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INTRODUCTION TO ELECTRONIC 
TRANSPORT IN GRAPHENE SYSTEMS 

1.1 Prologue (Novel Properties of a Novel material) 

 Could a single piece of a material be the  thinnest imaginable material (Single atom 

thick), the strongest material ‘ever measured’ in terms of Young’s modulus (more than 100 

times stronger than the strongest steel), be elastically stiffest known material (stiffer than 

diamond), be the most stretchable crystal (up to 20% elastically), be almost transparent 

(absorbs only 2.3% of the light intensity), having record thermal conductivity (outperforming 

diamond), have highest current density at room   (106 times of copper), be completely 

impermeable (even He cannot squeeze through), have highest intrinsic mobility (100 times 

more than in silicon), show electric current conduction even in the limit of no electrons, 

having lightest charge carriers (with zero rest mass), have longest mean free path at room 

temperature (micron range) and possibly possess many more such superlative properties? 

 Until last decade, even possibility of the existence of a such material namely graphene  

(or 2D graphite) which possesses all these extra ordinary qualities together was not given 

proper attention because scientists were puzzled for long time whether nature allows 

existence of a two dimensional crystal. In 1930’s Peierls [1] and Landau [2] showed that in 

low-dimensional crystal thermal fluctuations lead to such displacements of atoms that they 

become comparable to interatomic distances and that would destroy long range order and 

thus essentially melt 2D lattice at any finite temperature. Hence, graphene has been studied 

just theoretically for sixty years [3-5]. It was presumed not to exist in the free state, being 

described as an ‘academic’ material [6] and was believed to be unstable with respect to the 

formation of curved structures. 
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 Nevertheless, in 2004, a group led by A. K. Geim, from the University of Manchester, 

UK, isolated such a 2D material [7, 8]. Under the name of graphene, this new material is an 

allotropic form of carbon and it can be considered the mother of three carbon allotropes (see 

Figure 1.1), with the atoms arranged in a 2D honeycomb lattice. The reason for the success in 

synthesis of graphene was the isolation method used by Geim et al. The developed method 

permitted one to isolate the 2D material on top of a 300-nm-thick wafer of silicon oxide. The 

weak van-der Waals interaction induced adhesion between graphene and the wafer, and once 

on top of the wafer, it was possible to move about the 2D material.  

 Soon after the discovery of graphene several other methods were developed for 

graphene production, most notably chemical vapor deposition (CVD) [9], segregation by heat 

treatment of carbon-containing substrates [10] and liquid phase exfoliation [11]. 

The theory of graphene was first explored by P. R. Wallace [3] in 1947 as a starting point for 

understanding the electronic properties of 3D graphite. The emergent massless Dirac equation 

was first pointed out by Gordon Walter Semenoff and David P. DeVincenzo and Eugene J. 

Mele [12]. 
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Figure 1.1: Graphene can be consider as the mother of three carbon allotropes: (left) 

byckyballs – zero dimensional structure, (middle) carbon nanotube – one dimensional 

structure and graphite – three dimensional structure [13].  

 

 It has the properties of a good metal, although its electronic properties do not fit the 

standard theory of metals because its electrons propagate as massless Dirac particles [14]. 

Graphene is also resistant against extrinsic impurities because its chemical bonding is very 

specific and consequently graphene conducts electricity better, with less energy loss than 

silicon [13] (the platform of all modern electronics). Moreover, graphene is one of the 

strongest materials ever measured in terms of Young’s modulus and elastic stiffness [15] (the 

only other material that is comparable in strength is diamond), nevertheless it is one of softest 

(the only example of a metallic membrane). It can be used as an ultrasensitive nano-

mechanical resonator besides being highly impermeable [16]. Many important properties 
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have been identified in graphene, including a remarkably high mobility at room temperature, 

an unusual quantum hall effect, and an ambipolar electric field effect. 

1.2 Structure and Properties of Monolayer, Bilayer and Monolayer 

Gapped Graphene 

(a)       (b)        (c)  

 

Figure 1.2: (a) The electronic structure of monolayer graphene with zero gap, (b) symmetric 

bilayer graphene with zero gap, and (c) graphene on substrate with gap    between valance 

and conduction band called monolayer gapped graphene. 

 Monolayer Graphene (MLG) is an isolated single graphite sheet suspended in air 

having zero energy gap at Dirac point with linear energy dispersion relation, while Bilayer 

Graphene (BLG) is Bernal Stacking arrangement of two MLG with spacing of nearly 3.34  

having zero gap at Dirac point with quadratic energy dispersion relation. MLG with finite 

energy gap at Dirac point with linear energy dispersion relation is called Monolayer Gapped 

Graphene (MLGG). This gap opening is due to the symmetry breaking of A and B sublattices 

arising due to interaction between substrate and graphene sheet. In all these graphene based 

structures, the   electrons are valence electrons which are relevant for the transport and other 

solid state properties. A tight binding calculation for the   electrons is simple but provides 

important insights for understanding the electronic structure of the   energy levels or bands 

for graphene systems. In next sub-sections, band structures and low energy Hamiltonians of 

MLG, BLG and MLGG using tight binding approximation are discussed briefly. 
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1.2.1 Monolayer Graphene (MLG) 
 

 

 

 

Figure 1.3: (a) Honeycomb lattice structure of monolayer graphene and shaded area shows 

the unit cell of monolayer graphene. (b) Density plot of first Brillouin zone of monolayer 

Graphene. 

