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ELECTRONIC TRANSPORT IN 
GRAPHENE SYSTEMS AT FINITE 
TEMPERATURE 
 

In this chapter we report our theoretical calculations on the temperature and carrier dependent 

conductivity     of doped Graphene systems- monolayer (MLG), bilayer (BLG) and 

monolayer gapped Graphene (MLGG) within the framework of Boltzmann transport 

formalism. Since screening effects have known to be of vital importance in explaining the   

of Graphene systems therefore we first worked out the behaviour of the temperature 

dependent polarization function for Graphene systems. The polarization function of MLG has 

a local minimum near          for      , however it increases monotonically for 

     . Wherein the case of BLG, polarization function has a sharp peak at       for 

      and the height of peak at       strongly suppressed as temperature increases. 

Moreover polarization function of MLGG has been compared with that of MLG, BLG and 

2DEG to see the effects of gap. It is found that the MLGG polarization function exhibits a 

strong dependence on temperature, wave vector and band gap and the effect translates to the 

  of MLGG. The nature of temperature dependent   in Graphene systems is observed to be 

non-monotonic, decreasing with temperature at low temperatures, and increasing at high 

temperatures. For     , MLG has poor quadratic temperature dependence metallic nature, 

BLG has strong linear temperature dependence metallic nature and MLGG has both, poor 

metallic nature for                 and strong metallic nature at      . We also obtained 

numerical results of temperature dependent   of MLGG as a function of carrier concentration 

which shows linear behaviour as observed experimentally, and also shows an increase in 

magnitude with the increase in temperature and decrease in magnitude with the increase in 
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band gap. We also find that the   computed as a function of temperature by averaging over 

quasi-particle energy significantly differs from that computed at Fermi energy, suggesting 

that a notable contribution to temperature dependent   is made by electrons close to the 

Fermi level. 

3.1 Introduction  

 Temperature and density dependent transport properties of Graphene systems (i.e. 

MLG, BLG and MLGG) have been great interest at fundamental and technological efforts 

[1]. In the previous chapter 2, we have reported our results on electron-impurity scattering 

rate of Graphene systems at zero temperature. However, resent experimental works on the 

conductivity/resistivity of Graphene systems are carried out at finite temperature (low 

temperature or room temperature). Moreover temperature dependent conductivity        

provides fundamental knowledge like- in which temperature range system show metallic or 

insulating behaviour and at what temperature phase transition occur. This fundamental 

knowledge makes Graphene promising material for Graphene based high performance 

sensors and devices. 

 The charge transport in MLG, BLG and MLGG display novel chirality that has 

attracted much theoretical and experimental attention [2-9] due to different energy dispersion 

relation and chiral nature. Charge transport in Graphene systems sharply differ from that of 

2DEG observed in doped semiconductor heterostructures [8-9]. The BLG shows energy 

dispersion similar to that of 2DEG while, the linear nature of carrier density dependence of 

conductivity        in BLG is similar to that observed in MLG at zero temperature. There 

has been substantial recent experimental and theoretical work on both density and 

temperature dependence transport properties of MLG [1, 8, 10-12] and BLG [9, 13-17]. 

Theoretically calculated      of MLG manifest metallic (semiconducting) temperature-
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dependent conductivity for      (    ) where    is Fermi temperature [8]. Similar 

nature of      also observed in the BLG and regular parabolic 2D electron gas (2DEG) 

system with strong linear temperature dependence while MLG has a weak quadratic 

temperature dependence [9]. Various theories of charge transport in Graphene systems appear 

to suggest that   obtained by considering a scattering mechanism based on screened charged 

impurities in Boltzmann equation agrees with the experimental results. The intrinsic 

parameters that govern   and electron-impurity scattering rate       in MLG, BLG and 

MLGG are quasi particle energy    , temperature     and carrier concentration      , and 

additionally energy gap ( ) in BLG and MLGG. Theoretical understanding of   requires 

detailed investigations on how polarization function     and    depends on  ,   and  . There 

have been several calculations of the polarization function and its properties for MLG, BLG 

and MLGG [4, 5, 8, 9, 18-24]. Also the   as a function of various influencing parameters for 

MLG, BLG and MLGG has been reported in several publications [3, 4, 6- 9, 22]. 

