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ELECTRONIC TRANSPORT IN 
GRAPHENE SYSTEMS AT ZERO 
TEMPERATURE 
 

In this chapter, we report our investigations on electron-impurity scattering rate       as a 

function of quasiparticle energy     and impurity concentration      for doped monolayer 

graphene (MLG), bilayer graphene (BLG) and monolayer gapped graphene (MLGG) at zero 

temperature using Boltzmann transport equation and compare them with 2-dimensional 

electron gas (2DEG).       of MLG has been computed analytically as well as numerically. 

Computed results show that     of MLG; (a) tends to zero at     and, (b) it exhibits peak 

at         , where    is Fermi energy. Contrary to this,     of 2DEG, BLG and MLGG 

show their maximum values at       and decline thereafter on increasing   to attain a 

minimum at around   equal to Fermi energy. We thus find that     versus   of MLG 

displays an entirely different behaviour than that of BLG, MLGG and 2DEG, suggesting that 

electron-impurity scattering process in MLG sharply differs from those in BLG, MLGG and 

2DEG. Further, computed     of MLG exhibits a large variation in its magnitude over the 

energy range of         . Estimation of conductivity     within Boltzmann transport 

theory involves an electron-impurity scattering rate averaged over all possible values of  . It 

can therefore be inferred that the computation of   with the use of     at      for 

comparing the computed results with experimental data can be highly misleading. We also 

investigate the     changes drastically on introduction of energy gap in electronic states of 

graphene.     versus   of MLGG exhibits drastic change in its behavior for lower values of 

     on increasing  . At higher values of         behavior of     of MLGG is found to 

be similar to that of BLG. Magnitude of     has been found to decline with increasing values 
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of  , at all values of  .Scattering rates of MLG, 2DEG, BLG, and MLGG are found 

increasing on enhancing the impurity concentration. 

2.1 Introduction 

 There have been tremendous experimental and theoretical interests in monolayer 

graphene (MLG), bilayer graphene (BLG) and monolayer gapped graphene (MLGG) because 

of their novel physical properties and their use as enticing materials for electronics. MLG is a 

two dimensional (2D) system of carbon atoms covalently bonded together in a real space 

honey comb lattice that comprises of two interpenetrating triangular sublattices. It MLG has 

concomitant reciprocal space honey comb lattice with a hexagonal Brillouin zone that 

encompasses K-points. Near K-points, band structure is described by Dirac equation and the 

carriers follow linear chiral Dirac like energy dispersion relation, which can be written as; 

   
             , where   is 2D wave vector and               is the Fermi velocity that 

does not dependent on carrier density,  . Because of its very large electron mean-free path, 

novel phenomenon like integral quantum Hall effect (IQHE) [1] can be observed in MLG and 

the ballistic transport at distances up to      can be observed experimentally in MLG at 

room temperature [2]. It has been found that most of the observed transport properties of 

graphene sheets at zero magnetic fields can be explained with the use of theory of scattering 

from randomly distributed charged impurities and hence main mechanism of transport in 

MLG appears to be diffusion. Further, unlike metallic carbon nanotubes [3-8], back scattering 

has been found absent in Graphene giving raise charge-carrier mobility as high as up to 

                 , even under ambient conditions [1, 2, 9-11]. Because of zero-gap at 

Dirac points in the electronic spectrum of MLG, it is challenging to create graphene-based 

devices. However, recent experiments have demonstrated that a gap between valance band and 

conduction band can be opened [12-15]. On opening of gap, relativistic massless Dirac 
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particle dispersion relation changes to      
                              The extra 

intrinsic mass,      
      , is introduced due to a break in the graphene’s sublattice 

symmetry. Here where            
 

    is chemical potential at absolute zero 

temperature and   is the gap constant having       when Fermi level is considered to 

lying above energy gap. 

