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2.1 Introduction 

The conductivity behaviour of the amorphous solid electrolytes or fast ion 

conducting glasses has been much debated and various models and theories have 

been developed from time to time regarding their bulk conductivity, relaxational 

behaviour etc. to reach to a common consensus regarding ion conduction 

mechanism. In the present chapter, details on general features of ionic conduction in 

glasses and various theoretical models to understand the conduction mechanisms of 

ion conduction in glasses have been included. Along with that a discussion on 

various formalisms of impedance spectroscopy used in the present work has been 

included in section 2.4. 

2.2 General features of superionic conduction in glasses 

2.2.1. Cation and Anion Conducting glasses:  

 

 Silicon atom       Oxygen atom        mobile cation 

Fig. 2.1. Warren-Biscoe model of the structure of alkali silicate glasses showing motion of cations 
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The electrolytic properties of an ordinary glass were demonstrated over a 

century ago by Warburg [1, 2], who electrolyzed Na
+
 and other alkali cations 

through the walls of a thin glass tube and showed that Faraday‟s laws of conduction 

were obeyed. The cation mobility (and the corresponding immobility of anions) can 

be understood intuitively by reference to the widely cited Warren Biscoe version [3] 

of the structure of alkali silicate glasses (reduced to two dimensions) shown in Fig. 

2.1.  

According to this simplified picture, cations are placed in “holes” in a glass 

structure whose shape is largely predetermined by the partially broken (or modified) 

silicate network. Glasses are thus members of an important class of solid electrolyte 

materials, which includes fast-ion conductors such as beta-alumina, α-AgI, with 

cationic transport number, t+ =1. This form of monopolar conduction is observed in 

a wide range of borate, phosphate, silicate and molybdate, and many other glasses of 

varying compositions and stoichiometries. 

2.2.2. Effect of temperature on ionic conductivity 

It is generally observed that conductivity of a glass rises on increasing its 

temperature. The dependence of conductivity on temperature can generally be best 

approximated to the well known Arrhenius equation given as follows,  

ζDC= ζo exp (-Eζ / kT)   ……… (2.1) 

where, ζo = conductivity pre-exponential factor, Eζ = conductivity activation 

energy, k = Boltzmann‟s constant = 1.38×10
-23 

J/mole-K and T = absolute 

temperature in Kelvin scale.  
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2.2.3. The AC Conductivity Spectrum: local motions, long range conduction 

and Universal power law  

Jonscher [4] in his classic paper showed that the AC conductivity data for all 

material systems, especially in radio frequency regime, can be fit empirically to the 

following equation.  

  n

DC A        ……… (2.2) 

where, ζ (ω) = AC conductivity, ζDC = DC conductivity, and, ω = 2πf = radial 

frequency. 

This power law behaviour has been observed at such a large scale that it has 

been termed as the universal behaviour for all ion conducting systems and this 

empirical relation has been exploited to find out various properties related to ion 

conduction process like hopping frequency of ions, average relaxation time of ions, 

DC conductivity etc. 

 

Fig. 2.2. The conductivity spectrum of an AgI-Ag2O-B2O3 glass over a range of temperatures. 

(From reference [5]). 
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2.2.4. Near constant loss effects 

In many a glass systems, at low temperatures, ac conductivity shows a linear 

dependence on log f with slope = 1. This effect has now been widely accepted to 

occur in almost all ion conducting glass systems at sub zero temperatures. In the last 

few decades, ion-conducting glasses (as well as many other solid electrolytes) have 

been found to show an unexpected degree of similarity in their broadband 

conductivity spectra. In particular, two surprising universalities‟ have been detected, 

(see Fig. 2.2 and Fig. 2.3). One of them, the first universality, has turned out to be a 

fingerprint of activated hopping along interconnected sites, while the other, the 

second universality, also known as nearly constant loss (NCL) behaviour, reflects 

non-activated, strictly localized movements of the ions. The former is observed at 

sufficiently high temperatures, while the other is found at sufficiently lower 

temperatures, e.g. in the cryogenic temperature regime. 

  

Fig. 2.3. The Second universality (nearly constant loss): Low temperature conductivity 

isotherms displaying linear frequency dependence and essentially no temperature 

dependence (Fig. Taken From Ref. [6]). 
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As per Funke et al. [7, 8], universal power law and the near constant law, 

both of them are truly universal and are observable in most ion conducting systems. 