 Graphene is a two-dimensional material made of carbon atoms arranged in 

honeycomb lattice with a two-atomic basis (A and B) as seen in Figure 1.3(a). The two 

primitive lattice vectors of the hexagonal lattice shown in Figure 1.3(a) are  
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 ,                 (1.1) 

where the lattice constant is           [3]. The Bravais lattice of graphene contain two 

carbon atoms per unit cell and the area of the unit cell is 
    

 
        . The primitive 

reciprocal lattice vectors    and    shown in Figure 1.3(b) are 

   
  

    
  

 

  
  and    

  

    
  

 

   
 .                (1.2) 

There are two inequivalent points   and    in the Brillouin zone which are of special interest 

in Graphene transport physics. Their position in momentum space are given by 

   
  

    
  

 

    
  and    

  

    
  

 

     
 .               (1.3) 

The vectors connecting three nearest-neighbor in real space are given by 

   
  

   
 
 
 
 ,    

  

   
 
  

  
  and    

  

   
 

  

   
 .              (1.4) 

Electronic band structure of Graphene is successfully described by tight-binding Hamiltonian 

model [3]. Graphene is made of carbon with sp
2
 hybridization (one’s orbital mixed with two 

p orbitals) and it gives rise to   bond. While one pz orbital remain separate, which is 

responsible for   bond and therefore tight-binding Hamiltonian calculation involve only the 

pz orbital. In a tight-binding model, the wave function of pz orbital is written as 

                     ,                   (1.5) 

where 

      
 

  
  

                
    

    and       
 

  
   

               
    

   .           (1.6) 

Here      is the wave function of pz orbital of a carbon atom located at origin.         

     and          are the position vectors of all atomic sites for sublattice A and B 
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respectively where         .   is the number of unit cell and 
 

  
 ensures normalized wave 

functions. We consider the only nearest neighbour interaction, tight-binding Hamiltonian in 

the matrix form is written as 

   
     

                

                
 ,                 (1.7) 

where, diagonal terms are                       where     is the atomic orbital energy 

of 2pz level. The off diagonal terms are defined as 

               ,                   (1.8) 

where   is the nearest-neighbour hopping parameter. In Eq. (1.8),      is defined as 

                  
   .                  (1.9) 

In the Graphene lattice structure, there are three nearest neighbour atoms as shown in Figure 

1.3 (a). So Eq. (1.9) can be written with    , 

                         .               (1.10) 

Read R1, R2 and R3 from Eq. (1.4), Eq. (1.10) can be written in more simplified form as 

            
  

  
            

  

   
       

  

  
 .            (1.11) 

From Eq. (1.7), Hamiltonian matrix becomes 

   
     

        

         
 .                (1.12) 

We also define the overlap matrix as, 

   
          
          

 .                 (1.13) 
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The diagonal elements are               and off diagonal elements are defined in a 

same manner as the Hamiltonian matrix 

            ,                 (1.14) 

where,   is the overlap integral and its value is 0.129 eV. Then overlap matrix can be written 

as 

    
       

        
 .                (1.15) 

The eigenvalue equation can be calculated by det (H-ES) = 0; 

  
                    

                      
   .             (1.16) 

This simplifies that 

                       .               (1.17) 

The energy dispersion relation as a function of      is then given by 

         
               

             
,                 (1.18) 

where the   and   signs in the Eq. (1.18) for conduction band and valance band respectively. 

The function       is given by: 

                   
  

  
            

  

   
       

  

  
 .           (1.19) 
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Figure 1.4: The   band structure of Graphene plotted using nearest-neighbour tight-binding 

model along   M  K  . The Fermi level lies at the centre      . 

To calculate the   band structure of Graphene from Eq. (1.18), three parameters    ,   and     

should be known and their values are found by fitting experiment or ab-initio calculation. 

Past calculation show      is set to zero,   vary between     eV to   eV and        . One 

can simplify Eq. (1.18) by setting       (its means Fermi energy is set to zero) and     

for electron-hole symmetry arguments, then we arrive at 

                           
  

  
            

  

   
       

  

  
 .          (1.20) 

Asymmetric           and symmetric       electronic band structure calculated using 

Eqs. (1.18) and (1.20) respectively are plotted in Figure 1.4 for inserting     eV. The upper 

half of the dispersion is the conduction band      and the lower half dispersion is valance 

band    . In Figure 1.4, electronic band structure calculated at two different values of 

              are seems to be same and approximately linear at low energy regime (as 

shown in inset). Graphene band structure shows that zero band gap i.e. semimetal at Fermi 



 

 

11 

 

energy and conduction and valance band touch to each other at   point. Then there are two 

lines that are linear around the   point (k.p approximation or linear expansion). Thus for 

small values of   (i.e. with respect to the   point), the energy dispersion can be approximated 

by a linear dispersion relation. This dispersion near to Dirac points can be obtained by 

expanding Eq. (1.11) close to the   (or   ) vector, Eq. (1.3), as      : 

                   
   .                (1.21) 

For    , Eq. (1.21) can be approximate as a 

                    
 
                                          .        (1.22) 

We insert the values of    from Eq. (1.4) into the above equation and we get final result; 

       
    

 
 

  

 
  

 

 
            

    

 
             .          (1.23) 

From Eq. (1.12), Hamiltonian matrix near to Dirac points is written as, 

   
     

     

 
 

              

               
 .            (1.24) 

In the calculation of energy eigenvalue equation, we can ignore phases        because they 

cancel out each other. 