Another graphene system called BLG has the tunable energy band gap which is one of the 

most spectacular properties for device applications [16-20]. Charge transport in BLG differs 

qualitatively from that in MLG due to different energy dispersion and chiral function.  In the 

case of BLG, energy dispersion relation is given by    
                 , with   

       
          ,        eV is the interlayer coupling constant [21]. The properties of 

BLG have been found intermediate between properties of  MLG and regular 2DEG. Similar 

to the MLG, BLG shows zero band gap at the Dirac point (K and K’ point), but has quadratic 

energy dispersion like that of 2DEG.Charge transport in BLG differs qualitatively from that 

in MLG. 

 One of the most prominent scattering processes that control the charge transport in 

MLG, BLG and MLGG is scattering of charge carriers from disorder or the randomly 

distributed impurities. Physics of disorder in graphene and how disorder affects the transport 

property has remained very tempting subject of investigations in graphene. Various scattering 

mechanisms for Dirac fermions in MLG, BLG and MLGG have been studied in past [22-24]. 

It is widely believed that electronic transport in graphene is most likely controlled by charge 

impurities and ripples (microscopic corrugations of a graphene sheet). Scattering due to 

short-range potential created by neutral impurities or by lattice defects is found mostly 

irrelevant in graphene. Charge carrier scattering from long range coulomb potential created 

by charged impurities in MLG, BLG and MLGG has recently been investigated by several 
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people [24-27]. These investigations suggest that coulomb scattering mainly limits the 

charge-carrier mobility in graphene samples. Results on changes in   due to scattering from 

random charge impurity of concentration,    suggest that   of MLG scales linearly with 

      and the mobility remains independent of the Fermi energy, which has been found in 

good agreement with experimental results [28].  

 Most of prior reported theoretical calculations on   of graphene systems have been 

made using     computed at Fermi energy [24-26, 28-30].  However,   within Boltzmann 

transport theory is given by                      (where   is 2 for MLG and MLGG and 

is 4 for BLG) which involves      , averaged value of     over all possible values of 

quasiparticle energy,  .       can significantly differ from     at Fermi energy. Thus, the 

use of     at Fermi energy for comparing computed   with experimentally measured values 

can be grossly misleading. Further, the detailed understanding of process of     can only be 

made by calculating     for all possible values of  . This motivated us to calculate     as a 

function of   for the doped MLG, BLG and MLGG at zero temperature. We performed both 

analytical as well as numerical calculations on scattering for MLG. To understand how     

in MLG differs from that of 2DEG, BLG, and MLGG, we computed     for 2DEG, BLG, 

and MLGG. Our results suggest that     of MLG sharply differs from that of 2DEG, BLG 

and MLGG and     enhances on increasing impurity concentration     . This chapter is 

divided into 4 sections. Useful formalisms for MLG, 2DEG, BLG and MLGG are given in 

section-2.2. Results from our calculation are discussed in section-2.3 and the references are 

quoted in section-2.4. 
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2.2 Formalism 

2.2.1 Static Polarization function of MLG, 2DEG, BLG, & MLGG 

The static screening properties of the graphene based systems in the RPA are defined by the 

static dielectric function     : 

              ,                   (2.1)  

where                     is random charge impurity potential with        is effective 

background dielectric constant of SiO2 as a substrate material [25] and   is the momentum 

transfer to the scattered electron.      is the static polarization function is given by the bare 

bubble diagram; 

     
     

  
 

     
    

         
               ,                                                                                (2.2) 

where      is the valley degeneracy due to the   and    points and      is the spin 

degeneracy,       ,            denote the conduction (valance) band indices,     is 

the energy which is defined as    
        for MLG,    

               for BLG and 

   
                      for MLGG with      

  is the extra intrinsic mass. 

        is the chirality function and it is defined as     
                            for 

MLG,     
              for 2DEG,     

                             for BLG, and 

    
              

       

        
   

                  for MLGG where        is the 

scattering angle between   and   .                             is the Fermi 

distribution function with    is the chemical potential. In this chapter we defined zero 

temperature static polarization function of extrinsic case (where    and     ). At    , 

      and               and we can write Eq. (1) as                         , 

where  
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and 

          
     