 In this chapter, we report our theoretical investigations on Graphene systems 

polarization function, Graphene systems   and its dependence on various governing intrinsic 

parameters like  ,   ,    and  . The   in Graphene systems has been dealt within the 

Boltzmann transport theoretical approach. Most of the existing theoretical studies on MLGG 

have been performed by calculating static and dynamical polarization functions at zero 

temperature and zero magnetic field [22-29]. In the calculation of   at      , all the charge 

carriers are at the Fermi level and the averaging of the relaxation time over entire energy 

range can be ignored. At finite temperature the carrier concentration is expressed in terms of 

Fermi distribution function therefore the relaxation time should be taken as the average of the 

relaxation time of individual charge carriers. Therefore, it is not appropriate to ignore the 

averaging, since   at Fermi level can significantly differ from     particularly at moderate and 

high temperatures. The main motive of our work reported in this chapter has been to 
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investigate how the polarization function of Graphene systems and hence the   varies with  , 

   and  . Also, at very low temperatures, the Fermi function behaves like step function and 

hence there is no significant difference between   computed by averaging over   and   

computed at Fermi energy. However, as temperature increases,   computed by averaging 

over   significantly differs from that computed at Fermi energy. Hence, the   computed by 

averaging over   and not the   at Fermi energy describe the experimental results more 

accurately. 

3.2 Formalism  

In terms of the average relaxation time    , the temperature dependent      for Graphene 

systems within the Boltzmann transport formalism can be expressed as [2]; 

                                       (3.1) 

where     is the average value of   over all possible values of quasiparticle energy,     .   is 

2 for MLG and MLGG, and is 4 for BLG. The energy averaged finite temperature scattering 

time is given by [2], 

               
  

  
       

  

  
    .                   (3.2) 

Where                       is the Fermi distribution function,        is the finite 

temperature and energy dependent scattering time of an electron scattered by disorder or 

statically screened Coulomb potential, given by [8, 9] 

 

      
       

    

       
     

      
 
 

                                .                       (3.3) 

Where     is the concentration of impurity centers,      is the scattering angle between the 

scattering in and out wave vectors   and   ,               is the two dimensional 

Fourier transform of the bare charge impurity Coulomb potential, where   is the electronic 
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charge,   is the average background dielectric constant ( 5.5 (4.0) for Graphene placed on 

SiC (SiO2) with other side being exposed to air),                           is the 

momentum transferred to a scattered electron,         is the chirality function and it is 

defined in chapter 2. In Eq. (3.3),        is temperature dependent static dielectric function, 

which within linear response theory is given by 

                   ,                (3.4) 

where        is the temperature dependent polarization function. The temperature dependent 

polarization function is an important quantity in calculating scattering rate of screened 

electron gas at finite temperature. The polarization function for the cases of both doped and 

undoped  Graphene systems have been calculated at zero temperature [4, 5, 22, 23, 28] as 

well as at finite temperature [8, 9, 24] in the recent past. The effect of band gap on the ground 

state properties of Dirac electrons in a doped Graphene at zero temperature has also been 

studied [22]. We present here the detailed analysis of the numerically computed temperature 

dependent polarization function for MLGG and its comparison with that of MLG and BLG. 

Earlier, analytical results have been presented only in the asymptotic limits and detailed 

analysis of the polarization function at all  -values as well as temperature and gap values are 

missing [24]. The temperature dependent polarization function for MLG, BLG and MLGG in 

the random phase approximation (RPA) is given by [8, 9, 24], 
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and 
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         .  (3.7)   

Here    is the finite temperature chemical potential determined by the conservation of the 

total electron density (see Appendix-C) and         ,          and           are the density 

of state at Fermi level of MLG, BLG and MLGG respectively define in chapter 2. The Eq. 