   
        

         

         
 ,              (1.25) 

where    
     

  
    m/s is the Fermi velocity which is 300 times smaller than light 

velocity. The eigenvalues are then simply define as 

                   ,                (1.26) 

where        
    

 . This Dirac like linear behaviour valid up to    eV , as seen from 

the band structure in Fig. 2.  
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1.2.2 Bilayer Graphene (BLG) 
 

 

Figure 1.5: The lattice structure of a bilayer Graphene. Some representative hopping 

integrals are shown. (a) Conventional Graphene with AB stacking and (b) top view of bilayer 

graphene. 

 Bilayer Graphene is the natural graphite with considering only two layers which are 

arranged in the      (Bernal) stacking as shown in Figure 1.5. The top layer is denoted as 1 

and the bottom layer denoted as 2. In each layer, the unit cell contains two carbon atoms 

denoted by    and    in layer 1 and    and    in layer 2. Carbon atoms    of layer 1 lie 

directly above the carbon atoms    of layer 2, while the carbon atoms   (  ) of layer 1 

(layer 2) lie over the centre of hexagonal cell of layer 2 (layer 1) [17]. In Figure 1.5,    

     eV is interlayer coupling between sites    and   ,          eV is interlayer coupling 

between sites    and    and         eV is interlayer coupling between sites    and    and 

   and   . The Hamiltonian matrix and energy dispersion relation for bilayer Graphene can 

be easily derived from the same methods as described in above section (1.2.1). We consider 

only the interlayer coupling between vertically neighbouring atoms, then Hamiltonian for 

bilayer Graphene is [17] 
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               (1.27) 

and energy dispersion relation is calculated from Eq. (1.17) is 

     
           

  

 
    

 

 
   

            .               (1.28) 

 

 
 

Figure 1.6: The   band structure of bilayer Graphene plotted using nearest-neighbor tight-

binding model along   M  K  . The Fermi level lies at the center      . 

As can be seen from Figure 1.6, bilayer Graphene has a zero-gap structure at the K points, but 

with quadratic dispersion unlike monolayer. One more interesting point of bilayer Graphene 

is it has nonzero density of states even at zero energy [18] unlike monolayer Graphene where 

density of state vanishes at zero energy. In the vicinity of      , the Hamiltonian in Eq. 

(1.27) is reduced to the     form for the basis set (A1, B2) and corresponding energy 

dispersion relation become      
                        [17]. 
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1.2.3 Monolayer Gapped Graphene (MLGG) 
 

 In the previous section (1.2.1) we saw that Graphene is zero bandgap with its valance 

and conduction bands touching at Dirac points. The absence of band gap makes it challenging 

for Graphene to be used in device applications. Recently, some experiments based on angle-

resolved photoemission spectroscopy (ARPES) have shown the opening of band gap of 260 

meV & 53 meV on Graphene sample epitaxially grown on SiC (Silicon Carbide) & BN 

(Boron Nitride) substrates, respectively. This gap opening is due to the symmetry breaking of 

A and B sublattices arising due to interaction between substrate and Graphene sheet [19-22]. 

Theoretically, it is possible to introduce a band gap of exactly         by shifting the on-

site energies at two sublattices (A & B) in Monolayer Graphene (MLG) is called Monolayer 

Gapped Graphene (MLGG). The Hamiltonian matrix of MLGG is simply modify by     

    in MLG’s Hamiltonian Eq. (1.17); 

 
                  

                     
   .             (1.29) 

This simplifies that 

                          .              (1.30) 

Eq. (1.30) is a quadratic equation in   with the solutions 

         
                                     

            
 .             (1.31) 

I further simplify Eq. (1.31) for symmetric electronic band structure where     keep in 

above Eq. (1.31), 

                          ,                       (1.32) 
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where        is define in Eq. (1.19). In Dirac approximation as discussed in section (1.2.1), 

              around the K points in Brillouin zone and the energy become 

                      
 

   .                          (1.33) 

 

Figure 1.7: The   band structure of graphene plotted for different values of gap using 

nearest-neighbor tight-binding model along   M  K  . The Fermi level lies at the 

center      . Here we used     for symmetric band structure. 

The band structure of gapped graphene is shown in Figure 1.7 for different values of  , 

calculated using Eq. (1.32). It is clear that gap open at the K point for finite value of    and 

bands separate more and more as   increases. 