  
 

     
    

         
             .                (2.4) 

The polarization functions that are required to calculate                 ,        , and 

        , for MLG, 2DEG, BLG, and MLLG, respectively, have been calculated 

analytically within RPA. The calculated values are given by [33-36] 
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and 

        

         
 

 
 
 

 
         

   
       

 

  
 

  
    

     
    

      
        

 

    
    

         
 .            (2.8) 

In the Eqs. (2.5)-(2.8),         ,          ,          and           are density of 

states at Fermi level for MLG, 2DEG, BLG, and MLGG, respectively, and define in next 

section. 
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2.2.2 Boltzmann Transport Equation for MLG, BLG, MLGG & 2DEG 

The scattering rate for an electron in spin state  , scattered from disorder and or statically 

screened Coulomb potential at zero temperature, is given by [22, 27, 32] 

 

      
       

    

     
  

     

    
 
 

                                 ,            (2.9) 

where    is the impurity concentration. Simplification of integral in Eq. (1) for MLG, 2DEG, 

BLG, and MLGG respectively gives; 
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In above equations,        ,         ,         and          are density of states for 

MLG, 2DEG, BLG and MLGG, respectively and these are defined as (see Appendix-A); 

             
   

       ,                (2.14) 

           
 

    ,                 (2.15) 
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and 

              
      

      
,                 (2.17) 
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Where,             is a band parameter,   is the effective mass of electron in 2DEG and 

BLG. Energy states, which are close to Fermi level, mainly contribute to the electronic 

conduction. Near the Fermi surface, conservation of energy ensures that we can take   

                 for all practical purchases. Static dielectric function involves system 

specific effective screening of impurity potential. Thus, Eqs. (2.10) to (2.13) not only differ 

from each in  -dependent terms they have altogether different values of density of states and 

static dielectric functions. The term          is common in all four equations, which 

always appears in Boltzmann transport formalism. In the case of MLG, the probability of 

backward scattering at      vanishes due to the factor         . Contrary to this, 

backward scattering in the 2DEG plays key role in determining the transport property at low 

density and low temperature [31, 37]. Also, the backward scattering in the BLG is restored 

and even enhanced by the factor           because of the quadratic dispersion and, most 

critically, due to its chiral nature.  The chiral factor 
 

 
  

       

        
   

             for MLGG 

reduces to 
 

 
         for     which is the case of MLG and 1 for     which is the 

case of 2DEG. Due to the qualitative difference in the dispersion relation and screening 

property between MLG and BLG, it is expected that the transport and other electronic 

property of BLG are more similar to the 2DEG than the MLG. 
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2.3 Results & Discussions 

2.3.1 Static Polarization Function of MLG, BLG, MLGG & 2DEG 

(a)      (b) 

  

Figure 2.1: Calculated (a) Intraband (black-dashed) and interband (black-dot dashed) and (b) 

total (black-solid) static polarization function as a function of wave vector for MLG. Blue-

dashed curve show the static polarization function of 2DEG. 

In Fig. 2.1, we show the calculated static polarization function as a function of the wave 

vector for MLG. Figure 2.1 (a) shows the numerically calculated intraband (black-dashed) 

and interband (black-dot dashed) polarization functions, respectively, using Eqs. (2.3) and 

(2.4) for MLG. Figure 2.1 (b) shows the calculated total polarization function of MLG with 

those of 2DEG (Blue-dashed) for comparison. At     , we have       
         

         and       
          . For      ,       

       and       
       decreases and 

increases, respectively, with   increases in a such way the total static polarizability becomes 

a constant i.e.               
             

               . For      , the total 

polarization function of MLG increases linearly with   due to the interband transition as can 

be seen in Figure 2.1 (a). This is a very different behavior from 2DEG where the static 

polarization function falls off rapidly for       with a cups at       [32]. Over all MLG 

screening is a mixing of metallic screening due to intraband and insulation screening due to 

interband.  
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 (a)      (b) 

  

Figure 2.2: Calculated (a) Intraband (red-dashed) and interband (red-dot dashed) and (b) 

total (red-solid) static polarization function as a function of wave vector for BLG. 