(3.7) yields the prior reported results [8, 18, 25] for polarization function at      for 

MLGG and at finite temperature for MLG when    
 
    . Substituting Eqs. (3.5), (3.6) 

& (3.7) into Eq. (3.3), and then simplifying the integrals, we obtain finite temperature 

scattering rate for MLG, BLG and MLGG respectively; 
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and 

 

          
     

           
    

              
 

 

          
       

        
   

           

 

 

              (3.10) 

Where, the factor          which is invariably present in the Boltzmann transport 

equation weighs the amount of backward scattering of the electrons by impurity. for    , 

factor   
       

        
   

            in Eq. (3.10) reduces to          that suppresses the 

large angle scattering in MLG. However, in case of MLGG there is breaking of the sub lattice 

symmetry because of the bandgap, which contributes to the large angle scattering with 



71 

 

increasing band gap. At lower temperatures, the derivative of Fermi distribution function, 

       behaves like step function and therefore it is assumed that for all practical purposes 

there should not be any significant difference in temperature dependent   calculated at Fermi 

energy or with the use of Eq. (3.1). 

Rest of the chapter, we used following scaled parameters:        ,            

(dimensionless coupling constant used in MLG and MLGG, which has value          for 

Graphene sheets on SiC (BN) substrate),                    with           

(dimensionless coupling constant used in BLG, which has value              for BLG on 

SiC (SiO2) substrate and         cm
-2

) and          (the scaled carrier concentration). 

The normalized conductivity at finite   for Graphene systems is then obtained from the ratio; 

                         where         has been computed by taking     in 

Eq. (3.3). 

3.3 Results & Discussions 

3.3.1 Temperature Dependent Polarization Function of MLG, BLG & MLGG 

 (a)         (b) 

   

Figure 3.1: Temperature dependent MLG polarization function (a) as a function of wave 

vector for different values of temperature and (b) as a function of temperature for different 

values of wave vector. 
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In Figure 3.1 we show the finite-temperature           of MLG calculated using Eq. (3.5)  

(a) for different temperatures as a function of wave vector, and (b) for different wave vectors 

as a function of temperature. The           function has a local minimum near          

for      , however it increases monotonically for      , which arises from the 

excitation of electrons from the valence band to the conduction band. The different 

temperature dependence between small wave vectors         and large wave vectors 

        gives rise to very different temperature dependent scattering rates MLG. From 

Figure 3.1 (b), the           initially decline with increasing of   up to the          for 

    and      and there after it increases with increasing of  . Since the           at 

      increases monotonically with   , the      caused by       scattering increases 

with increasing  . In Graphene, since the most dominant scattering happens at     we have 

to investigate the temperature dependent           at     , which decreases with 

temperature (for     ) and gives rise to the decreases in   with temperature as observed 

experimentally. 

 (a)      (b) 

 

Figure 3.2: Temperature dependent BLG polarization function (a) as a function of wave 

vector for different values of temperature and (b) as a function of temperature for different 

values of wave vector. 
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In Figure 3.2 (a), we show           of BLG as a function of   for different values of   

calculated using Eq. (3.6). The           shows weak temperature dependence in all the 

wave-vector regimes except for      . The           increases monotonically with   in 

the regime         and monotonically decreasing in the regime      . We observe a sharp 

peak at       for       due to the backward scattering arising from the chirality. The 

height of peak in           at       strongly suppressed as temperature increases. M. Lv 

and S. Wan [9] theoretically investigated that           approaches a constant value 

          , arising from the fact that the interband transition dominates over the intraband 

contribution in the large wave-vector regime        . We also observed strong   

dependence of the           at       and consequently the BLG would have a 

anomalously strong      for     . For more detail study, we also plotted           as a 

function of   for different values of  .           show a constant value for all temperatures 

at    , nonmonotonic behavior at      and monotonically decreases with increasing of 

temperature at      . One novel phenomenon is that at    , the           equals to a 

constant value for all temperatures, i.e.,                   which is very different 

from that of MLG, where the polarizability             shows a nonmonotonic behavior. 

The reason is, at    , the intraband transition polarization                        

while the interband transition polarization                , i.e., the interband transition 

is forbidden at zero momentum transfer for all temperatures in BLG. 

Variation in polarization function              of MLGG with wave vector at larger gap 

value                and at low temperatures is shown in Figures 3.3(a) & 3.3(b).  The 

sharp decline seen in            from a constant value at       and      , changes to 

a smooth variation on increasing  the temperature. This abrupt decline in            at 



74 

 

      is associated with Friedel oscillations, which at finite and reasonably higher 

temperatures wash out. 

