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PLASMONS & ELECTRON ENERGY LOSS 
FUNCTION IN MONOLAYER GAPPED 
GRAPHENE AT FINITE TEMPERATURE 
 

In this chapter we report our numerical results on finite temperature non-interacting 

dynamical polarization function, plasmon modes and electron energy loss function of doped 

monolayer gapped Graphene (MLGG) within the random phase approximation. We find that 

the interplay of linear energy band dispersion, chirality, bandgap and temperature endow 

MLGG with strange polarizability behaviour which is a mixture of 2DEG, monolayer 

Graphene (MLG) and bilayer Graphene (BLG) and as a result the Plasmon spectrum also 

manifests strikingly peculiar behaviour. The plasmon dispersion is observed to be suppressed 

up to temperatures up to        , similar to the gapless Graphene case but beyond       a 

reversal in trend is seen in gapped Graphene, for all values of band gap. This behaviour is 

also corroborated by the density plots of electron energy loss function. The opening of a 

small gap also generates a new undamped plasmon mode which is found to disappear at high 

temperatures. The plasmonic behaviour of MLGG is further found to be hugely influenced by 

the substrate on which the MLGG sheet rests, which signifies the need for a careful substrate 

selection in the making of desirable Graphene based plasmonics devices. 
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4.1 Introduction 

 In the earlier chapters we have studied the transport properties of Graphene systems at 

zero temperature as well as at finite temperature that aims to extend our fundamental 

knowledge of Graphene based electronic devices. Amid the multitude of diverse applications 

of Graphene for novel technologies, one highly promising and rapidly emerging area is of 

plasmonics where this unique 2D electronically and optically tuneable material has cutting 

edge over the conventional metal plasmonic materials, that makes Graphene the choicest 

material for applications in photonic and optoelectronic technologies [1,2]. This stems largely 

from the extremely high atomistic confinement of electrons and the small spatial spread of 

the associated electromagnetic field; of the order of a million times smaller than the 

wavelength of light, enabling improved imaging resolution, strong light-matter interaction, a 

relatively low loss in THz and infrared region frequencies, wide tunability of plasmon 

frequencies through electrical or chemical modification of the charge density, ranging from 

terahertz to mid-infrared and long lived plasmon lifetimes -overcoming the limitations of 

noble metal plasmonics [3]. The envisaged applications of Graphene plasmonics are 

overwhelmingly impressive, covering diverse areas such as electronics, linear and non-linear 

optics, spectroscopy, THz technology, energy storage, biotechnology, cancer therapy, and 

many others [3-6]. Already there have been quite a number of reviews [2-12] in a short span 

of this fast advancing sub-field of Graphene plasmonics which speaks about the vigorous 

research that is being pursued in this field and in no matter of time the experimental and 

theoretical proliferation of research papers calls for a fresh topical review. 

 Surface plasmons in gapless Graphene are best suited to Tera-Hertz (THz) and far 

infrared frequencies while metals plasmonics excel in the visible and near infrared region [2]. 

This restriction in the operating plasmonic frequency of Graphene confined to THz and far 

infrared frequencies is a setback in the propagation of plasmons as still the deprivation of 
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reliable THz sources and detectors hinder Graphene plasmonics applications [4]. This 

inadequacy coupled with smaller propagation length to wavelength ratio at high frequencies 

of the surface plasmons limits Graphene from outsmarting conventional noble metal based 

plasmonics.  Some of the speculated ways of extending the operating Graphene plasmonic 

frequencies to visible and near infrared and thereby increasing the scope of prospective 

applications are by excessive non-destructive doping, metal hybrid structures and the opening 

of band gap [4]. Recently, some experiments based on angle-resolved photoemission 

spectroscopy (ARPES) have shown the opening of band gap of          &         on 

Graphene sample epitaxially grown on SiC (Silicon Carbide) & BN (Boron Nitride) 

substrates, respectively. This gap opening is due to the symmetry breaking of A and B 

sublattices arising due to interaction between substrate and Graphene sheet [13-16]. Also a 

small gap (      meV) in the absence of any substrate but arising to the spin-orbit 

interaction has also been observed [17]. 

