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SUMMARY & CONCLUSIONS 
 

 Since it is experimentally realization in 2004, Graphene has been growing very 

rapidly in recent years due to its unique electronic structure and massless Dirac-Fermion 

behaviour. Many of the interesting physical properties like high electrical conductivity and 

wide range tuning of plasmon spectrum opens the door to fabricate whole new class of 

Graphene based nanoelectronic and optoelectronic devices. The physics of Graphene at 

fundamental level is therefore now becoming one of the most interesting as well as the most 

fast-moving topics in the field of material science. My thesis presents theoretical 

investigations on transport driven by electron-impurity scattering rate and collective 

excitation for Graphene systems that include Monolayer Graphene (MLG) and Bilayer 

Graphene (BLG). The experimental study show that the intrinsic parameters like quasi 

particle energy, temperature, impurity concentration, and energy gap highly affects transport 

and optical properties of Graphene. The intrinsic parameters that govern electron-impurity 

scattering rate and collective excitation in Graphene systems are quasi particle energy (𝐸𝐸), 

temperature (𝑇𝑇) and impurity concentration (𝑛𝑛𝑖𝑖), and additionally energy gap (∆). 

 

 Chapter 1 is an introduction to the fundamental electronic properties of Graphene 

based systems. The band structure and energy dispersion relation of Graphene systems using 

a tight-binding approximation are shown. From the band structure of MLG and BLG, it can 

be concluded that MLG is a semimetal with an approximately linear band structure around 

the Dirac point and BLG has a quadratic band structure with zero-gap around the Dirac 

points. In the Dirac approximation, we also describes the energy dispersion  𝐸𝐸𝑘𝑘MLG = ℏ𝑣𝑣𝑓𝑓 |𝑘𝑘|, 
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where 𝑣𝑣𝑓𝑓  is the Fermi velocity, for MLG and  𝐸𝐸𝑘𝑘BLG = ℏ2𝑘𝑘2 2 𝑚𝑚∗⁄ ,  where effective mass, 

𝑚𝑚∗ = 𝛾𝛾1 2 𝑣𝑣𝑓𝑓2⁄   , with interlayer hopping matrix element, 𝛾𝛾1 = 0.39 eV, for BLG  at low-

energy.  

 The absence of a bandgap in pure MLG and unbiased BLG make them useful for 

Graphene based nano-electronic and optoelectronic devices. Recent studies have 

demonstrated that a gap between valance band and conduction band can be opened in 

different ways like; Graphene placed on suitable substrate, application of magnetic field to 

generate a dynamic gap, a small gap (~10-3 meV) is opened due to spin-orbit coupling or 

Rashba effect. In addition, an energy gap between the conduction and valence bands of a 

BLG can be opened and tuned by introducing an electrostatic potential bias between two 

Graphene layers. Theoretically, it is possible to introduce a bandgap of exactly 𝐸𝐸g  =  2∆ by 

shifting the on-site energies in the Hamiltonian matrix of MLG by ±∆ . The energy 

dispersion of MLGG is 𝐸𝐸𝑘𝑘MLGG = 𝜇𝜇 = �(ℏ𝑣𝑣𝐹𝐹𝑘𝑘)2 + ∆2 within the Dirac approximation. 

Chapter 1 also introduces the methods, like Random Phase Approximation (RPA) and discuss 

the past work done on the electronic transport and plasmon in Graphene in the form of 

literature survey. 

 

 In the chapter 2, we computed scattering rate (ℏ/𝜏𝜏), for an electron scattered from 

disorder or statically screened coulomb potential, as a function of quasiparticle energy (𝐸𝐸) 

and impurity concentration (𝑛𝑛𝑖𝑖) of Graphene systems at zero temperature using the 

Boltzmann transport theory. We first calculated the screening effects through the static 

polarization function at zero temperature within the random phase approximation (RPA). 

