
Chapter 2

Theoretical Models

2.1 Optical Model

The interaction between nucleons and a nucleus or between two nucleons, is a very

complicated mechanism to be considered for the analysis of elastic scattering.

In the optical model, these complicated interactions are approximated by the

simple two body potential between the incident particle and the target nucleus.

Historically, the Optical Model was proposed by H. Feshbach, C.E. Porter and

V.F. Weisskopf in 1954. It was suggested that the incident single particle, in

its encounter with the target nucleus faces an average complex potential[2, 43].

The interaction between incident nucleons and a target nucleus can be treated in

analogy to the transmission of light through the cloudy refractive medium. It was

also refereed as ‘cloudy crystal ball model’.

According to this model the elastic scattering may be considered as the refraction

of light and all the non-elastic channels(other than elastic) as an absorption of

light. Thus, the optical potential consists of two parts that are real and imaginary.

Where, real part gives rise to elastic scattering and the imaginary part represents

absorption from elastic channel. This was considered as a complex potential to

attribute the possibility of non-elastic scattering that goes into the imaginary part.

22



Chapter 2. Theoretical Models 23

There are two aspects to the optical model. The first aspect is related to the

fundamental one that deals with the nucleon-nucleon interactions. The second is

the phenomenological aspect in which parameters have to be properly chosen and

the parameters can be varied to obtain a better agreement with the experimental

data. In this work the second alternative has been applied for the optical model

analysis of the elastic scattering angular distributions.

2.2 Optical potential

The complex form of optical potential can be written as:

U(r) = −V◦f(r, rv, av) − iW◦f(r, rv, av)

Where, V◦ and W◦ are the potential depths, rv and rv are the radii and av, aw

are the diffuseness of the real and imaginary parts of the potential, respectively.

Thus, there are six parameters that one has to vary for obtaining the optimum

value from the fitted data.

Also, f(r, r◦, a◦) is,

f(r, r◦, a◦) =
1

1 + exp( r−Rr

a
)

(2.1)

Where, Rr = r◦ A1/3 This is a two-parameter Fermi form which can be used in

the optical potential due to the fact that the range of nuclear force is short, the

radial dependence of an optical model potential Uopt(r) follows closely the density

distribution in a nucleus. This is a well known Woods-Saxon form of potential[1].

To include the effect of Coulomb potential to the scattering the following conditions

should be considered,

Uc(r) = ZpZe
2 ×
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; r ≥ RCoul

(2.2)

Where, z and Z are the charge numbers for projectile and target nuclei respectively,

and RC is a Coulomb radius.
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Moreover, to account for the spin dependences, a term that includes spin effects

is,

Us.o(r) = σ.l

(

~

mπc

)2
1

r

[

Vs
d

dr
f(r, rsv, asv) + iWs

d

dr
f(r, rsw, asw)

]

(2.3)

Here, the derivatives of the volume density distributions are used because the

radial dependence comes from analogy with the Thomas spin-orbit potential for

the force felt by atomic electrons in the Coulomb field of a nucleus.

Thus, the complete form of Phenomenological potential is[1],

U(r)=Uvol(r) + US.O(r) + UC(r)

2.2.1 Dispersion Relation calculation

Dispersion Relation analysis is useful to interpret the energy dependence of poten-

tial parameters V (r;E) and W (r;E) at near the Coulomb barrier. This includes

the effects of all couplings in a general but implicit way.

From the optical model analysis of elastic scattering angular distributions, it was

seen that the potential parameters V (r;E) and W (r;E) show rapid variation in

the vicinity of the Coulomb barrier. Particularly, the W (r;E) sharply decreases

when E falls below the top of the Coulomb barrier and this decrease is associated

with a bell shaped maximum of V (r;E)[44]. The real and imaginary parts of

complex optical potential U(r;E) = V (r;E) + iW (r;E), are related with the

dispersion relation,

∆V (r;E) =
P

π

∫ ∞

0

W (r;E ′)

E ′ − E
dE ′ (2.4)
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This equation refers to the potential at a given radial distance. Here, P is the

principle value, V◦ is the most smoothly dependent on energy and its energy de-

pendence arises due to non-locality due to exchange.

V (r;E) = V◦(r;E) + ∆V (r;E), (2.5)

Figure 2.1: The linear schematic model for W (E), consisting of three straight-
line segments[taken from [44]].