 Collective excitations of Graphene based systems like Monolayer Layer Graphene 

(MLG) [18-19], Bilayer Graphene (BLG) [20-24], Mingle Layer Gapped Graphene (MLGG) 

[25] have been studied extensively in the recent past. For studying the collective excitations, 

screening and other many body effects the central quantity of interest is the polarization 

function. The non-interacting dynamical polarization function (NDP) and plasmon 

dispersions have been extensively studied in past for undoped and doped gapless Graphene at 

zero temperature [18-19] as well as at finite temperature [26-28] and in a magnetic field [29-

30]. The undoped Graphene cannot sustain low energy plasmon modes at zero temperature 

but at finite temperature plasmons exist because of finite electron density arising due to 

thermal broadening of Fermi function [27] while in doped Graphene plasmon dispersion is 

supported at zero-temperature as well. 
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 All the reported calculated analytical and numerical expressions of doped MLGG are 

restricted to the case of zero-temperature [25, 31-32] whereas the experimental study of 

plasmon dispersion is carried out at a finite temperature and finite collision rate. Though, one 

study has reported the polarization function and plasmons for MLGG but at very small value 

of the energy gap (0.08 meV) and at very low temperatures (2K) [33]. This small gap is 

generated by the spin orbit interaction in Graphene and without breaking the symmetry of the 

lattice.  Another difference is that the model Hamiltonian used in that study contains an 

additional gap dependent term due to spin orbital interaction which respects all of the 

symmetries of Graphene. In this paper, we assume a gap produced by the symmetry breaking 

of A and B sublattices, arising due to interaction between substrate and Graphene sheet, and a 

gap dependent Hamiltonian breaking the mirror symmetry. The temperature effects on NDP 

function and plasmon dispersion in doped MLGG are still unclear and need a systematic 

investigation. In particular, the thermal effects are expected to be significant for larger 

       ratio and smaller dielectric constant value of the substrate, where          is the 

Fermi energy of monolayer Graphene (MLG) with       m/s is Fermi velocity and 

        
    is Fermi momentum (   is carrier concentration) [26]. Experimentally, the 

plasmons in metals and Graphene are determined through high resolution Electron Energy 

Loss Spectroscopy (EELS) which yields the electron energy loss function (EELF). This 

quantity is proportional to the imaginary part of inverse dielectric function of MLGG.  We 

therefore in this chapter investigate the effects of finite temperature on the behaviour of 

plasmons in MLGG. 

4.2 Formalism 

The temperature dependent dynamic dielectric function for MLGG within RPA can be 

written as [18], 
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                            (4.1) 

where   is the electronic charge,   is the wave vector,        is the average background 

dielectric constant of Graphene placed on SiC with the other side being exposed to air [31], 

             is the finite temperature dynamic polarizability given by [18, 34], 

              
 

  
  

           

                  
           ,               (4.2) 

where   is the degeneracy factor,   is the area of the system, 

                                is the energy in the low energy Dirac model, with 

           being the  momentum,          denotes the band index corresponding to 

the conduction band     and valance band    , respectively,             is band 

parameter,    is the bandgap,       is the characteristic wave-function overlap factor define 

as [31], 

     
 

 
   

     

           
            

           

          
  ,              (4.3)  

where   is the angle between   and  ,   is relaxation time- which is a very important 

parameter because its value affects the plasmon propagation distance. We take   

corresponding to DC mobility         cm
2
/(V s) and        eV is         

       

picosecond (ps) [5].  The     is Fermi distribution function;  

                    
  

.                  (4.4) 

Here    is the finite temperature chemical potential determined by the conservation of the 

total electron density (see Appendix-C), and defined through [35],  
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.               (4.5) 

Where        ,                 
   is the density of states of MLGG and    

  
        is the net carrier concentration. The Eq. (4.2) can be rewritten to get the real and 

imaginary part of dynamic polarizability at a finite temperature as, 
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and  
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                               (4.7) 

4.3 Numerical results and discussion 

4.3.1 Polarization Function 
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Figure 4.1: Temperature dependent imaginary part of the non-interacting polarization 

function as a function of   at different values of wave vectors   using            
      ). For (a), (c), (e)            and for (b), (d), (f)           . Here           

       
   is the density of states at the Fermi level of MLGG [36]. 

