋=𝒊+𝟏

(𝑵𝒂𝒕−𝟏)
𝒊=𝟏                         (2.51) 

where  𝑁𝑎𝑡 is the numbers of atoms in the system, 𝐶6
𝑖𝑗

 defines the dispersion coefficient for 

atom pair ij, 𝑠6 is global scaling factor that depends on the functional used and Rij is an 

interatomic distance. To avoid near singularities for small R, damping function 𝑓𝑑𝑚𝑝(𝑅𝑖𝑗) is 

used and it is given by 

                 𝒇𝒅𝒎𝒑(𝑹𝒊𝒋) =
𝟏

𝟏+𝒆
−𝒅(𝑹𝒊𝒋 𝑹𝟎𝒊𝒋⁄ −𝟏)

                         (2.52) 
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where 𝑅0 is the sum of atomic vdW radii. 𝐶6
𝑖𝑗

 and 𝑅0𝑖𝑗  calculated by following relation 

                       𝑪𝟔
𝒊𝒋

= √𝑪𝟔
𝒊 𝑪𝟔

𝒋
             𝑹𝟎𝒊𝒋 = 𝑹𝟎𝒊 + 𝑹𝟎𝒋                                      (2.53) 

For heavier elements, this approach can trace back to the combination rule employed for the 

composed 𝐶6
𝑖𝑗

 that gives too much weight to the smaller coefficient [29]. Equation 2.53 shows 

geometric mean of the form which gives much better result by precise testing of systems 

including elements up to xenon and large hydrocarbons with many hydrogen atoms. 
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