 (a)      (b) 

 

Figure 3.3: Figures (a) and (b) show the wave-vector dependence of polarization function for 

different values of temperature at gap values of         and      respectively.  The curves 

in this case are similar to polarization function for a Si(001) inversion layer with          

electron per cm
2
 [30-31]. 

 (a)      (b) 

 

Figure 3.4: Temperature dependent polarization function for different gap values at; (a) 

     and (b)      . 

The computed            as a function of temperature using Eq. (3.10) for different values 

of                       at two values of               are plotted in Figures 3.4(a) & 

3.4(b). A slight change (decrease) in nature of            versus wave vector curve can be 
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noticed on enhancing    from    to    . Also, as can be noticed from the figures, the 

           first declines with temperature and after hitting a minimum increases almost 

linearly for all nonzero values of  . A reverse trend observed at higher temperatures 

compared to that at low temperature regime is indicative of phase transition taking place in 

MLGG.   

 (a)      (b) 

 

Figure 3.5: Comparative plot of polarization function of MLG, BLG, MLGG & 2DEG at 

zero and finite temperature           are shown in Figures 3.5(a) and 3.5(b), respectively. 

Finally in Figures 3.5(a) & 3.5(b) the comparative plot of the polarization function of MLG, 

MLGG, BLG & 2DEG are shown at zero and finite temperature          , respectively. 

The interplay of linear energy band dispersion relation, chirality, bandgap and temperature 

endow MLGG with overall strange screening properties which are a mixture of MLG, BLG 

and 2DEG screening properties. It is known that MLG also exhibits strange screening 

properties which arise because of a combination of metallic screening due to intraband 

transitions and insulating screening due to interband transitions; that all ultimately stems from 

the chiral relativistic dispersion relation [19]. 

3.3.2 Conductivity as a Function of Temperature 

In this section, we reports our numerical results on   of Graphene system as a function of 

temperature calculated using Eq. (3.1).  Temperature dependent   is very important quantity 
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which is directly measured in experiments. Moreover this quantity also shows at what 

temperature range systems have metallic or semiconducting nature. We first report 

temperature dependent   of MLG and BLG in subsection (a). We also show how opening of 

energy gap in the MLG band structure changes the temperature dependent   describe in the 

next subsection (b). 

(a) Temperature Dependent Conductivity of MLG & BLG 

 

Figure 3.6: Numerically calculated temperature dependent conductivity of MLG (black) and 

BLG (blue) for both Graphene systems are on SiC substate where     and      . The 

light green spot in insets show minimum value of  . Here we used    . 

Figure 3.6 shows the comparative numerical results of temperature dependent   of MLG and 

BLG as a function of normalized temperature       . Initially, for     , both the systems 

show metallic temperature dependent behaviors with different strengths. MLG has poor 

quadratic temperature dependence while BLG has strong linear temperature dependence. 

Change in nature of conduction, from metallic to semiconducting, takes place when   

       for MLG and          for BLG, as clearly sheen by light green spot in inset of 

Figure 3.6. The nonmonotonicity of temperature dependent   in both systems can be 
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understood from the temperature-dependent polarization function as shown in Figure 3.1 and 

Figure 3.2. 

 (a)      (b) 

 

Figure 3.7: Numerically calculated   as a function of normalized temperature        (a) for 

different values of         corresponds to MLG on SiC (black) and BN (blue) and (b) for 

different values of                corresponds to BLG on SiC (black), SiO2 (blue) and Air 

(red). Here we used    . 

In Figure 3.7 we show our calculated   as a function of temperature for different values of 

coupling constant,   and   for MLG and BLG respectively.       both are dependence on 

substrate. Moreover   is independent on carrier concentration while   is dependent on it. The 

small values of   and   indicate a weak-coupling system in terms of electron-electron 

interaction. As can be seen from Figure 3.7(a), in the low temperature limit temperature 

dependent   decreases weakly quadratically with temperature, manifesting metallic 

behaviour, for both values of         corresponds to MLG on SiC (black) and BN (blue). 

