Appendix

A Density of State

A central property of electronic materials is the Density of States (DOS) N(E), which
informs us of the density of mobile electrons or holes present in the solid at a given
temperature. Formally, in two dimensions, the total number of states available between
energy E and an interval dE is given by the differential area in k-space dA divided by the

area of one k-state. Mathematically, this is equivalent to

N(E) = 85 8v G (A1)
where gg = 2 is the spin degeneracy, g, is the zone degeneracy, and Q is the area of the
lattice. There are six equivalent K-points, and each K-point is shared by three hexagons;
therefore, g, = 2 for graphene. To determine dA, let us consider a circle of constant energy
in k-space. The perimeter of the circle is 2wk and the differential area obtained by an

incremental increase of the radius by dk is 2mkdk. Therefore, the DOS, which is always a

positive value or zero, is

K(5)

where N (E) has been normalized to the Q. To obtain the DOS for Graphene Systems, we first

N(E) =2 , (A2)

use the energy dispersion relations calculated within the Dirac approximation in Eq. (A.2);

dE 2k
E}l{VILG — ]/k = a =y & NMLG(Ek) = TL'_]/ (A3)
h2K2 dE _ h%k 2
E}](BLG — — = a = 7 & NBLG(Ek) = T[_Z; (A4)
2
EMLSG _ [T T R LA vk & NMLGG () = Y2 +a2 (A.5)

y?

dk ke
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B Carrier Density
The electron carrier density is simply the number of states that are occupied per unit area at a
given temperature. The occupation probability for electrons at finite temperatures is given by

the Fermi-Dirac distribution, f(E) = (1 + e(E‘“C)/"BT)_l. The net carrier density |n, —
np| = N, where n, stands for the filled states for £ > 0, and n,,for the empty states with

E <0, is calculated as the convolution of the density of states with the Fermi Dirac

distribution in the energy space:
[ne = | = ne = [" dE N(EYF(E) — [°, dE N(E)(1 — f(E)), (8.1)
where N (E) is the density of state for Graphene Systems.

[[] Monolayer Graphene (MLG)

The net Carrier density for MLG can be evaluated from Egs. (A.3) & (B.1);

MLG _ 2 . dE EMLG 0 JE EMLG e(EMLG—#c)/kBT B.2
ne - 71-_]/2 fO 14+e(E-1c)/kT - f—oo 1+e(E-1c)/kT ( ' )
MLG _ 2 o EMLG oo EMLG
nc - 71']/2 (fo dE 1+e(E—u¢)/k3T fo dE 1+e(E+#c)/kBT (B3)
At zero temperature, chemical potential set to Fermi energy, i.e. u. = }"““G = yks. Now we

can easy to extract from relation (B.3) by making the following substitution,

1
(EMLG-E}YILG)/kpT

=1 — step(EM'G — EJ'€), (B.4)

T=0

1+e

which will lead to the following

nMLG — niyzfooo dEMLG pMLG [(1 — step(EMMG — E}V”‘G)) — (1 — step(EMLC + E}V[LG))]
(B.5)

Finally, the net carrier density in MLG is define as
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EMLG)?
nMLG — % (B.6)

[[I] Bilayer Graphene (BLG)

The net carrier density for BLG can be evaluated from Egs. (A.4) & (B.1);

© 0
nCBLG = fO dEBLG NBLG(E)f(E) _ f_oo d EBLG NBLG(E)(l _ f(E)) (B.7)
BLG
BLG _ 2™ r® J5BLG 1 e i
e = e <f0 dE 1+e(EBLG—pc)/kpT f—oo dE 1+e(EBLG—pc)/kpT (B.8)
BLG _ 2m ® BLG 1 o BLG 1
ST (fo dE 1+e(EPYC-uc)/kpT fO dE 1+e(EBLG+uC)/kBT) (B.9)
At zero temperature, chemical potential set to Fermi energy, i.e. u, = EF*¢ = h*k7/2m. Now

we can easy to extract from Eqgs. (B.9) and (B.3) which will lead to the following
nBLG = %fooo dEBLG [(1 — step(EBLC — EfBLG)) - (1 — step(EBLC + E}BLG))]. (B.10)

Finally, the net carrier density in BLG is define as

BLG

2mE
nBle = =L (B.11)

[[II] Monolayer Gapped Graphene (MLGG)
The net carrier density for MLLG can be calculated similarly to that in MLG except the lower
integration limit in Eq. (B.1) should be depend on A since the density of states is proportional

to energy at |E| > |A| and is zero at |E| < |A|. Now rewrite Eq. (B.1) with modification as

0 -A
ng/ILGG — fA dE NMLGG(E)f(E) — f_oo dE NMLGG(E)(l _ f(E)) (B]_Z)
oG 2 o VEZAZ —A EZ+AZ e(E-uc)/kgT
o8 = (137 4E s — L dE e (B.13)
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At zero temperature, chemical potential set to Fermi energy, i.e. u. = uy = /(ykf)2 + A%,

The net carrier density in MLGG can be calculated similarly to the above and it is define as

nMLGG — i_{/z (B.14)
C Chemical Potential

The finite-temperature chemical potential p. is determined by the conservation of the total

electron charge density as

N(E)
TteE-H/kET

N(E)
1+e(E+uc)/kpT*

ne=["dE — J, dE (B.15)

[[]  Monolayer Graphene (MLG)

Finite temperature chemical potential (,UICV[LG(T)) can be evaluated from Egs. (B.6) & (B.15);

(EMLG)2 MLG MLG
f _ 2 (% 4pMLG E _ % 4pMLG E
Ty2  my? (fo dE 1+e(EMLG_#IL\_/ILG)/kBT fo dE 1+e(EMLG+MIL\_/lLG)/kBT>' (B-16)
. EMLG Ue T .
Using the scaled parameter; £ = x, FHIC = sand T = vy, Eq.(B.16) can be written as
l(l)z—f‘”d N g a— B.17
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Figure A.1: The chemical potential of MLG as a function of temperature.
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Equation (B.17) is plotted in Figure A.1 which shows that variation of uM¢(T) as a function

of temperature.

[[I] Bilayer Graphene (BLG)

Finite temperature chemical potential (u?LG(T)) can be evaluated from Egs. (B.11) &

(B.15);
ZmE}?LG _2m oo 1 co 1
mh?2 - ﬁ (fo dE 1+e(EBLG_#]C3LG)/kBT - fo dE 1+e(EBLG+ﬂCBLG)/kBT>. (Bl8)
. EBLG ”BLG T .
Using the scaled parameter; —BG = X, Eg—LG =sand ==Y Eq.(B.18) can be written as
f f ¥
1= [T dx —e5— Iy d% —as B.19
- J.0 x 1+ex—9)/y fo X 1+e(x+s)/y ( . )
s=1=u=E (B.20)

Equation (B.20) shows that the chemical potential of BLG is temperature independent and

very different from that of the MLG.

[[IT] Monolayer Gapped Graphene (MLLG)

The expression of chemical potential for MLGG can be defined same as that of MLG by

introducing Eg. (B.14) into Eq. (B.15).
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