In Figure 2.2, we show the calculated static polarization function as a function of the wave 

vector. Figure 2.2 (a) shows the numerically calculated intraband (red-dashed) and interband 

(red-dot dashed) polarization functions, respectively, using Eqs. (2.3) and (2.4) for BLG. 

Figure 2.2 (b) shows total polarization functions of BLG. At     , same as in the case of 

MLG,       
                  and       

          , which follow also from the 

compressibility sum rule                             . For small  ,       
    

decreases as         
 , and       

    increases as       
 . This behavior comes from the 

overlap factor     
    in Eqs. (2.3) and (2.4). However, for BLG, the cancellation of two 

polarization functions is not exact especially for      because of the enhanced 

backscattering, so the total polarization function increases as   approaches   , which means 

screening increases as   increases. Thus BLG, in spite of being a 2D system, does not have a 

constant Thomas-Fermi screening up to       as exists in MLG and 2DEG [35]. 
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Figure 2.3: Calculated static polarization function of MLGG as a function of wave vector for 

different values of gap parameters. 

The computed normalized polarization function as a function of   from Eq. (2.8) is plotted in 

Figure 2.3 for different gap values. As can be seen from Figure 2.3, the effect of introducing 

gap in electronic spectrum is almost unnoticeable for      , which means that the 

intraband and interband transitions almost cancel and the total polarization function is 

constant, similar to that in MLG [34]. But when       (large momentum transfer regime); 

(i) the magnitude of polarizability versus wave vector curve decreases on increasing the gap, 

at all  -values, and (ii) for       the behaviour of polarizability versus wave vector curve 

for MLGG resembles to a great extent with that of 2DEG polarizability which is in stark 

contrast to MLG where the polarizability increases for      . This means that in MLGG 

the interband transitions dominate over the intraband transition for large wavevectors, 

suggesting that the scattering by the screened coulomb potential is much reduced due to 

enhanced screening in this limit. This also implies that for    , polarizability (MLGG) 

shows relativistic characteristics while at     it reflects the nonrelativistic nature of 2DEG 

caused by breaking of sublattice symmetry. 
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2.3.2 Electron-Impurity Scattering Rate as a Function of Energy 

We attempted both analytical as well as numerical solutions of Eqs. (2.10)-(2.13). Numerical 

solutions have been worked out whenever analytical solutions are not possible. Integration 

over   in Eq. (2.10), for       , where             is Fermi wave vector, gives 

 

     
  

      

 
  

 

         
      

         
     

         ,              (2.18) 

where                 is the dimensionless coupling constant. In obtaining Eq. (13), we 

have used the scaled variable;            ,         , and normalized energy   

     .    and    are defined as; 
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              (2.20) 

For        , integral over   in Eq. (2.10) is not amenable to analytical solution and 

therefore numerical integral was made. The formalism developed in this study has better 

applicability for the case of      . We computed electron-impurity scattering rate as 

function of   for        and       , at three different values of           . The 

computed normalized scattering rate,               is potted in Figure 2.4. As can be seen 

from Figure 2.4,            enhances monotonically for        and attains a 

maximum value at around         . It starts declining declines thereafter for higher values 

of  , at all values of  . 
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Figure 2.4: Normalized scattering rate of MLG,              as a function of normalized 

energy     , for different impurity concentration,        . 