The strength of metallic behaviour decreases very slowly with increasing of  . We have also 

noted, from Figure 3.7(b), similar behavior in temperature dependent   of BLG with 

relatively strong dependence on coupling constant due to the strong       backward 

scattering occurring in this system. Substrates also change the local minimum of temperature 

dependent   from          for     to         for     as can be seen from inset of 

Figure 3.7(a). 
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(b) Temperature Dependent Conductivity of MLGG 

This section reports our results on energy averaged   of MLGG as a function of temperature 

calculated using Eq. (3.1), which is then compared with that calculated at Fermi energy. It is 

found that when we incorporate the temperature dependence in dielectric function formalism, 

we observe significant difference between these two conductivities as function of 

temperatures. We thus find that it is grossly misleading to calculate temperature dependent   

at Fermi energy for comparison with experimental results. Our computed numerical results 

on normalized conductivity               as a function of temperature, with the use of 

      and      
, are plotted in Figures 3.8(a) to 3.8(d) for different values of  . The figures 

clearly demonstrate that the difference between two values of   is insignificant only for 

temperatures very close to zero and the difference grows with increasing temperatures. For 

              ),             using       initially remains almost constant and then it 

increases with temperature, which is not the case when      
 used to compute          

  . A phase transition on changing temperature is also indicated by minimum values of   

computed using energy averaged and Fermi energy scattering rate for all values of gap, as can 

be seen from Figures 3.8(a) to 3.8(d). Elaborated behaviour of   verses             near 

the transition point is shown insets of figures. The light green dot of curve indicates turning 

points of set curves.  
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 (a) 

 

 (b) 
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 (c) 

 
 (d) 

 

 

Figure 3.8: Conductivity as a function of temperature calculated at Fermi energy (solid blue 

line) and at average energy (solid black line) for different gap values; (a)    , (b)      , 

(c)       and (d)      . Here we used coupling constant,     (for SiC). The light 

green spot in insets show minimum value of  . Here we used    . 

Change in nature of conduction calculated at average energy (Fermi energy), from poor 

conductor to semiconductor, takes place when                     for    
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                . Strikingly opposite behaviour of   with temperature in low and high 

temperature regimes is indicative of phase transition that can be obtained by selecting 

appropriate values of   and   in MLGG. Curves exhibit a minimum at          and the 

change from poor metallic nature for                 to good conductor nature at       

in low temperature regime. The behaviour of the   can be understood as follows; the increase 

in band gap reduces the   in low temperature regime due to electron has insufficient 

excitation energy to jump from valance band to conduction band but increase in temperature 

increases the excitations and hence the raises the magnitude of  . The Figure 3.9(a) showing 

the variation of   with bandgap at different temperatures, corroborates the above behaviour. 

In Figure 3.9(b) shows the variation of   as a function of temperature for     which 

corresponds to Graphene on BN (Boron Nitride) substrate. The higher values of   indicate a 

strong coupling in terms of electron-electron interaction. A slight change (decrease) in nature 

of   versus temperature curve can be noticed on enhancing coupling constant,  , from 1 to 2. 

 (a)      (b) 

 

 

Figure 3.9: Conductivity (a) as a function of band gap for different values of temperature 

                                 , using    , (b) as a function of temperature 

calculated at average energy for different gap values gap                     with coupling 

constant,    . Here we used    . 
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3.3.3 Conductivity as a Function of Carrier Concentration 

 (a)      (b) 

 

 (c)      (d) 

 

Figure 3.10: Conductivity as (i) a function of         for different temperatures of 

                      with gap values; (a)    , (b)      , (ii) a function of bandgap 

for               at (c)     K and (d)        .  

Our computed   of MLGG using Eq. (3.1) as a function of carrier concentration,    at 

different temperatures is plotted in Figures 3.10(a) & 3.10(b) for two values of            . 

Almost a linear enhancement of   with    is seen for both values of  , similar to the 

experimentally observed behaviour in case of MLG [2]. Also the magnitude of   increases 

with the increase in temperature. The Figures 3.10(c) & 3.10(d) depict the effect of variation 

of   with band gap at     K and        , respectively, for three values of carrier 

concentration                  . As can be noticed from the figure; this reconfirms that the 
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enhancement in the carrier concentration and temperature increases the   whereas the 

increase in band gap reduces the  . 
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