1.3 Electronic Transport in Graphene Systems  

 In this section, I present brief introduction to methods which are used to find transport 

properties of Graphene. Specifically I have adopted an approach of first calculating screened 

coulomb potential using random phase approximation (RPA) and then using this screened 

coulomb potential to calculate electron impurity scattering rate in Graphene using Boltzmann 

M K
3

2

1

0

1

2

3

0 1 2 3 4

Wavevector

E
n

er
gy

eV

1 eV

0.5 eV

0 eV

2.1 2.2 2.3 2.4 2.5

0.4

0.2

0.0

0.2

0.4

2



 

 

16 

 

transport theory. There are other alternate methods/approximations for transport scattering 

mechanisms of Graphene like; Self Consistent Born Approximation (SCBA) for sort-range 

scatterers at Dirac point; Landauer’s approach for pristine Graphene ribbon in ballistic 

regime, Effective Medium Theory (EMT) for nonlinear screening in Graphene. I have also 

discussed recent works on transport properties of Graphene systems. 

1.3.1 Screening 

 Coulomb interaction plays a key role in most branches of physics. A major feature of 

this interaction is its long range, varying as     with the distance of the interacting particles. 

Therefore, a collection of carriers in a material is likely to strongly interact and a charge 

fluctuation at any one point has non-negligible effects at large distances. In reality however, 

the electrical attraction or repulsion between charge particles are suppressed for long-range 

and reduces the effective interaction between charge particles. This reduction of charge 

particles interaction, and the weakening of internal electric field, is usually referred to as 

"screening". In Graphene, unlike normal metals, charge carriers and impurities are highly 

screened by the Fermi sea. The introduction of charges to a neutral Graphene sheet has 

several competing effects on its transport properties, due to the screening of the electron-

electron interaction and the screening of long-range impurities. The effect of electronic 

screening in Graphene has been extensively studied in the past at zero temperature [23-29] 

as well as at finite temperature [30-33]. Two widely prevalent theories [34, 35] are used to 

calculate screening induced by the mobile charge in Graphene: 

(a) Thomas–Fermi Approximation (TFA) 

(b) Random Phase Approximation (RPA) 
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(a) Thomas–Fermi Approximation (TFA) 

 Thomas–Fermi (TF) screening adopts a semi-classical approximation that requires the 

screened potential to vary slowly. This approximation is valid even when a linear relation 

between induced charge density        and total potential     does not hold and it violets in 

the limit of       (or, equivalently, large q). The screened coulomb interaction in TFA for 

Graphene is given by 

   
                ,                 (1.34) 

where                 is bare coulomb potential and        is the static dielectric 

function in TFA it is given by;           
 

 
 
 

 
  [36] and           

   

 
  [30] for 

undoped and doped Graphene, respectively. Here,                   is TFA wave vector 

in doped Graphene and            is dimensionless coupling constant (it is defined as  

         i.e. a ratio of the Coulomb to kinetic energy and we will use       ) of 

graphene which depends only on material parameters and is independent of electron doping. 

Dielectric function        of doped graphene in TFA (also in RPA) become infinity in long 

wavelength limit         and it behaves as a metallic like screening where charge is free to 

move and the medium is therefore infinitely polarizable due to finite density of state at Fermi 

level enables intraband transitions. However dielectric function is constant in the case of 

undoped graphene where it shows the dielectric like screening due to vanishing density of 

state at Fermi level and enables intraband transitions. The TFA wavevector (   ) is 

dependent of energy (or density of state) and consequently          , where    is carrier 

concentration. However, it is independent of the energy (or density of state) in bilayer 

graphene and 2-Dimensional Electron Gas. A key dimensionless quantity determining the 

charged impurity scattering limited transport in electronic materials is           which 

controls the dimensionless strength of quantum screening. In MLG,    being a constant 
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implies that the screened Coulomb interaction has exactly the same behavior as the 

unscreened bare Coulomb interaction. In BLG and 2DEG,                 and 

effective screening increases as the carrier density decreases (  ). Hence close to Dirac point, 

where     ,      and the interaction term should dominate the kinetic term. Therefore 

screening is more profound in BLG than in MLG. 

The TFA model is valid for the system weakly perturbed by a small distribution of external 

charges and do not require frequency- dependent dielectric function i.e.     . But it fails 

when the screening of the interaction between the rapidly moving charges in a system and it 

is necessary to develop a formulation capable of describing the screening of a longitudinal 

field which varies in both space and time i.e.       . This deficiency may be overcome by 

using random phase approximation (RPA) where dielectric function model as a weak time-

dependent perturbation depending on both space and time.  

(b) Random Phase Approximation (RPA) 

 In RPA, one exploits the approximation that the induced charge density contributes 

linearly to the total potential. The Schrödinger equation is then used to calculate the 

electronic wave functions self-consistently in the presence of the new potential. In this 

approximation it is assumed that only the single-particle excitations of the same wave vector 

as the Coulomb interaction plays an effective role in the screening process while the effects 

of others having different wave vectors cancel out. Use of the RPA is justified when the 

electron-electron interaction is strong enough (     ) that quantum coherence does not 

dominate. Monolayer Graphene is a weakly interacting system since the coupling constant 

(     ) is never large  [37] and RPA is the most successful and widely accepted approaches 

in Graphene systems. In high density electron gas, nearly full contribution comes from the 

‘ring’ diagrams (Random Phase Approximation). The resulting screened Coulomb interaction 
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is thus given by the bare Coulomb interaction dressed by a series of bubble diagrams, as 

shown in Figure 1.8. 

  

Figure 1.8: The Feynman diagram for the screened Coulomb interaction within the RPA. 