The dispersion term ∆V (r, E) depends upon W (r, E) at all energies E but the

latter is not known so the absolute value of ∆V remains in doubt. However, any

localized, rapid variation in the imaginary potential W (r, E) must be accompanied

by a similarly localized variation in the real term ∆V (r, E).

In the present work, linear schematic model have been used to study the energy

dependence of the potential parameters. Using this the real part V (E) can be

calculated from the W (E) which is composed of three linear segments as shown

in Fig.2.1.

The algebraic equation for the ∆V (r, E) will be,

∆V (E) = (E − Eb)
P

π

∫ ∞

0

W (E ′)

(E ′ −Eb)(E ′ − E)
dE ′ (2.6)
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Here, Eb is the reference energy. For one more reference energy Es, ∆V (E) will

be,

∆VEs(E) = ∆V (E) − ∆V (Es) (2.7)

The contribution to ∆V (E) from the increment (Wij=W (Ei) −W (Ej)) of each

line segments will be,

∆Vij(E) =
Wij

π
[ǫiln|ǫi| − ǫjln|ǫj|], (2.8)

Here, ǫi=
(E−Ei)

∆ij
, ǫj=

(E−Ej)

∆ij
, and ∆ij=(Ej −Ei).

The resultant real part will be,

π∆V (E) = W◦[ǫaln|ǫa| − ǫbln|ǫb|] + (W1 −W◦)[ǫ
′

bln|ǫ
′

b| − ǫ
′

cln|ǫ
′

c|]− (2.9)

W1[ǫ
′′

c ln|ǫ
′′

c | − ǫ
′′

mln|ǫ
′′

m|] +W1[ηlnη − (n + 1)ln(η + 1)] (2.10)

Where, W◦, W1 ≥ 0 and ǫi=
(E−Ei)

∆◦

, ǫ
′

i=
(E−Ei)

∆1

, ǫ
′′

i =
(E−Ei)

∆m
, η= ∆1

∆m
.

2.3 One Dimensional Barrier Penetration Model

The one dimensional barrier penetration model (1DBPM) is used frequently to

interpret fusion cross section data. Here, the nuclear fusion is based on the single

parameter, radial distance, therefore it is referred as the one dimensional model.

Classically, fusion occurs when transmission coefficient (Tl) is one and it doesn’t

for Tl=0. That means fusion can not take place at below the Coulomb barrier

energy. However, quantum mechanically at below the Coulomb barrier energy

also, the fusion can occur by tunneling through the barrier[45, 46].

In case of heavy ion reaction the fusion cross sections can be calculated from the

relation as given below:

σfus(E) =
π

k2

∞
∑

l=0

(2l + 1)Tl (2.11)
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The transmission coefficients due to the inverted parabola, can be written using

the Hill-Wheeler formula[47],

Tl(E) =

(

1 + exp

[

2π

~ωl
(Vb(l) − E)

])−1

(2.12)

where Vb(l) is the barrier height and ~ωl is the corresponding barrier curvature

for the corresponding lth partial wave. It is assumed that the barrier position Rb

and the barrier curvature ~ωb do not change with the angular momentum.

The equation of fusion cross section is reformed by replacing sum by integration:

σfus(E) =
~ωbR

2
b

2E
ln

(

1 + exp

[

2π

~ωb

(E − Vb)

])

(2.13)

where, Vb, Rb, ~ωb are the barrier height, position and the curvature for l = 0,

respectively.

At energies E ≫ VB the cross section can be approximated to the simple classical

expression as given below:

σfus(E) = πR2
b

(

1 − Vb

E

)

(2.14)

For energies E ≪ VB the cross section can be approximated to the,

σfus(E) =
~ωbR

2
b

2E
exp

[

2π

~ωb
(E − Vb)

]

(2.15)

From above equation it is understood that as the beam energy increases, the fusion

cross sections also increases exponentially.