For 𝑞𝑞 ≤ 2𝑘𝑘𝑓𝑓 , intraband polarization function �ΠInt ra
MLG (𝑞𝑞)� and interband polarization function 

�ΠInter
MLG (𝑞𝑞)� decreases and increases, respectively, with 𝑞𝑞 increases in such way the total 
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static polarization function becomes a constant i.e. ΠMLG (𝑞𝑞) = ΠIntra
MLG (𝑞𝑞) + ΠInter

MLG (𝑞𝑞) =

𝑁𝑁MLG (𝐸𝐸𝑓𝑓). For 𝑞𝑞 > 2𝑘𝑘𝑓𝑓 , ΠMLG (𝑞𝑞) increases linearly with 𝑞𝑞 due to the interband transition. 

This is a very different behaviour from that of 2DEG where the Π2DEG (𝑞𝑞) falls off rapidly for 

𝑞𝑞 > 2𝑘𝑘𝑓𝑓  with a cups at 𝑞𝑞 = 2𝑘𝑘𝑓𝑓 . Over all MLG screening is a mixing of metallic screening 

due to intraband and insulation screening due to interband. The ΠBLG (𝑞𝑞) remain same as in 

the case of MLG, i.e. ΠIntra
BLG  decreases as 1 − 𝑞𝑞2/2𝑘𝑘𝑓𝑓2 and ΠInter

BLG  increases as 𝑞𝑞2/2𝑘𝑘𝑓𝑓2, for 

small values of 𝑞𝑞. This behaviour comes from the chirality of BLG. However, for BLG, the 

cancellation of two polarization functions is not exact especially for 𝑞𝑞 > 𝑘𝑘𝑓𝑓  because of the 

enhanced backscattering, so the ΠBLG (𝑞𝑞) increases as 𝑞𝑞 approaches 2𝑘𝑘𝑓𝑓 , which means 

screening increases as 𝑞𝑞 increases. The polarization function of MLGG ΠMLGG (𝑞𝑞) shows 

intermediate properties of MLG and 2DEG. The effect of introducing gap in electronic 

spectrum is almost unnoticeable for 𝑞𝑞 ≤ 2𝑘𝑘𝑓𝑓 , which means that the intraband and interband 

transitions almost cancel and the ΠMLGG (𝑞𝑞) is constant, similar to that in MLG. But when 

𝑞𝑞 > 2𝑘𝑘𝑓𝑓  (large momentum transfer regime); (i) the magnitude of polarizability versus wave 

vector curve decreases on increasing the gap, at all 𝑞𝑞-values, and (ii) for 𝑎𝑎 > 0.6 the 

behaviour of polarizability versus wave vector curve for MLGG resembles to a great extent 

with that of 2DEG polarizability which is in stark contrast to MLG where the polarizability 

increases for 𝑞𝑞 > 2𝑘𝑘𝑓𝑓 . This means that in MLGG the interband transitions dominate over the 

intraband transition for large wave vectors, suggesting that the scattering by the screened 

coulomb potential is much reduced due to enhanced screening in this limit. This also implies 

that for 𝑎𝑎 = 0, ΠMLGG (𝑞𝑞) shows relativistic characteristics while at 𝑎𝑎 ≈ 1 it reflects the 

nonrelativistic nature of 2DEG caused by breaking of sublattice symmetry. The computed 

scattering rates can be used to calculate conductivity as a function of 𝐸𝐸. It is found that nature 

of ℏ/𝜏𝜏MLG (𝐸𝐸) is very different from that of 2DEG, BLG and MLGG. Scattering rate of MLG 
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exhibits maximum value at 𝐸𝐸 ≅ 1.56 𝐸𝐸𝑓𝑓 , while ℏ/𝜏𝜏2DEG (𝐸𝐸) show minimum value at around 

𝐸𝐸 = 𝐸𝐸𝑓𝑓 , for all values of 𝑁𝑁. The ℏ/𝜏𝜏BLG (𝐸𝐸) displays continues decline on increasing 𝐸𝐸 over 

entire range of 𝐸𝐸, expect a slight dip at around 𝐸𝐸 = 𝐸𝐸𝑓𝑓 . A very distinguished feature of 