The fascination of the two universalities lies in their ubiquity, i.e. in the occurrence 

of either or both of them in quite different kinds of disordered ion-conducting 

materials [6]. These include crystalline, glassy and polymer electrolytes, molten 

salts and ionic liquids. Evidently, the existence of the universalities is not primarily 

a consequence of phase, structure and composition, but rather of some common laws 

that govern the many-particle dynamics of the mobile ions.  

2.3 Theoretical models of superionic conduction in glasses 

Ion conduction in solid phase generally involves two aspects (1) Long range 

migration which is characteristic of DC conductivity and (2) Hopping and relaxation 

between equivalent sites, and is termed as ac conductivity. Various theoretical 

approaches taken to understand mechanisms pertaining to ion transport of ion in 

solid phase/amorphous phase have been proposed by various authors from time to 

time. Here the main results have been given. 

2.3.1. Basic Theory 

Total ionic conduction in solid phase may be given as  

 n q         ……… (2.3) 

where, n is charge concentration, q is charge on ion conducting species, μ is 

mobility of the ion conducting species. It shows that total conductivity is a collective 

sum of contributions from all mobile species whether, electrons, holes, anions or 

cations. 
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2.3.2. The Anderson-Stuart Model 

Reported as early as in 1954, it was the very first theory to describe the 

mechanism of ion conduction in glass materials. The mechanism of ion transport 

was thoughtfully analyzed in the widely cited model given by Anderson and Stuart 

[9] in 1954 for Silicate glasses. Conduction is assumed to arise from the hopping of 

ions between equivalent sites separated by an activation barrier. In this model, the 

activation energy is comprised of two terms. The electrostatic binding energy of the 

original site (Eb) and the strain energy (Es). The binding energy, Eb, describes the 

Coulombic forces acting on the ion as it moves away from its charge-compensating 

site, and Es describes the mechanical forces acting on the ion as it dilates sufficiently 

the structure to allow the ion to move between the sites. The basic idea is that an ion 

makes a simple jump from one site to another, and passes through a “doorway” 

which opens as it passes through, where cation sites require only the presence of the 

non-bridging oxygens. The model, therefore, estimates the activation barrier Ea as 

the sum of two terms: Ea=Eb+Es. 

 

 

Fig. 2.4. A pictorial view of Anderson-Stuart model. 
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The A-S model can be expressed as: 

 
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  ……… (2.4) 

where δ and δD are the radii of cation and the doorway respectively, a is the jump 

distance, γ is a covalency parameter arbitrarily taken equal to the relative 

permittivity εr, βM is the Madelung constant which depends on the spatial 

arrangement of the ions. zo and δo are the charge and radius of the O
2-

 ion, z is the 

charge of the cation and G is the elastic modulus. The covalency parameter γ was 

seen by Anderson and Stuart as expressing the “deformability of electron clouds on 

the oxygen atoms”. The doorway radius δD can be estimated from diffusion data for 

noble gases such as He, Ne, Ar; since they are uncharged. A simplified version can 

be derived as the limiting value for a → ∞, we get 
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During the course of its motion, the ion has to first work against the 

coulombic interactions, which hold it in its site. Next it has to work its way through 

a narrow passage known as doorway. Doorway is the opening among the anions 

which are generally in contact. When three ions are in mutual contact, this doorway 

is a triangular opening. In oxide glasses like alkali silicates, the doorway oxygens 

can be a combination of both bridging (BO) and nonbridging (NBO) oxygen atoms. 

In the A-S model this doorway is assumed to be in the middle of two equivalent ion 

sites which are well separated. Since the passage of ions require the doorway to be 

opened, it involves work for pushing the oxygen atoms outwards leading to the 

compression of atoms in the doorway. This work also contributes to the activation 
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energy. The model, therefore, estimates the activation barrier Ea as the sum of two 

terms:  

Ea=Eb+Es    ……… (2.6) 

where, Eb and Es are electrostatic binding energy and (doorway opening) strain 

energy respectively. Eb is taken as the difference between the coulombic energy of 

the carrier ion at the saddle point position - the point of the highest barrier 

corresponding to the centre of the doorway - and the energy in its own (stable) site.  

2.3.3. The Weak Electrolyte Model 

According to the weak electrolyte model, which was initially proposed by 

Ravaine and Souquet [10], liquids or glasses may be considered as weak electrolytes 

for which the concentration of mobile ions is less than the actual stoichiometric 

concentration. In this model, the ionic conductivity is expressed as in equation, 

ζ=Σnqμ. The weak electrolyte model regards the solvent as a dielectric continuum. 