The double and single wiggly lines denote respectively the RPA screened and bare 

interaction, and shaded ring diagram show the polarization part. 

The double wiggle line is known as screened coulomb interaction    
         in RPA, while 

the single wiggle is bare coulomb interaction  . In this diagram pair bubble diagram show 

the polarization part. The expression of screened coulomb interaction can be read directly 

from above diagram (or from Figure 1.8): 

   
                                     (1.35) 

          is the polarization function in RPA and it show how the interaction causes the 

medium to become “virtually polarized” in all possible ways. Graphical representation of 

          is shown in Figure 1.9. 
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Figure 1.9: The Feynman diagram for the polarizability (dressed bubble diagram) for 

interaction electron system in RPA. The bare bubble diagram is corresponding non 

interacting electron contribution. 

The expression of           can be read directly from above diagram (or from Figure 1.9): 

          
       

            
                 (1.36) 

The dressed bubble is also known as the polarizability of the interacting electron gas, while 

the bare bubble is the polarizability of the noninteracting electron gas. The nomenclature 

results from observing that a pair bubble represents a virtual process (energy is not 

conserved) in which an electron–hole pair is created and then annihilated. An electron in state 

below the Fermi surface absorbs momentum   and moves above the Fermi surface; its 

absence from the Fermi sphere is equivalent to the presence of a hole. The electron then 

surrenders the momentum  , and recombines with the hole. The electron and the hole, being 

of opposite charges, their creation is tantamount to the creation of a dipole moment, which 

causes the medium to become polarized. The bare pair bubble is given by 

        
 

 
 

       

                             (1.37) 
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We can also write screened coulomb potential in form of         using Eq. (1.35) and Eq. 

(1.36) 

   
         

  

           
                (1.38) 

In Eq. (1.38), denominator terms define as; 

                        
 

 
 

       

            ’            (1.39) 

where           is the dielectric function, which measures the response of the interacting 

electron gas to an external electric potential. The dielectric function is the central quantity to 

theoretical understanding of various many-body aspect such as; screening of the potential due 

to charged particle (i.e.                   ), optical properties, collective excitations 

(i.e.             ), exchange and correlation energy, self-energy, static structure factor,  

pair-correlation function, local field correction, density of screened charge etc. 

1.3.2 Boltzmann Transport Equation 

 Resent past experiments on conductivity of Graphene away from the Dirac point 

showed that the conductivity in graphene increases linearly with carrier density 

concentration. Theoretically this linear carrier density dependence of experimental 

conductivity is successfully explained through the Boltzmann Transport theory at high carrier 

density limit. The Boltzmann transport equation is powerful technique that governs electronic 

motion affected by external electric field, scattering due to impurities, phonons and even 

other electrons in the system. In Boltzmann Transport theory, we start by assuming the 

system to be a homogeneous 2D carrier system of electrons (or holes) with a carrier density 

induced by the external gate voltage    and collision is elastic therefore we can neglect 

interband processes       . When the external electric field is weak and the displacement of 
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the distribution function from thermal equilibrium is small, we may write the distribution 

function to the lowest order in the applied electric field ( ), we have 

    
            ,                 (1.40) 

where        is the Fermi distribution function and     is the deviation proportional to  . 

Then, we have 

  

  
 
    

 

  
         

  

    
 

 

   
        

    

  
,              (1.41) 

Where   is the magnetic field perpendicular to the system and     is the velocity given by 

    
    

   
 

 

 
 
  

   
.                 (1.42) 

The vector product is define as                       for vector     

       .In the Boltzmann transport equation, the rate of change of the distribution function 

   
  due to elastic scattering is given by 

  

  
 
    

 

  
    

   

     
    

         
        

       
               ,          (1.43) 

where            is the transition probability. The transition probability from state   to 

state    is given by Fermi golden’s rule: 

           
  

 
           

 
             ,             (1.44) 

where          is the matrix element of scattering potential and     denotes the average over 

configurations of scatterers. In Eq. (1.44),              function ensuring energy 

conservation. From Eqs. (1.41) and (1.43), the transport equation is rewritten as 
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             . 

                   (1.45) 

The second term on the right hand side of Eq. (1.45) accounts for the relaxation time; 

 
 

      
    

   

     
               

  

 
           

 
             .          (1.46) 

The factor                 favors large-angle scattering. The term            
 
  can be 

replaced by                          where    is the impurity density,      the Fourier 

transform of the scattering potential, and            is the chiral function.      is the static 

dielectric function as discussed in previous section. 