ℏ/𝜏𝜏MLG (𝐸𝐸)  is the vanishing of its magnitude for 𝐸𝐸 → 0. Contrary to this ℏ/𝜏𝜏BLG (𝐸𝐸)  exhibits 

maximum value for 𝐸𝐸 → 0 and ℏ/𝜏𝜏2DEG (𝐸𝐸) reduces to a significantly large nonzero value 

when 𝐸𝐸 goes to zero. Also, ℏ/𝜏𝜏MLG (𝐸𝐸)  shows huge variation in its magnitude over the range 

of 0 ≤ 𝐸𝐸 ≤ 3𝐸𝐸𝑓𝑓  and hence the use of its value at  𝐸𝐸 = 𝐸𝐸𝑓𝑓  for computing conductivity can be 

highly misleading while making a comparison between theory and experiments. Our results 

suggest that the nature of ℏ/𝜏𝜏BLG (𝐸𝐸) is more close to that of 2DEG than that of MLG. We 

also investigated the 𝑎𝑎-dependence of ℏ/𝜏𝜏MLGG (𝑎𝑎)𝜇𝜇𝑓𝑓  for 𝐸𝐸 → 0 which is much stronger than 

that for 𝐸𝐸 = (0.5, 1 & 2)𝐸𝐸𝑓𝑓 . At higher values of 𝑎𝑎 (≈ 0.9) behavior of ℏ/𝜏𝜏 of MLGG is 

found to be similar to that of BLG. Our calculation suggests the scattering rate enhanced on 

increasing impurity concentration. 

 

 In the chapter 3, we computed temperature dependent polarization function and the 

conductivity of doped MLG, BLG and MLGG considering electron-impurity scattering as the 

dominant source and neglecting all other scattering phenomena (e.g. electron-phonon, 

electron-electron), within the Boltzmann transport theory. The temperature dependent 

polarization function �ΠMLG (𝑞𝑞,𝑇𝑇)� of MLG initially decline with increasing of temperature 

up to the 𝑇𝑇 ≈ 0.45𝑇𝑇𝑓𝑓  for 𝑞𝑞 = 0 and 𝑞𝑞 = 𝑘𝑘𝑓𝑓  and there after it increases with increasing of 

temperature. Since the ΠMLG (𝑞𝑞,𝑇𝑇) at 𝑞𝑞 = 2𝑘𝑘𝑓𝑓  increases monotonically with temperature. In 

the case of BLG, temperature dependent polarization function �ΠBLG (𝑞𝑞,𝑇𝑇)� shows weak 

temperature dependence in all the wave-vector regimes except for 𝑞𝑞 = 2𝑘𝑘𝑓𝑓 . The ΠBLG (𝑞𝑞,𝑇𝑇) 
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increases monotonically with 𝑞𝑞 in the regime �0,2𝑘𝑘𝑓𝑓� and monotonically decreasing in the 

regime 𝑞𝑞 > 2𝑘𝑘𝑓𝑓 . We observe a sharp peak at 𝑞𝑞 = 2𝑘𝑘𝑓𝑓  for 𝑇𝑇 = 0 K due to the backward 

scattering arising from the chirality of BLG and the height of peak in ΠBLG (𝑞𝑞,𝑇𝑇) at 𝑞𝑞 = 2𝑘𝑘𝑓𝑓  

strongly suppressed as temperature increases. The nature of temperature dependent 

conductivity in Graphene systems is observed to be nonmonotonic, decreasing with 

temperature at low temperatures, and increasing at high temperatures. For 𝑇𝑇 ≪ 𝑇𝑇𝑓𝑓 , MLG and 

BLG show metallic temperature dependent behaviors with different strengths. MLG has poor 

quadratic temperature dependence while BLG has strong linear temperature dependence. The 

interplay of linear energy band dispersion relation, chirality, bandgap and temperature endow 