On comparing our computed result on            with prior reported calculations of 

electron-impurity scattering rate for MLG, we find; (i) unlike earlier reported calculations, 

           does not exhibit maximum value at     , (ii)            shows strong 

dependence on   and it tends to zero when   goes to zero, (iii) the  -dependence of   

         is much stronger for         than for higher value of  , (iv) for higher values of 

energy, scattering rate tends to become less dependent on  , suggesting that a larger 

excitation energy        destroys electron-impurity scattering and (v) the scattering rate 

enhances on increasing impurity concentration,   . Prior reported calculations on 

conductivity, within Boltzmann transport theory, for MLG have used            instead of 

           , an averaged over all possible values of  , for comparing their theoretical 

results with experimental [25]. By looking at Figure 2.4 and on the basis of above discussions 

it can easily be said that this kind of comparison between theory and experiment is 

misleading and incorrect. 
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Figure 2.5: Normalized scattering rate of 2DEG,                as a function of normalized 

energy     , for different impurity concentration,        . 

To provide a thorough understanding of electron-impurity scattering in MLG, we computed 

the electron-impurity scattering rate for 2DEG as well as for BLG with the use of Eqs. (2.11) 

and (2.12).  We computed             and            in terms of scaled variable;   

              ,         , and normalized energy        . Figure 2.5 displays our 

computed normalized electron-impurity scattering rate,                as a function of   for 

2DEG (GaAs), which is modeled in terms of parameters;          , and          

[38]. Figures 2.4 and 2.5 suggest that the  -dependence of electron-impurity scattering rate in 

MLG is entirely different than that in 2DEG.             increases, while              

declines with   in the range of       . For                  declines whereas 

            increases with  . This difference in the nature of two scattering rates as 

function of   can be attributed to the difference in  -dependence of polarization function, 

quasi-particle energy dispersion relation and the density of states of MLG and 2DEG. As is 

known, quasi-particle energy varies linearly with wave vector in case of MLG, while it varies 

as quadratically with wave vector for 2DEG. The density of states is independent of   for 
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2DEG, while it varies linearly with   for MLG. The static polarization function,     of 

MLG exhibit entirely different behavior as a function of   than that of 2DEG, as can be seen 

from Figure 2.1 (b). Polarization functions of both MLG and 2DEG are independent of   

for        . However, polarization function increases linearly with   for MLG and 

declines quadratically for the 2DEG, for        as is displayed in Figure 2.1 (b).  

Equations (2.10) to (2.13) show that the electron-impurity scattering rate is inversely 

proportional to the square of static dielectric function that involves     . The increase of 

           with   for      is mainly contributed by  -dependence of        .  

For     ,         and         contributes oppositely to            to give a declining 

behaviour of            versus  .  

 

Figure 2.6: Normalized scattering rate of BLG,              as a function of normalized 

energy     , for different impurity concentration,        . 

Our computed electron-impurity scattering rate for BLG using Eq. (2.12) is plotted as a 

function   in Figure 2.6. For computation of results we used;          , and   

       . Nature of            versus   curves is very different from that of            

and             versus   curves, as can be seen from Figures. 2.4, 2.5 and 2.6. Unlike the 
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case of 2DEG,           exhibits continuous decline with  . However, a slight dip at 

around      can be seen from the Figure 2.6. It is interesting to note that though the 

polarization function for both MLG and BLG remains constant for          ,           

and           exhibit opposite behaviour with   for   up to   . The dip in            at 

around      could be attributed to a peak in polarization function of BLG at      . The 

nature of scattering rate with   does not alter on changing the value impurity concentration 

for MLG, 2DEG and BLG, as can be seen from Figures. 2.4, 2.5 and 2.6.  For       , 

polarization function of BLG is initially constant with  , and then it increases sharply for    

up to     because of the enhanced backscattering in BLG, which is not the case of MLG and 

2DEG. 

 

Figure 2.7: Normalized scattering rate of MLGG,               as a function of 

normalized energy (    ), for different gap parameters (      ). Here we used 

dimensionless coupling constant     and scaled impurity concentration    . 