2.4 Decay of Compound Nucleus: Statistical model

The information about the decay of the equilibrated compound nucleus can be

derived from the statistical model analysis. The concept of compound nucleus

formation was proposed by Niels Bohr in 1936[43]. In the nuclear reaction, when
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a projectile x enters into a target nucleus X, an intermediate stage is formed before

the production of the final nuclei Y and y.

x+X→C∗→Y + y (2.16)

While entering into the target nucleus, projectile quickly dissipates its energy and

merges with the closely packed nucleons. In this way all the nucleons in the target

nucleus gains additional energy but their random motion gets disturbed. Not a

single nucleon of them will have enough energy to come out of the nucleus which is

of the order of few million electron volts. However, after a long time when a large

number of collision occurs among nucleons, enough energy may be concentrated on

one of them enabling to escape from the nucleus which then deexcites or cools off to

the ground state. After decaying by emitting nucleons and clusters the remaining

residual nucleus is called evaporation residues (ER) which may further decay by

emitting γ rays or by β-decay or by fission. After emission of light particles from

the compound nucleus if its energy is sufficiently high (above about 10 MeV) then

the fusion cross-section can be measured by detecting evaporation residues. This

has been the most direct method for light and medium mass systems (A < 80)

at excitation energies up to about 2 MeV/nucleon. While, at higher energies it

may be necessary to distinguish between evaporation residues and products of deep

inelastic scattering. In case of heavy compound nuclei, fission is a competing decay

mode where the compound nucleus cross-section is the sum of the cross-sections

corresponding either to evaporation residues or to pairs of fission fragments. In

the statistical model, all the decay channels of the Compound Nucleus(CN) are

taken to be equally probable and depend on the factors such as density of final

states and barrier penetration factors [48].

The Statistical model code (PACE)

In the present work, the Statistical model code PACE (The Projection Angular-

Momentum Coupled Evaporation) has been used to study the evaporated α par-

ticles, which has been developed by A. Gavron[49]. Basically it uses Monte
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Carlo simulation method to obtain the decay sequence employing Hauser Fesh-

bech method. From this calculation one can obtain the energy spectra, angular

distributions of particles and multi particle correlation in the lab frame. Using this

code one can trace different events for the entire decay sequence from compound

nucleus to any of the out going channel.

2.5 Fusion cross section calculations

At energies near and below the Coulomb barrier energy, the fusion cross sections

are strongly influenced by coupling of the relative motion of the colliding nuclei

to several nuclear intrinsic motions. The CCFULL code has been widely used to

compute the fusion cross sections and mean angular momenta of the compound

nucleus which considers the coupling to all order. This is a FORTRAN 77 program

that considers the isocentrifugal approximation and solves the coupled channels

equations [50].

[

− ~
2

2µ

d2

dr2
+
J(J + 1)~2

2µr2
+ V

(0)
N (r) +

ZPZT e
2

r
+ ǫn − E

]

ψn(r)+
∑

m

Vnm(r)ψm(r) = 0

(2.17)

Where, r is the radial component, µ is the reduced mass, E is the energy in the

center of mass system, ǫn is the excitation energy of the nth channel and Vnm are

the matrix elements of the coupling Hamiltonian, which consist of Coulomb and

nuclear components.

It employs Coulomb excitations and the incoming wave boundary condition inside

the Coulomb barrier. According to incoming wave boundary conditions(IWBC),

the CCFULL program will solve the coupled channels equations at a minimum

position r=rmin where inside the Coulomb barrier strong absorption take place.

In this method of calculations the numerical solution is matched to a linear com-

bination of incoming and outgoing and Coulomb wave functions at finite distance

rmax beyond which both the nuclear and the Coulomb coupling are sufficiently

small.
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The solution of the coupled-channel equations 2.18 with the proper boundary

conditions is,

ψm(r) =
∑

n

Tnχnm(r) (2.18)

From this, the transmission coefficients are obtained and finally the total trans-

mission probability is obtained by summing over the distribution of transmission

probabilities.

PJ(E) =
∑

n

kn(rmin)

k◦
|Tn

2| (2.19)

The fusion cross section and the mean angular momentum of compound nucleus

are thus calculated by,

σfus(E) =
∑

J

σJ(E) =
π

k2
◦

∑

J

(2J + 1)PJ(E) (2.20)

< l >=
∑

J

JσJ (E)/
∑

J

σJ (E) (2.21)

=
π

k2
◦

∑

J

J(2J + 1)PJ(E)/
π

k2
◦

∑

J

(2J + 1)PJ(E) (2.22)