1.3.3 Recent Works on Transport Properties of Graphene Systems 

 The nature of electronic transport in graphene has been actively debated over the last 

decade, and the nature of the graphene Dirac point has been elucidated (make clear/ explain) 

through experimental and theoretical works studying density and temperature-dependent 

electrical conductivity [13, 14, 38, 39]. In undoped graphene, conductivity calculated at the 

Dirac point should be zero due to vanishing density of states. However, many experimental 

groups using different approaches show a finite conductivity or minimum conductivity 

           at zero energy           which is independent of the impurity 

concentration, even if the concentration of impurities is a small number [8, 40-42]. Moreover 

this kind of minimum conductivity near the Dirac point were also probed experimentally in 

BLG [42-45]. The existence of a conductivity minimum (    ) in both MLG and BLG is also 

referred to as quantum-limited resistivity [46]. Recent experimental results [41, 48, 49] 

provide convincing evidence that      at the Dirac point is due to the random charged 

impurities located in the graphene environment and that are the dominant source of disorder 
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in graphene. Theoretically this      of graphene at Dirac point have been achieved in 

different approximation, such as Self-Consistent Born Approximation (SCBA) [18, 50-52], 

Effective Medium Theory (EMT) with nonlinear screening effects [53, 54], Kubo formula 

based on linear response theory [55-57], Landauer formula for a rectangular graphene system 

with aspect ratio       [58-60]. Theoretically predicted minimum conductivity in MLG 

is smaller than that of the experimentally observed.  

 In SCBA, for simplicity, electrons in MLG and BLG scatters from the short range 

scatterers with delta like potential. The      exhibits          for MLG and          for 

BLG [51] with neglecting trigonal warping which is twice the value in MLG. Similar result 

also found by J. Cserti [57] using the Kubo formula. In the presence of trigonal warping, the 

     for BLG leads to           [51] because of multiple Fermi surface pockets at low 

energies. 

 K. Nomura and A. H. MacDonald [56] argued that      could be enhanced from 

             for short range scatterers to               for Coulomb scatterers. Later 

based on linear response theory (Kubo formula) [55], the ballistic transport leads to      

       for the pure graphene system and this      does not depend on the strength of 

impurity scattering because the change of the diffusion coefficient is completely compensated 

by a change of the density of diffusive states. This theoretical work also confirms the 

experimental result– no weak localization in graphene [61]. Y. W. Tan et al. [49] are 

experimentally investigated the      vary in the range of  –       for different graphene 

samples with various levels of disorder and mobility in the range of  –              , 

which can be related to the residual density induced by the inhomogeneous charge 

distribution in the samples. 
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 In recent papers several authors applied the Landauer formula, instead of Kubo 

formula, to determine               for a rectangular MLG system with aspect ratio 

      [58, 59]. Similar formula used in BLG to determine      where the coefficient 

   , instead of     in MLG [59]. 

 Away from the Dirac point, S. V. Morozov et al. [42] experimentally demonstrated 

conductivity of both MLG and BLG depends on the gate voltage      (or consequently on 

charge carrier) in some circumstances roughly as         . They found that conductivity 

of BLG rapidly increases with temperature at the Dirac point but, away from Dirac point, no 

changes are observed. Comparison of MLG and BLG conductivity clearly show that 

temperature dependent scattering in BLG is substantially weaker than in MLG. 

 The linear dependence of conductivity on carrier density in graphene can be explained 

theoretically in the framework of Boltzmann transport theory by assuming Coulomb 

scatterers [30, 55, 62-64] rather than the short range scatterers. Hwang, Adam and Sharma 

[62] shows the graphene conductivity calculated including both charge impurity      and 

short-range neutral impurity      for different values of      . For small       (i.e   ), 

the conductivity is linear in density, which is seen in most experiments, and for large       

(    ) the total conductivity shows the sublinear behavior which is also found in experiments 

[41, 49] for very high-mobility samples where short-range disorder plays a more dominant 

role. 

 Theoretically temperature-dependent conductivity of MLG [31] and BLG [33, 54, 65, 

66] due to screened Coulomb disorder is calculate in past. Hwang and Sarma [31] show that 

temperature dependence of conductivity is exponentially suppressed as the temperature 

increases and shows typical metallic temperature dependence in the low temperature limit, 

but the high-temperature limit (   ) of the conductivity increases as the temperature 
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increases, shows insulating system, and approaches half of the conductivity calculated at low-

temperature limit (   )). These results also confirmed by resent experiments [67-70]. 

 S. D. Sarma, E. H. Hwang and E. Rossi [54] show that temperature dependence 

conductivity of BLG is very weak at high densities and strong insulating-type   dependence 

at low densities as observed in recent experiments [42]. At low temperatures          the 

conductivity decreases linearly with temperature and shows the metallic behavior as 

explained with screened Coulomb impurities, but conductivity increases quadratically in 

high-temperature limit. By contrast, for the short-range disorder conductivity always 

increases with temperature. Similar result also found in Ref. [33]. More accurately, 

temperature dependent conductivity calculated at the Dirac point using the different 

approach- effective medium theory (EMT) [54]. At high density, the theory gives the same 

results as that obtained from the Boltzmann theory in the homogeneous case but at low 

densities (or at the Dirac point) there are significant deviations and give finite         due to 

the formation of inhomogeneous electron-hole puddles as experimentally observed. 