The numerical solutions of Eq. (4.6) and Eq. (4.7) for imaginary and real part of NDP at 

finite temperature are plotted as a function of frequency in Figure 4.1 and Figure 4.2, 

respectively, for a set of values of the scaled band gap parameter                        

and temperature values                  , where       
     is the Fermi energy of 

MLGG and          is the Fermi temperature. We find that the magnitude as well as 

positions of peaks and dips of real and imaginary parts of NDP function is affected 

considerably at different temperature values. As can be seen from Figures 4.1(a)-4.1(d) and 

Figures 4.2(a)-4.2(d), the curves of both real and imaginary parts of NDP, for gap values of 

               show comparatively larger peaks and dips at       and relatively smaller 
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peaks and dips at        , as compared to that at         The peaks and dips at       

are observed to lie in between that at      and        . However, for high band gap 

value of      , the highest and lowest peaks and dips are observed at      , as is evident 

from Figures 4.1(e)-4.1(f) and Figures 4.2(e)-4.2(f), respectively. 

In Figure 4.1, the peaks correspond to single particle excitation (SPE) region where 

                 is not equal to zero. At           and      , the gap opens between 

intraband and interband SPE edge and also the gap increases with increasing   (at    , 

intraband SPE edge is equal to interband SPE edge). At finite temperatures, intraband SPE 

edge shifts toward the higher frequency range and the gap between intraband and interband 

SPE edge decreases with increasing temperatures because of the fact that wider class of 

single particle transitions is allowed at higher temperatures. 

Also it is noticed from Figures 4.1(a), 4.1(c) & 4.1(e) that the imaginary part of NDP exhibits 

single peak for all temperatures in case when        . However this is true only within the 

range of       (  to  ) plotted in figures where only one peak exists. But for        , at 

     , this value decreases with increasing  ), interband transitions occur as clearly shown 

in Figure 4.8(a) –upper shaded area. But when        , it can be observed that two peaks 

emerge out for all values of temperatures. Moreover, the separation between these two peaks 

widen with increasing gap values, getting the largest for      , as noticeable from Figure 

4.1(f). 
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Figure 4.2: Temperature dependent real part of the non-interacting polarization function as a 

function of   at wavevector,             in Figures (a), (c), (e) and at              in 

Figures (b), (d), (f). 

In the case of real part of NDP for        , similar to the imaginary part of NDP single 

dips are observed for all gap values and temperatures. In accordance with Kramers–Krönig 

theory, positions and magnitudes of these dips (Figures 4.2(a), 4.2(c) & 4.2(e)) are closely 
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related with positions and magnitudes of peaks in imaginary part of NDP (Figures 4.1(a), 

4.1(c) & 4.1(e)). In case of the real part of NDP for        , we get one dip and one peak 

(Figures 4.2(b), 4.2(d) & 4.2(f)) related to the sharp cut offs in the imaginary part of NDP 

(Figures 4.1(b), 4.1(d) & 4.1(f)) at intraband and interband SPE‘s boundaries, respectively. 

The sign of real part of NDP changes from negative to positive as it sweeps across the SPE 

region. The positions and magnitudes of these extremums are still related with that of 

imaginary part of NDP. In Figures 4.2(a)-4.2(f), changes in the sign of real part of NDP from 

negative to positive indicates a sweep across the electron-hole continuum. 

 

Figure 4.3: Imaginary part of polarization function as a function of   at different values of 

relaxation time   at      ,       and           . 

Figure 4.3 show the how the relaxation time ( ) or        affects the polarization function. 

For zero temperature our computed results (using         ) for NDP are in excellent 

agreement with that reported earlier (where    )[36]. The relaxation time ( ) is an 

important parameter because the actual value of   affects the plasmon propagation distance. 

For    , the imaginary part of NDP’s peak exhibits abrupt step-like behaviour, near the 

ends of the interval where                   . But for                     , the dips 
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become smoother where                    and the height of the peak also decreases 

with the decrease in  , from         to        as shown in Figure 4.3. Here, we extend the 

calculations further for finite temperatures. 