2.6 Coupled Channels calculations

During the interaction process, apart from elastic scattering several other non-

elastic collisions may also take place particularly when one or both of the interact-

ing nuclei are deformed. Particle in any of the nuclei may get excited during the

reaction from its initial bound state to another state which may be bound or un-

bound. Also, the nucleon transfer may occur from one nucleus to the other, either

singly, or as the simultaneous transfer of two nucleon as a particle cluster. Theo-

retical models can be used to predict the effects of these multi-step processes to any

or all orders, in terms of coupled channels formalism. The calculation that include

only bound inelastic states and no transfer or breakup are added, is referred as

simple coupled channels calculation. If the transfer channels are added in different

partitions then it is termed as coupled reaction channels (CRC) calculation. If the

breakup channels in the continuum are included with some discretization method
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then it is known as Continuum Discretized Coupled Channel(CDCC) formalism.

In the present thesis work, the coupled channels calculations have been done in

terms of CRC and CDCC formalism using FRESCO code[42].

2.6.1 Coupled Reaction Channels(CRC) formalism

In the coupled reaction channels (CRC) model of direct reactions, a model of the

system wave function is created and Schrödinger’s equation is solved as accurately

as possible within that model space. Here, P is defined as the projection operator

onto the model space. The model used here projects the complete wave function

Ψ onto a product φi ≡ φip ∗φit of projectile and target states with a wave function

ψi(~Ri) describing their relative motion:

PΨ ≡ Ψ =
N

∑

i

φiψi(~Ri) (2.23)

Here, the basis states φip and φit can be bound states of their respective nuclei, or

they may be discrete representations of continuum levels for particular ith channel.

The states φi can be in different mass partitions, or they can be different excited

states of the projectile and/or the target. In this(CRC) framework there is a finite

set (say N) of square-integrable basis states, as this leads to a finite set of equations

coupling the channel wave functions ψi(~Ri) as unknowns. In the model space, the

Schrödinger’s equation [H − E]Ψ = 0 will be changed to [H − E]Ψ = 0, for a

complete Hamiltonian H and total energy E. Here,

H = PHP − PHQ 1

QHQ− E − iǫ
QHP, (2.24)

And Q ≡ 1 − P and ǫ is a positive infinitesimal quantity whose presence ensures

that the excluded channels have a time-retarded propagator, and hence removes

flux from the model space. Here, the second term as a whole describes the ef-

fects of the excluded channels on the model subspace PΨ. These effects may have

contributions from the compound nucleus formation. Due to the lack of detailed

knowledge of these effects, the model Hamiltonian H uses effective potentials which
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approximates the processes in some average manner. The effective potentials are

optical potentials with real and imaginary components fitted to some simpler kinds

of reactions, and the compound nucleus formation contributes the imaginary com-

ponent. The projected model Hamiltonian H for the individual basis states φi in

the CRC system satisfies the relation as given below:

Hi − Ei = 〈φi|H − E|φi〉 (2.25)

Here, Ei is the asymptotic kinetic energy in the ith channel and Hi is the channel-

projected Hamiltonian. This will be composed of a kinetic energy term and a

diagonal optical potential. The ‘interaction potential’ Vi is also a part of the H
which is not included in Hi. Now,

Hi − Ei + Vi = H− E. (2.26)

This provides Vi which have the vanishing diagonal matrix elements 〈φi|Vi|φi〉 = 0.

The model Schrödinger’s equation [H−E]Ψ = 0, after projecting separately onto

the different basis states φi, the set of equations:

[Ei −Hi]ψi(~Ri) =
∑

j 6=i

〈φi|H −E|φj〉ψj(~Rj). (2.27)

These equations couple together the unknown wave functions ψi(~Ri). The matrix

element 〈φi|H − E|φk〉 has two different forms, depending on whether we expand

H− E = Hi − Ei + Vi (post form)

= Hj − Ej + Vj (prior form).

So,

〈φi|H − E|φj〉 = V post
ij + [Hi − Ei]Kij(post) (2.28)

or = V prior
ij +Kij [Hj −Ej ](prior)
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where,

V post
ij ≡ 〈φi|Vi|φj〉, V prior

ij ≡ 〈φi|Vj|φj〉, Kij ≡ 〈φi|φj〉. (2.29)

The overlap function Kij = 〈φi|φj〉 in equation 2.28 arises from the well-known

non-orthogonality between the basis states φi and φj if these are in different mass

partitions. The more details are given in the Ref.[51].