Our computed                as a function of   at different values of           for 

zero temperature is displayed in Figure 2.7. As can be seen from Figure 2.7,                

for zero gap (gapless graphene); (i) goes to zero for    , (ii) exhibits a maximum at around 
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        , and (iii) decreases monotonically thereafter for higher  -values. For non-zero 

values of gap                ,               approaches a finite value at     and the 

nature of               verses   curve changes on increasing  . At higher values of  , 

              shows an inverted behavior to that seen at      for         . The nature 

of               verses E curve strongly depends on   for lower values of  , which is not 

the case for higher values of  . This distinctly different behavior of               verses   

for     from that for    , can be attributed to the difference in energy dispersion relation 

and density of states for the two cases. Gapless graphene exhibits linear energy dispersion 

relation and zero density of states at Dirac points, which is not the case for gapped graphene. 

On comparing our computed results for gapped graphen       with those for BLG, we find 

that nature of               as a function of   curve is very similar to that of BLG, when 

       . 

 

Figure 2.8: Normalized scattering rate of MLGG,               as a function of gap 

parameter (      ), for different values of normalized energy (    ). Here we used 

dimensionless coupling constant     and scaled impurity concentration    . 

The effect of opening of gap in electronic states on electron-impurity scattering can be 

understood from computed              as a function of gap parameter     at different 
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values of normalized energy (    ), displayed in Figure 2.8. It can be seen that behavior of 

    verses   curve for     is distinctly different from that at                 when 

       . The  -dependence of              for     is much stronger than that for 

               . This clearly suggests that; (i)              goes to zero when both   

and   are zero, and (ii) nature of electron-impurity scattering in the regime of   and   when 

one of these is zero and both are smaller than Fermi energy is entirely different than that for the 

cases when both     and    . We thus find that opening of energy gap in electronic 

spectrum of single layer graphene, which changes density of state and energy dispersion 

relation, plays an important role in determining transport properties of graphene. 

2.3.3 Electron-Impurity Scattering Rate as a Function of Impurity 

Concentration 

 

 

Figure 2.9: Normalized scattering rate,          is plotted as a function of        , for 

MLG (red-dashed), BLG (blue-dot dashed) and 2DEG (black-solid). Here we used 

dimensionless coupling constant        and     . 

Figure 2.9 depicts variation of scattering rate as a function of impurity concentration at Fermi 

energy for MLG, BLG and 2DEG. As can be seen from the figure, it enhances on increasing 
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impurity concentration for all the cases. It is interesting to note from Figure 2.9 that scattering 

rate does not vary linearly with change in impurity concentration. High impurity 

concentration giving rise to a sharp increase in scattering rate, as can be observed from 

figure.          is not plotted for        because at very high value of impurity 

concentration validity of Boltzmann transport approximation comes under question mark. 

 

Figure 2.10: Normalized scattering rate,              of MLGG as a function of   

      for different gap parameters (      ). Here we used dimensionless coupling 

constant     and     . 

Figure 2.10 depicts variation of scattering rate of MLGG as a function of impurity 

concentration at Fermi energy for different values of gap parameters. As can be seen from the 

figure, it enhances scattering rate with an increasing impurity concentration for all values of 

gap parameters. Our observation from Fig. 2.8 that the scattering rate enhances on increasing 

gap parameters up to        and gradually deceases for higher values can also be 

confirmed from the scattering rate curves shown in Fig. 2.10 where, the scattering rate curve 

calculated for       is laying lower than the scattering rate curve calculated at      . 

 The electron–phonon interaction can play an important role in determining transport 

properties of BLG as well as MLG [39, 40]. It has been shown that electron-phonon 
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interaction renormalizes the mass of electron in term of electron-phonon coupling strength in 

BLG. As compared to graphite, larger renormalization of Fermi velocity due to electron-

phonon interaction has been found in BLG [39]. Density of states of BLG, which appears in 

formalism of          , involves effective mass of electron. It can therefore be inferred that 

electron-phonon interaction will change the magnitude of          . However, all behavior 

of            with   and    will remain unaltered. Also, at very low temperatures        , 

electron-electron interactions and the electron-phonon interactions are not effective and 

therefore electron-impurity scattering dominates the electronic scatterings [41]. 
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