MLGG with overall strange screening properties which are a mixture of MLG, BLG and 

2DEG screening properties. We find that the nature of conduction in MLGG changes from 

good to poor semiconducting on varying values of 𝑇𝑇 and 𝑎𝑎. Our results show that 𝑇𝑇 ≤

0.4𝑇𝑇𝑓𝑓   conductivity behaves like that of poor metal when 0 ≤ 𝑎𝑎 ≤ 0.6 and very good 

conducting behaviour when 𝑎𝑎 ≥ 0.9,  whereas it displays an insulating behaviour at higher 

temperatures (𝑇𝑇 > 0.4𝑇𝑇𝑓𝑓) for both gapless and gapped Graphene. Metallic and 

semiconducting behaviour at low temperatures and high temperatures is indicative of phase 

transition that can occur by selecting appropriate values of 𝑎𝑎 and 𝑇𝑇 in MLGG. We also notice 

that the metallic nature can be enhanced by increasing the coupling constant value for all 

these Graphene systems. We also obtained numerical results of temperature dependent 

conductivity of MLGG as a function of carrier concentration which shows linear behaviour as 

observed experimentally, and also shows an increase in magnitude with the increase in 

temperature and decrease in magnitude with the increase in bandgap. We also find that the 

conductivity computed as a function of temperature by averaging over quasi-particle energy 

significantly differs from that computed at Fermi energy, suggesting that a notable 

contribution to temperature dependent conductivity is made by electrons close to the Fermi 
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level. Our results on conductivity of MLGG are of significance as any experimental work on 

Graphene begins with a characterization of its electrical conductivity. 

 

 In the chapter 4, we report our numerical results on finite temperature non-interacting 

dynamical polarization function (NDP), plasmon modes and electron energy loss function 

(EELF) of doped MLGG within the random phase approximation. We find that the interplay 

of linear energy band dispersion, chirality, bandgap and temperature endow MLGG with 

strange polarizability behaviour which is a mixture of 2DEG, MLG and BLG and as a result 

the plasmon spectrum also manifests strikingly peculiar behaviour. We systemetically first 

calculated real and imeginery part of dynamical polarization function as a function of 

frequency at different values of wavevector, temperature and bandgap. Zeros of real part of 

dynemical dielectric function, i.e. Re[ϵMLGG (𝑞𝑞,𝜔𝜔,𝑇𝑇)] = 1 + 𝑉𝑉(𝑞𝑞)Re[ΠMLGG (𝑞𝑞,𝜔𝜔,𝑇𝑇)], is 

related with plasmon dispersion and non-zero values of imeginary part of dynemical 

dielectric function, i.e. Im[ϵMLGG (𝑞𝑞,𝜔𝜔,𝑇𝑇)] = 𝑉𝑉(𝑞𝑞)Im[ΠMLGG (𝑞𝑞,𝜔𝜔,𝑇𝑇)], is related with single 

particle excitation (SPE). The curves of both real and imaginary parts of dynamical 

polarization function, for gap values of (𝑎𝑎 = 0.3 & 0.6) show comparatively larger peaks and 

dips at  𝑇𝑇 = 𝑇𝑇𝑓𝑓  and relatively smaller peaks and dips at 𝑇𝑇 = 0.5𝑇𝑇𝑓𝑓 , as compared to that at  

𝑇𝑇 = 0 K. The peaks and dips at 𝑇𝑇 = 0 K are observed to lie in between that at 𝑇𝑇 = 𝑇𝑇𝑓𝑓  and 

𝑇𝑇 = 0.5𝑇𝑇𝑓𝑓 . However, for high band gap value of 𝑎𝑎 = 0.9, the highest and lowest peaks and 

dips are observed at 𝑇𝑇 = 0 K. At 𝑞𝑞 =  2.5 𝑘𝑘𝑓𝑓  and 𝑇𝑇 = 0 K, the gap opens between intraband 

and interband SPE edge and also the gap increases with increasing 𝑎𝑎 (at 𝑎𝑎 = 0, intraband 