2.6.2 Continuum Discretized Coupled Channel(CDCC) for-

malism

A theoretical formalism called the Continuum Discretized Coupled Channel(CDCC)

method is used to study the projectile breakup effects on different reaction pro-

cesses such as the inelastic scattering and transfer reaction through the various

multi step processes. It was first introduced in the study of deuteron breakup

process. The CDCC method can be generalized to include the target excitation

channels as well as the projectile-target mutual excitation channels. Thus, the

inelastic scattering and inelastic breakup reactions can also be studied together

with their elastic counterparts. For the reactions which involve weakly bound nu-

clei, this method is currently most reliable and practical theoretical tool to study

the breakup process and its role on other reactions. In the present thesis work

CDCC calculations have been carried out for 6,7Li projectiles. In this method, the

breakup continuum states are described in terms of a finite number of discrete

states. In the calculation the continuum discretized states are treated exactly in

a coupled channels framework. In order to have finite representation of original

continuum states three standard ways:

• The mid point method, which consists of Ukp(r) for a discrete set p = p0...pn

of scattering energies such as ǫp = ǫmin + (p− p0)∆ǫ, where ǫmin and ǫmin +

(pn − p0)∆ǫ, the minimum and maximum excitation energies to be included

in the model space.
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• The second one is pseudo states which are simply the eigen state of the

internal Hamiltonian Hint on some convenient square integrable basis. This

pseudo state decay to zero at large distances and have no simple relation to

the v + c scattering solutions Uk(r).

• The third one is the continuum or average method, where the scattering wave

functions are averaged over k to be made square integrable.

The radial functions Up(r) for each ‘bin’ states are superposition of the scattering

eigen states for some weight function gp(k) as,

Up(r) =

√

2

πNp

∫ kp

kp−1

gp(k)Uk(r)dk (2.30)

With normalization constant,

N =

∫ kp

kp−1

|gp(k)|2dk (2.31)

Such that Up(r) form an orthonormal set when all the (kp−1, kp) are non overlap-

ping continuum intervals. Suppose to have amplitude for a cross section a(k) =

〈uk(r)|Ω(r)〉, for some source term Ω(r). If we insert a set of bin functions,

a(k) = 〈uk(r)|Ω(r)〉 ≡
∑

p

〈uk(r)|Up(r)〉〈Up(r)|Ω(r)〉 (2.32)

So, to have the 〈uk(r)|Up(r)〉 overlap of bin wave function and true scattering

wave function uk(r), gp(k) should be chosen to be able to reproduce a(k).For

the bins far from the resonance state large r should be chosen. Thus, uk(r) α

eiδl(k)sin(kr − lπ/2 + δl(k)). Where, δl(k) are the phase shifts of the scattering

states. From the equation 2.32, the a(k) will be,

e−iδl(k)〈sin(kr − lπ/2 + δl(k))|Ω(r)〉 (2.33)

The resonant behavior of a(k) can be reproduced by setting

gp(K) = e−iδl(k) sin δl(k). The inclusion of e−iδl(k) factor in the gp(K), make the
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wave function real valued. Same as the average method the pseudo state method

also based on square integrable functions, however the mid point method does not

use square integrable basis state.

2.7 Extraction of fusion barrier distributions

In the present thesis work fusion barrier distributions have been carried out from

quasi-elastic as well as fusion excitation functions. A brief introduction to the

fusion barrier distributions is given in the first chapter of this thesis.

2.7.1 Barrier distribution from quasi-elastic excitation func-

tion

Classically, the derivation of single barrier from the quasi-elastic scattering is al-

ready given in the section 2.7. Several barriers may be described by a coupled

channel model which considers coupling to a finite number of states but neglects

their excitation energies (adiabatic approximation) and uses the isocentrifugal ap-

proximation as described in the section 2.5.

Considering the form factor F (r) of the coupling interaction as channel indepen-

dent, the coupled-channel equations will be,

(T + V (r) + ΛαF (r) −E)Ψα = 0 (2.34)

where, E is the incident energy and Λα represents diagonal elements of coupling

matrix for channel (α). T and V are respectively, the kinetic and potential en-

ergies. And, the Ψα are obtained such that the coupling interaction Vij=F (r)Γij

becomes diagonal. Γij represents coupling matrix.