1.4 Plasmons and Electron Energy Loss Function 

1.4.1 Plasmons: Graphene and Nobel Metals 

 Plasmons are simply defined as collective oscillations of the electron in conduction 

band. Normally in bulk material plasmons are generated in two different regions: bulk region 

(i.e. bulk plasmons) and surface region (i.e. surface plasmons). Bulk plasmons are 

longitudinal oscillations of free electrons within the bulk of a material while surface 

plasmons (SPs) are coherent delocalized electron oscillation at the interface between material 

and dielectric. SPs in graphene can be coupled with photons, electrons or phonons. It will 

form SPPs (Surface Plasmon Polaritons) with photons, and composite ‘‘plasmaron’’ particles 
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with electrons. Plasmons or SPs* (*Plasmons and SPs are same in graphene because 

electrons in graphene are essentially frozen in the transverse dimension) excited in graphene 

are confined much more strongly than those in conventional noble metals. Here are some 

interesting properties of graphene, which makes it best plasmonics material as compared to 

the noble metal plasmonic materials; 

(1) Extremely high confinement 

The wavelength of graphene SPPs is much smaller than the wavelength of metal SPPs, which 

results in a larger degree of confinement. The confinement of SPPs, which describes the 

ability of confining light, is generally valued by the vertical decay length (i.e. penetration 

depth). Simulation results showed that the vertical decay length of SPPs decreases with 

increasing of doping concentration in graphene [71-73] which is much higher than that of 

metals and it will be more helpful for applications in subwavelength optics. 

(2) Relatively low loss in THz and infrared frequencies 

Conventional metals (like Au, Ag) are the ideal plasmonic materials in visible and near-

infrared frequencies due to low loss in this range. The loss of metal plasmonic materials will 

increase dramatically with the decrease of frequency owing to the increased imaginary part of 

dielectric constants. Graphene does not have this kind of problem in THz due to smaller 

imaginary part of dielectric constant and penetration depth in THz as compared to noble 

metals [74]. 

(3) High tunability 

The tunability of SPs in graphene is the most attractive advantage other than metals, where 

plasmon cannot be tuned once the structure is fixed, in the point of view of optoelectronic 

device applications. SPs in graphene can be tuned by different ways like - electrical and 



 

 

28 

 

chemical doping, epitaxial grow on different substrates [75], changing the magnetic field and 

temperatures [76]. The working frequencies of graphene SPs are in THz and infrared regions, 

and if such frequencies can be extended to near-infrared or even visible regions through the 

composition of graphene with metal with high tunability [77, 78]. 

(4) Long relaxation time of electrons 

The relatively large conductivity of graphene translates into long optical relaxation times 

reaching values of          , compared to         in gold, thus providing a plausible 

solution to the long-standing problem of dissipation in plasmonics [79-81]. 

 The dispersion relation of SPs is very important for graphene plasmonics, and 

numerous achievements have been made both in theory and experiment, such as Semi-

classical model [82], Random-phase approximation (RPA) [25, 26, 83], tight-binding 

approximation [84], first-principle calculation [85], Dirac equation continuum model [86] and 

electron energy loss spectroscopy (EELS) experiments [87] etc. Among them, the Semi-

classical model and RPA are commonly used in theoretical analysis, and EELS is very 

prevalent for experimental study. In RPA, plasmon dispersion relation can be defined by the 

poles of density-density response function,        or equivalently, from the zeroes of 

dynamical dielectric function,       : 

               ,                 (1.47) 

where,    is the plasmon frequency at a given wave vector   and   is the Landau damping 

rate (i.e. plasmons can decay by exciting an electron-hole pair) of plasma oscillations. In   

complex plane, if the poles of       are on the real axis then the plasmons are long-lived 

and well-defined. However if the poles are away from real axis, we have the Landau damped 

plasmons due to the electron scattering. In the case of weak damping        , which is 
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more closer to the real situation, the imaginary part is negligibly small and thus, the plasmon 

dispersion is given by:  

              .                 (1.48) 

Electron energy loss function (EELF) is an important quantity which is directly measured in 

spectroscopic techniques like high resolution electron energy loss spectroscopy (EELS). This 

quantity is proportional to the imaginary part of inverse dielectric function,             . 

1.4.2 Recent Works on Plasmons and Electron Energy Loss Function 

 Since the discovery of graphene, there have appeared a large number of research 

papers and also a number of review articles on graphene [14, 38, 39, 88]. The last decade has 

witnessed a spectacular surge in the number of publications dealing with surface plasmons 

(SPs) [88]. SPs has been experimentally demonstrated using different techniques, such as 

terahertz [89] and IR [90] optical spectroscopies. These experiment results confirm that 

graphene has emerged as one of the most promising research materials in the field of 

plasmonics. 

 M. Jablan et. al [83] have studied plasmons and their losses in doped graphene using 

RPA with relaxation-time approximation from experimentally available input parameters, and 

theoretical estimates for the relaxation- time utilizing electron-phonon coupling. They show 

that for sufficiently large doping values high wave localization and low losses are 

simultaneously possible for frequencies below that of the optical phonon branch        

(i.e.,                ). 

 J. Yan et. al [85] investigated the role of substrates on the collective excitations of 

graphene by using a first-principles implementation of the density response function within 

RPA. First-principles calculations show that the plasmons in graphene are significantly 
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damped by a semiconducting substrate and completely quenched by a metallic substrate, in 

particular, in the long wavelength limit. The electronic response is dominated by the long 

ranged Coulomb interaction which makes the effect significant even for weakly coupled 

graphene-substrate systems. 