SPE edge is equal to interband SPE edge). At finite temperatures, intraband SPE edge shifts 

toward the higher frequency range and the gap between intraband and interband SPE edge 

decreases with increasing temperatures because of the fact that wider class of single particle 
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transitions is allowed at higher temperatures. We also show the how the relaxation time (𝜏𝜏) 

affects the polarization function which is very important parameter because the actual value 

of 𝜏𝜏 affects the plasmon propagation distance. For 𝜏𝜏 → ∞, the imaginary part of the 

polarization function’s peak exhibits abrupt step-like behaviour, near the ends of the interval 

where Im[ΠMLGG (𝑞𝑞,𝜔𝜔,𝑇𝑇)] = 0. But for finite values of 𝜏𝜏(= 0.25 ps & 0.1 ps), the dips 

become smoother where Im[ΠMLGG (𝑞𝑞,𝜔𝜔,𝑇𝑇)] ≠ 0 and the height of the peak also decreases 

with the decrease in 𝜏𝜏, from 0.28 ps to 0.1 ps. 

 Dynemical polarization function has been used to calculate the plasmon dispersions. 

We notice significant changes in plasmon dispersion curve due to temperature and bandgap. 

Our computed result shows an increase in plasmon dispersion with increasing wavevector 

similar to the case of gapless Graphene. However, with increasing gap values the rate of 

increase of plasmon dispersion is seen to decline. We also find that plasmon dispersion 

decreases with temperature upto ~ 0.5𝑇𝑇𝑓𝑓similar to the gapless Graphene case but a reversal in 

trend is seen for the gapped Graphene beyond 0.5𝑇𝑇𝑓𝑓  for all values of bandgap. These 

observations are also confirmed by the density plots of EELF. An extra undamped plasmon 

mode that emerges in the gap between interband and intraband SPE regions for 𝑇𝑇 = 0 K, 

𝜏𝜏 = 2.5 ps and 𝑎𝑎 = 0.05. This extra undamped plasmon mode disappears at 𝑇𝑇 = 𝑇𝑇𝑓𝑓  and 

𝜏𝜏 > 2.5 ps because of the enhanced intraband contribution that shifts the peak to below zero. 

The substrate also plays a prominent role in influencing the plasmonics behaviour. Overall 

the external and internal degrees of freedom endow MLGG with strange polarization 

behaviour and plasmons and can also serve as an effective means for its manipulation. 
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Future Study 

 

Figure 5.1: Schematic of Graphene double-layer system with three different dielectrics. The 
interlayer distance between two Graphene layers is defined as 𝑑𝑑. The red circles represent 
randomly distributed charged impurities. (Ref.: Phy. Rev. Latt. 98, 136805 (2007)). 

Recently D. Jena and A. Konar (Phy. Rev. Latt. 98, 136805 (2007)) showed that carrier 

mobility in semiconductor nanostructures could be enhanced by dielectric engineering. They 

have theoretically investigated that suggests improving carrier mobility by coating the 

nanostructures with high dielectrics, which leads to the weakening of Coulomb scattering due 

to the screening effect. This idea, recently, extended by K. Hosono and K. Wakabayashi for 

Graphene double-layer system (as can be seen in Figure 5.1) in their published paper- Jpn. J. 

Appl. Phys 53, 06JD07 (2014). They have investigated the dielectric environment parameters 

(∈1, ∈2 and ∈3) effects on the carrier mobility of a Graphene double-layer system at zero 

temperature using the Boltzmann transport theory. Temperature is also key role of device 

performance, like switching speed, because it directs impact on carrier excitation. So I will 

extend my study on transport properties as well as optical properties of Graphene double-

layer system at finite temperature which is more adequate for making novel devices. 
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