Ψα = U †
αiφ

phys
i (2.35)
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Where, Uαi is defined for unitary transformation and Ψα is the eigen channel wave

function. φphys
i is the nuclear wave functions in the physical channels i. So, that

UαiΓijU
†
jβ = Λαiδαβ (2.36)

The physical S-matrix elements will be[24],

Sphys
i;0 = UiαU0αSα (2.37)

Now, putting this values in the equation of total fusion cross section will be,

σf =
π

k2

∑

l,i,αβ

(2l + 1)(1 − UiαU0αS
l
αU

∗
iβU

∗
0αS

l∗
β ) (2.38)

From the relation

∑

i

UiαU
∗
iβ =

∑

i

U †
βiUiα = δαβ (2.39)

The equation 2.38 will be ,

σf =
π

k2

∑

l,α

Wα(2l + 1)(1 − |Sl
α|2) =

∑

α

Wασ
f
α (2.40)

Now, from the equation 1.6,

Df =
dT

dE
=

1

πr2
× d2(E.σf)

dE2
=

∑

α

Wα
d2(E.σf

α)

dE2
=

∑

α

WαD
f
α (2.41)

In this way for multiple fusion barriers in the adiabatic and isocentrifugal approx-

imation, a representation Df (E) of the fusion barrier distribution is given by the

second differential of E.σf with respect to the energy. The scattering amplitudes

in the physical channels as:

fi(θ) =
1

2ik

∑

i

(2l + 1)Pl(cos θ)exp(2iσl
α)Sl

i (2.42)

=
1

2ik

∑

i

(2l + 1)Pl(cos θ)exp(2iσl
α)UiαU0αS

l
α (2.43)
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Here, σl
α are the Coulomb phases. After summing over the squares of the elastic

and inelastic amplitudes yields using equation 2.39, the quasi-elastic scattering

differential cross section will be,

σqel

σR
=
σel

σR
+

∑

inel

σinel

σR
=

∑

α

Wα
σel

α

σR
(2.44)

Hence, the quasi-elastic differential cross section is a weighted sum of the eigen

channel elastic differential cross sections.

Dqel(E) =
d

dE
(
σqel

σR
) =

∑

α

WαD
el
α (2.45)

This reflects the distribution of the barrier weights Wα.

2.7.2 Barrier distribution from fusion excitation function

The representation of fusion barrier distribution can also be obtained from the

measured fusion cross sections due to the fact that T0+ R0 = 1. The coupling

of various reaction channels can reveal the distributions in barrier heights. The

equation of total fusion cross-section for the lth partial wave can be written as,

σfus(E) =
π

k2
◦

∑

l

(2l + 1)Tl(E) (2.46)

The scattering matrix from the transmission probability,

Tl(E) = 1 − |Sl|2 (2.47)

Inserting this value in the equation 2.46,

σfus(E) =
π

k2
◦

∑

l

(2l + 1)(1 − |Sl|2) (2.48)

The transmission functions Tl(E), in case of inverted parabola is,
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Tl(E) = 1 + exp[
2π

~ωl

(Bl − E)] (2.49)

Now, equation 2.48 will be,

σfus(E) =
~ωR2

2E
ln(1 + exp[

2π

~ω
(E −B)]) (2.50)

Here, B is the barrier height and ~ω0 is the barrier curvature for l = 0. R is the

barrier position. Now, the classical expression for a single barrier is:

σ(E,B) = πR2(1 − B

E
)(E > B) (2.51)

= 0(E < B). (2.52)

The one-dimensional Coulomb barrier can be replaced by a continuous distribution

of fusion barriers D(B) by the σf ,

σfus(E) =

∫ ∞

0

σ(E,B)D(B)dB (2.53)

where σ(E,B) is the cross-section, summed over all partial waves l, for a single

barrier B and
∫

D(B)dB = 1 [52, 53]. The double derivative of transmission

co-efficient Tl (1.5) gives delta function as given by,

dT (E)

dE
=

1

πr2

d2(E.σFus)

dE2
= δ(E −B) (2.54)

Inserting this equation into equation 2.53, the total fusion cross-section will be-

come,
dT (E)

dE
=

1

πr2

d2(E.σFus)

dE2
= D(E − B) (2.55)

This equation can be used to obtain the barrier distribution directly from the

measured fusion cross-sections.