4.3.2 Plasmon Dispersion 

The plasmon dispersion relation of an electronic system can be defined by the poles of 

density-density response function,              or equivalently, from the zeroes of 

dynamical dielectric function,              [25]: 

                     ,         (8) 

where,    is the plasmon frequency at a given wave vector   and   is the damping rate of 

plasma oscillations. In   complex plane, if the poles of             are on the real axis 

then the plasmons are long-lived and well-defined. However if the poles are away from real 

axis, we have the Landau damped plasmons due to the electron scattering. In the case of weak 

damping        , which is more closer to the real situation, the imaginary part is 

negligibly small and thus, the plasmon dispersion is given by:  

                     .         (9) 
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Figure 4.4: Density plot of single particle excitation (SPE) and  plasmon dispersion (blue 

line) calculated at different gap and temperature values; (a)                 , (b) 

             , (c)                 , (d)              , (e)           

       and (f)              . Green solid line shows zero-temperature plasmon 

dispersion. 

The numerical solution of Eq. (4.9) is plotted as a relation between plasmon frequency 

   and wave vector   in Figures 4.4(a)-4.4(f) for various values of gap parameter    

              , respectively. We also show the density plot of SPE region where the Landau 

damping of plasmons takes place calculated from Eq. (4.6) using            . From 

Figures 4.4(a)-4.4(f), it is clear that in the long wavelength limit the plasmon dispersion 

      behaviour of the 2DEG and gapless Graphene is reproduced for MLGG also, but 
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the dispersion for larger values of   exhibits linear behaviour. Also we observe that for all 

gap values, plasmon frequency increases rapidly with   for higher temperature values as 

compared to low-temperature values. The rate of increase of    with respect to wave vector 

  is observed to be the lowest for         for small gap valus          but with 

increasing gap value        , this rate of increase of    at         case overtakes the 

curve for       at around        . However, for highest plotted value of gap         

at        , plasmons disappear for         in the plotted range of q values. For low-

temperature, our results on plasmon dispersion curve matches with the experimental values 

reported earlier [31]. 

 

 

Figure 4.5: Panels (a) and (b) show the plasmon dispersion vs normalised frequency 

calculated at         and            for two different temperature values, and three 

different coupling constants, respectively. The real part of dielectric function vs frequency in 

panel (c) for different values of                         at       ,       ,        
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&    , and in panel (d) for different coupling constants                at         , 

      ,        &        . 

 Figure 4.5(a) shows an extra undamped plasmon mode that emerges in the gap between 

interband and intraband SPE regions for      ,        and       . This extra 

undamped plasmon mode disappears at      and         because of the enhanced 

intraband contribution that shifts the peak to below zero. In Figure 4.5(b), we display 

plasmon dispersion relation for various values of coupling constant (defined as   

           ) at     K ,         and       . We also observe in this figure 

overlapping extra undamped plasmon modes of Figure 4.5(a) at all values of coupling 

constant for     . The reason for overlapping of these extra undamped plasmon modes is 

the occurrence of extra sharp peaks at the same frequency value for the corresponding wave-

vectors for all values of coupling constant, as shown in Figure 4.5(d). 

 

Figure 4.6: Plasmon energy as a function of temperature for different gap values (  
               ) at (a)         and (b)     . 

In Figures 4.6(a)-4.6(b), the plasmon frequencies are plotted as a function of temperature for 

two different values of wave vector:         and     . As can be noticed from Figure 

4.6(a), initially the plasmon frequency decreases with increasing temperature and attains 
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minimum value at around         and thereafter increases for higher values of  , for gap 

values of              , respectively. However, for      , plasmon does not exist in the 

temperature range of                  at         . This disappearance is because the 

temperature suppressed plasmons from the begining enters the SPE intra band region in 

between two undamped plasmon region as also evident from the density plots of spectral 

weight function in Figure. 4.8(g). In the case of      and      , plasmons completely 

disappear as manifest from Figure 4.6(b). This  can be understood from Eq. (4.9) (or refers to 

Figure 4.7(b)), when the real part of dielectric function does not have zeros for any frequency 

at     .  

