List of Figures

Figure 2.1	Growth of research papers based on DFT calculation. (From web of science data www.webofknowledge.com).	15
Figure 2.2	Schematic representation of first Hohenberg and Kohn theorem. Here, the HK theorem completes the circle, while other smaller arrow shows the solution of Schrödinger equation. Image adapted from ref. [13].	23
Figure 2.3	Same as Figure 2.2 but for Kohn – Sham ansatz. HK_0 defines Hohenberg and Kohn theorem applied to non-interacting system. The connection between many body and the independent particle systems provided by Kohn – Sham that labelled as double arr.	25
Figure 2.4	Schematic flow chart to find the solution of KS equation. [From Quantum Espresso Tutorial].	28
Figure 3.1	Optimized structure of (a) Caffeine (b) Nicotine (c) Pristine boron nitride nanotube and (d) Pristine boron nitride nanoribbon. The figure also shows the side view of optimized structures.	45
Figure 3.2	Equilibrium geometry of physisorbed Caffeine and Nicotine molecules on (a-b) BNNT and (c-d) BNNR. The figure also shows the side view of optimized structures of functionalized BN nanostructures with alkaloids	46
Figure 3.3	HOMO (red) and LUMO (blue) of (a) caffeine molecule and (b) nicotine molecule.	48
Figure 3.4	HOMO (red) and LUMO (blue) of functionalized BNNT (a-b) and BNNR (c-d) with caffeine molecule and nicotine molecule.	49
Figure 3.5	Total charge density plot of BNNT and BNNR conjugated with Caffeine and Nicotine (a) BNNT and (b) BNNR. Isosurface levels were set at 0.09 bohr ⁻³ .	52
Figure 3.6	Total DOS of (a) caffeine molecule, (b) nicotine molecule, (c) pristine and alkaloid (nicotine and caffeine) conjugated BNNT and (d) pristine and alkaloid (nicotine and caffeine) conjugated BNNR.	53

Figure 3.7	PDOS of (a) pristine BNNT, (b) conjugated BNNT with caffeine, (c) conjugated BNNT with nicotine, (d) pristine BNNR, (e) conjugated BNNR with caffeine, (f) conjugated BNNR with nicotine.	55
Figure 3.8	Quantum conductance plot of BNNT and BNNR (a) conjugated with Nicotine and (b) conjugated with Caffeine.	57
Figure 4.1	(a) Optimized structure of haeck-BN monolayer in addition with the enlarge view having bond length and bond angle, (b-c) Structure of bulk h-BN and 2D h-BN. Yellow and purple ball represents boron and nitrogen respectively.	68
Figure 4.2	Calculated band dispersion curve of haeck-BN. Along with total DOS and PDOS of haeck-BN at the right panel.	70
Figure 4.3	Total charge density plot of haeck-BN. The blue colour represents the large value of electron charge density while red colour shows relatively low charge density	71
Figure 4.4	Phonon dispersion curve along with the phonon density of states (PHDOS).	73
Figure 4.5	Optimized structures of five nucleobases A, G, C, T and U. Red, green, black and purple ball corresponds to oxygen, carbon, hydrogen and nitrogen atoms respectively.	76
Figure 4.6	Optimized structures of (a) pristine haeck-BN and nucleobases adsorbed haeck-BN (b) Adenine (c) Guanine (d) Cytosine (e) Thymine (f) Uracil (top and side view).	76
Figure 4.7	Different parallel orientation of haeck-BN adsorbed by nucleobases (a) Adenine, (b) Cytosine, (c) Guanine, (d) Thymine, (e) Uracil.	77
Figure 4.8	Comparative adsorption energies plot of nucleobases with different nanostructures.	81
Figure 4.9	Band structure plots of haeck-BN (a) pristine and nucleobase adsorbed (b) Adenine (c) Guanine (d) Cytosine (e) Thymine (f) Uracil.	82

Figure 4.10	Charge density plot of (a) haeck-BN and haeck-BN adsorb by nucleobases (b) Adenine, (c) Cytosine, (d) Guanine, (e) Thymine, (f) Uracil.	84
Figure 4.11	HOMO and LUMO of (a) haeck-BN and (b-f) nucleobase adsorbed haeck-BN system; (b) Adenine, (c) Cytosine, (d) Guanine, (e) Thymine, (f) Uracil.	85
Figure 4.12	Electronic density of states (DOS) plot of pristine haeck-BN along with nucleobase adsorbed nucleobases.	86
Figure 4.13	Partial density of states (PDOS) plot of nucleobases adsorbed haeck-BN system (a) Adenine, (b) Guanine, (c) Cytosine, (d) Thymine and (e) Uracil.	87
Figure 4.14	Work function plot of pristine and nucleobases adsorbed haeck-BN system (a) Pristine, (b) Adenine, (c) Guanine, (d) Cytosine, (e) Thymine and (f) Uracil.	91
Figure 5.1	Optimized structure of (a) adrenaline (b) dopamine (c) ABNNR and (d) ZBNNR. Oxygen, carbon, hydrogen boron and nitrogen are represented as pink, black, blue, yellow and orange ball respectively. W shows the width of both nanoribbons.	105
Figure 5.2	Optimized structure of ABNNR adsorbed with (a) adrenaline and (b) dopamine. The distance between the molecules and BNNRs, is represented by d.	107
Figure 5.3	Optimized structure of ZBNNR adsorbed with (a) dopamine and (b) adrenaline. The distance between the molecules and BNNRs, is represented by d.	108
Figure 5.4	Molecular orbitals of (a) dopamine and (b) adrenaline.	109
Figure 5.5	Total and partial DOS of (a) ABNNR and (b) ZBNNR.	110
Figure 5.6	Density of states of (a) ABNNR adsorbed neurotransmitter and (b) ZBNNR adsorbed neurotransmitter.	112
Figure 5.7	Partial density of states of ABNNR adsorbed with (a) Adrenaline and (b) Dopamine.	113

Figure 5.8	Charge density plots (a-b) ABNNR/ZBNNR, (c-d) DA adsorbed ABNNR and AD adsorbed ABNNR and (e-f) DA adsorbed ZBNNR and AD adsorbed ZBNNR.	114
Figure 5.9	Charge density plots (a-b) ABNNR/ZBNNR, (c-d) DA adsorbed ABNNR and AD adsorbed ABNNR and (e-f) DA adsorbed ZBNNR and AD adsorbed ZBNNR.	115
Figure 5.10	Work function of BNNR and neurotransmitter adsorbed (a) ABNNR and (b) ZBNNR.	117
Figure 6.1	Adsorption energy of alkaloids over BNNR and BNNT depicting superiority of BNNR than BNNT	124
Figure 6.2	Schematic of adsorption energy trend of nucleobases over haeck- BN and comparison with other 2D materials.	125
Figure 6.3	Adsorption energy plot of neurotransmitter over ABNNR and ZBNNR.	127