 E. Hwang and S. D. Sarma [25] and B. Wunsch et al. [26] had tried to deal with 

doped graphene by RPA at zero temperature under self-consistent-field linear response 

theory. In the long-wavelength limit      , the dispersion of SPs mode for a MLG can be 

expressed as            
     ,  which is different from the other 2D parabolic band 

materials where            
     . For finite value of  , the parabolic trend of 

dispersion relation disappears. The dispersion relation of graphene SPs can also be studied by 

EELS experiments [87]. Later, M. R. Ramezanali et al. [32] and Z. Z. Li [91] have studied 

the Coulomb screening and plasmon dispersion of doped MLG at finite temperatures in the 

RPA. 

 The electromagnetic response of graphene and the spectrum of collective plasmon 

excitations are studied using the tight-binding approximation, including both valleys, by A. 

Hill, S.A. Mikhailov and K. Ziegler [84]. Their results agree with those experiments for low 

energies in Ref. [92], whereas the high-energy results of Ref. [93] are beyond tight-binding 

approximation. Furthermore, inter-valley plasmons in graphene have been studied in the 

tight-binding approximation by T. Tudorovskiy & S. A. Mikhailov [94], relating them to 

transitions between the two nearest Dirac cones. 

 Some recent experiments on graphene’s plasmons [93, 95, 96] show that plasmon 

frequency      at long wavelength is linear function of    (in contrast to       ), which is 

thought to be due to many-body interactions and the local-field effect [94, 95]. 
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 S. A. Mikhailov and K. Ziegler [97] recently found a new transverse electric (TE) 

mode in graphene, which cannot exist in systems with the parabolic electron dispersion, in 

the terahertz range (THz),               or                            and it 

can be tuned from the radio-frequency range to the infrared by changing the density of charge 

carriers using a gate voltage. 

 P. K. Pyatkovskiy [27] assumed an unspecified energy gap of arbitrary width for 

doped MLG and studied the corresponding dynamically screening and plasmons at zero 

temperature in RPA. Furthermore, a THz source has been proposed based on the stimulated 

plasmon emission in graphene [98] and the absorption of THz electromagnetic radiation in 

gapped graphene has been estimated [99]. X. F. Wang and T. Chakraborty [100] have studied 

the effect of finite energy gap due to spin orbital interaction (SOI) on plasmons dispersion of 

undoped and doped MLG at finite temperatures in the RPA. 

 The collective excitations in zero gap BLG have been studied in previous work at 

zero-temperature [101] and finite temperatures [102] within two-band parabolic single-

particle band-dispersion approximation. The long-wavelength BLG plasmon is identical to 

the ordinary 2D plasmon and is different from the long-wavelength MLG plasmon. The 

parabolic band-structure approximation would fail at high energy where the BLG single-

particle dispersion becomes linear, similar to MLG and hyperbolic dispersion is relevant at 

high energies. Later, X. F. Wang and T. Chakraborty [103] have studied the effect of the 

potential bias on collective excitations of gapped BLG at both zero and finite temperature. 

The potential bias opens a gap in the single-particle excitation spectrum and softens the 

collective excitation modes. This may result in undamped collective excitation modes that are 

observable in experiments. In the single gate configuration, the doping and gate voltage can 

vary the potential bias and the carrier density of the BLG and manipulate the energy and 



 

 

32 

 

lifetime of the collective excitation modes inside. Intriguing situations with potential 

application are systematically explored and discussed by W. L. You and X. F. Wang [104] on 

external controlling factors such as perpendicular electric bias, temperature, doping, and 

substrate background provides great freedom to manipulate the low-energy plasmon 

dispersion of the BLG. They also found extra undamped plasmon modes appear at energies 

close to the band gap energy under electric bias and have almost zero group velocities. 

 Some papers have reported the collective excitation spectrum using the full 4-band 

continuum model within the RPA instead of the simplified 2-band model for both gapless 

[28, 105] and gapped BLG [106]. The dielectric screening function and the plasmon modes 

have a qualitatively different character in the 4-band model compared to the ones obtained 

using the simplified 2-band model, especially when gap is not zero. 

1.5 Objectives of Thesis 

 Apart from promising applications for technological innovations, Graphene offers a 

new and novel physics. Properties of Graphene sharply differ from that of 2DEG observed in 

doped semiconductor heterostructures. One of the important properties that is a requisite for 

device making is charge transport. Theoretical studies suggest that by consideration of a 

scattering mechanism based on screened charged impurities; one can obtain conductivity 

from a Boltzmann equation approach that agrees with the experimental result on Graphene. 

But most of the calculated analytical and numerical expressions of MLG and BLG are 

restricted to the case of zero temperature whereas the experimental study of electrical 

conductivity is carried out at a finite temperature. Also, the specific and detailed results on 

the effects of finite temperature and energy gap on the plasmons and Electron Energy Loss 

Function in MLG have not been carried out.  Thus the two main objectives of this research 

are; 
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(1) to study screened electronic transport properties of MLG and BLG as a function of 

intrinsic parameters like quasi particle energy, temperature, impurity concentration, and 

energy gap within the Boltzmann Transport Equation, 

(2) to study the finite temperature effects on non-interacting dynamical polarization function, 

plasmon modes, and electron energy loss function of doped MLGG within the random phase 

approximation. 

I believe that the results presented in this work will be helpful in understanding whole new 

class of graphene based nanoelectronic and optoelectronic devices.  
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