 

Figure 4.7: Real part of the non-interacting dielectric function as a function of   computed 

at        and           for different values of coupling constant                at (a) 

    and (b)      . The green spot show the plasmon frequency      at a given wave 

vector and temperature. 

The computed real part of dielectric function as a function of   at        and           

for different values of coupling constant                at two values of gap    

         are depicted in Figures 4.7(a)-4.7(b). As can be seen from Figure 4.7(a), plasmon 

frequency increases with coupling constant at a given value of wave vector and temperature 

for gapless Graphene. The plasmon modes are observed at the following values of      

                          for Graphene sheet on SiC      , BN       and SiO2 
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         substrates, respectively. However in the case of gapped Graphene, plasmon mode 

appears at               for Graphene sheet on SiO2 substrate          while the 

plasmon modes do not exist for lower subtrate values of BN       and SiC      , as 

noticed from Figure 4.7(b). This means that the substrate can be used a medium to tailor the 

plasmonic behaviour of Graphene sheets. 

4.3.3 Electron Energy Loss Function 

Electron energy loss function is an important quantity which is directly measured in 

spectroscopic techniques like high resolution EELS. This quantity is proportional to the 

imaginary part of inverse dielectric function,                   . In Figures 4.8(a)-4.8(h) 

we show the density plots of the calculated MLGG electron energy loss function (i.e., 

                   ) plotted in       space and its comparison with the plasmon 

dispersion at zero-temperature (green solid line). In the density plots, the density scale shows 

the strength of the spectral mode. The loss function is directly proportional to the dynamical 

structure factor       . The dynamical structure factor gives a direct measure of the spectral 

strength of the various elementary excitations [37]. The electronic excitations form the SPE 

region in       space. In Figure 4.8, we also show both intraband and interband SPE region 

and the surface plasmon region, which can be obtained from the non-zero value of the 

imaginary part of the total dielectric function,                    . When the plasmon 

curve enters the SPE continua at a given frequency and wave vector Landau damping takes 

place inside this region. 
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Figure 4.8: The density plots of MLGG energy loss function in       space at different 

temperature: (a), (c), (e) & (g)         and (b), (d), (f), & (h)     . The shaded area 

shows the SPEs region calculated at zero temperature. Green solid line shows zero-

temperature plasmon dispersion. 

It can be noticed from Figures 4.8(a)-4.8(b), for        and         &     , 

respectively, the plasmon mode enters the interband SPE continuum where the Landau 

damping occurs and the the plasmons decay by creation of electron-hole pairs. Further, it can 

be noticed from Figures 4.8(a)-4.8(b), for zero gap value the boundaries of intraband and 

interband SPE transitions merge. At       and       , we notice in Figure 4.8(a) 

undamped plasmon mode up to            and thereafter it enters the interband SPE 

region(green solid line). But with increasing gap values Figures 4.8(c)–4.8(h) the undamped 

plasmon region separates the boundaries of the two SPE regions with the separation widening 

with increasing gap values [25]. Moreover, from Figures 4.8(e)-4.8(h) it can be observed 

from the plots that the SPE intra band region shrinks with the creation of undamped plasmon 

region at the higher end of   values. At      , plasmon mode shifts from the interband SPE 

region to the SPE gap and makes it undamped as shown in Figure 4.8(c). Again plasmon 

mode shifts from the SPE gap to intraband SPE region for                  and   
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               as shown in Figures 4.8(e) & 4.8(g) respectively. The plot in Figure 4.8(g) 

for high band gap value       and         corroborates the curve plotted in Figure 

4.6(a) for       at          where the plasmon disappears in between          

       and after that reappears again. As pointed earlier, this plasmonic disappearance is 

because of the falling of the SPE intra band region in between the two undamped plasmonic 

regions. 

From these density plots it is also evident that at         electron energy loss function gets 

suppressed and for      it escalates for all values of gap. This again confirms the 

observation from the plots of Figure 4.6. where the plasmon dispersion was noticed to be 

suppressed with temperatures upto ~      , and thereafter a reversal in trend was seen for the 

gapped Graphene (beyond      ) for all values of band gap. 



106 

 

4.5 References 

[1] K. S. Novoselov et al., Nature 490, 192 (2012). 

[2] T. Low and P. Avouris, ACS Nano 8, 1086 (2014). 

[3] F. J. Garcia de Abajo, ACS Photonics 1, 135 (2014). 

[4] L. Xiaoguang et al., Mat. Sci. and Engg. R 74, 351 (2013). 

[5] H. L. Koppens Frank, D. E. Chang and F. J. Garcia de Abajo, Nano Lett.  11, 3370 

(2011). 

[6] P. Avouris and M. Freitag, IEEE 20, 6000112 (2014). 

[7] R. R. Hartmann, J. Kono and M. E. Portnoi, Nanotechnology 25,  322001 (2014). 

[8] A. N. Grigorenko, M. Polini and K. S. Novoselov, Nature Photonics 6, 749 (2012). 

[9] F. Bonaccorso et al., Nature Photonics 4, 611 (2010). 

[10] P. Avouris, NanoLett. 10, 4285 (2010).  

[11] T. Stauber, J. Phys. Condens. Matter 26, 123201 (2014). 

[12] P. Tassin et al., Nature Photon 6, 259 (2012). 

[13] I. Gierz et al., Nano Lett. 8, 4603 (2008). 

[14] D. A. Siegel et al., Appl. Phys. Lett. 93, 243119 (2008). 

[15] S. Y. Zhou et al., Physica E 40, 2642 (2008). 

[16] G. Giovannetti et al., Phys. Rev. B 76, 073103 (2007). 

[17] Y. Yao et al., Phys. Rev. B 75, 041401 (2007). 

[18] E. H. Hwang and S. D. Sarma, Phys. Rev. B 75, 205418 (2007). 

[19] B. Wunsch et al., New J. Phys. 8, 318 (2006). 



107 

 

[20] G. Borghi et al., Phys. Rev. B 80, 241402(R) (2009). 

[21] R. Sensarma, E. H. Hwang and S. D. Sarma, Phys. Rev. B 82, 195428 (2010). 

[22] X. F. Wang and T. Chakraborty, Phys. Rev. B 75, 041404(R) (2007). 

[23] X. F. Wang and T. Chakraborty, Phys. Rev. B 81, 081402(R) (2010). 

[24] W. L. You and X. F. Wang, Nanotechnology 23, 505204 (2012). 

[25] P. K. Pyatkovskiy, J. Phys. Condens. Matter 21, 025506 (2009). 

[26] Z. Z. Li, Commun. Theor. Phys. 52, 361  (2009). 

[27] O. Vafek, Phys. Rev. Latt.  97, 266406 (2006). 

[28] M. R. Ramezanali et al., J. Phys. A: Math. Theor. 42, 214015 (2009). 

[29] R. Roldan, J. N. Fuchs and M. O. Goerbig, Phys. Rev. B 80, 085408 (2009). 

[30] R. Roldan, M. O. Goerbig and J. N. Fuchs, Semicond. Sci. Technol. 25, 034005  

(2010). 

[31] A. Qaiumzadeh and R. Asgari, Phys. Rev. B 79, 075414 (2009). 

[32] C. Tegenkamp et al., J. Phys.: Condens. Matter 23, 012001 (2011). 

[33] X. F. Wang and T. Chakraborty, Phys. Rev. B 75, 033408 (2007). 

[34] D. K. Patel, A. C. Sharma, and S. S. Z. Ashraf, Phys. Status Solidi B 252, 282 (2015). 

[35] D. Berdebes, T. Low, and M. Lundstrom, “Low bias transport in Graphene: An 

introduction”,  Proc. NCN@Purdue Summer Sch. Electronics from the Bottom Up (2011). 

[36] A. Qaiumzadeh and R. Asgari, New J. Phys. 11, 095023 (2009). 

[37] G. F. Giuliani and G. Vignale, “Quantum Theory of the Electron Liquid” Cambridge 

University Press, UK (2005). 