Based on this model, conductivity study of Na2O-SiO2 glasses [10,11] where 

network former SiO2 and the network modifier Na2O are considered as the solvent 

and the solute respectively, found a correlation between ionic conductivity and 

thermodynamic activity of Na2O (or Na
+
) and explained the result by postulating the 

existence of an equilibrium in the glass. 

2

[ ]

Na O Na NaO

const Na

 



 

 
  ……… (2.7) 

According to the weak electrolyte theory, the obvious way to improve the 

conductivity would be to increase the dissociation constant for the equilibrium in 

equation (2.7). This can be done by choosing a glass network with highly 

polarizable atoms, which would give a high value of the dielectric constant, εr. 
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2.3.4. Cluster bypass model 

Ingram et al. [12] proposed a ''cluster bypass'' model to explain ionic 

conduction in glasses. The basis of the cluster bypass model is the assumption that 

the liquid phase remains in small regions even far below the glass transition region. 

These regions of the liquid phase, which decrease in size with decreasing 

temperature, are situated between clusters of the glassy state. It is supposed that the 

liquid state forms an interconnected network of pathways, where the cation can 

diffuse by a percolation process. The decrease in conductivity with decreasing 

temperature is explained by a decreasing number of favourable pathways as the 

residual liquid phase progressively solidifies. An advantage of the cluster bypass 

model is that it may provide a relatively straightforward explanation of the mixed 

mobile ion effect. The foreign cations are believed to be concentrated in the regions 

of the liquid phase and there “block” the most favourable pathways. The mobile host 

cations have to find less favourable pathways involving migration through the glass 

clusters. This would also explain why the activation energy increases when different 

cations are mixed. 

  

Fig. 2.5. A Schematic of the cluster-bypass model, showing preferred pathways for 

ion migration located in a connective tissue surrounding microdomains or 

“clusters” of more densely packed material.  
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The model recognizes the "cluster-tissue" texture of glasses which was 

discussed by Burton [13,14] and vitrification was regarded as the congealation (semi 

solid nature on freezing) of ordered microdomains or "clusters" (≫ 50 Å in linear 

dimension) embedded in a truly amorphous, low density "tissue" material. However 

regarding the detailed structure of these clusters, Ingram et al. [15] have used the 

model of Goodman [16], according to which the inter-cluster space is filled by a 

residual liquid which on cooling below Tg solidifies and forms a residual phase or 

"connective tissue". The central idea of cluster bypass model is that the preferred 

pathways for ion migration lie within the connective tissue region. The model 

explains the curvature seen in the Arrhenius plots of certain AgI-rich glasses as due 

to the continuous exchange of material between the cluster and tissue regions. The 

authors are able to account for the mixed alkali effect (see later) using this model. 

Anomalously high dielectric losses in alkali silicate glasses reported by Hyde et al. 

[17]have been attributed in this model to the motion of ions along "partially 

blocked" pathways. Conductivity enhancements in mixed anion glasses as well as 

the effects of "dopant" salts such as LiCl have also been explained. NMR studies of 

sodium silicate glasses have been found to provide supportive evidence to this 

model [17]. 

2.3.5. Random Site model 

The Random Site Model was proposed by Glass and Nassau [18] in 1980 for Li
+
 

ion conducting binary glass systems such as Li2O-B2O3, Li2O-Ga2O, Li2O-Al2O3 

etc. and it proposes that the network modifier or dopant salt is homogenously 

dispersed in the glass and that its role for the enhanced ion conduction is to lower 
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the average potential barriers within the glass. The cations are assumed to 

experience a Gaussian distribution of activation energies due to the randomness of 

the glass network. The average mobility then varies with the distribution of 

activation energies and thereby with the glass composition. All the cations are 

assumed to be potential charge carriers; which means that it is mainly the mobility 

of the cations which increases with increasing modifier or dopant salt concentration. 

Therefore, this model is different from the weak electrolyte model, where it is 

proposed that only a fraction of the cations are mobile and that their mobility is 

constant. 

2.3.6. The Diffusion Pathway Model 

The diffusion pathway model [19, 20] was built on the assumption that the 

metal halide salt is introduced into the amorphous network in small clusters or micro 

domains, which form connected pathways for the ions to diffuse through the glass. 

These pathways were assumed to be built up by the halide ions and to be 

characterized by low energy barriers. While the basic assumption of micro-domain 

formation cannot be held up, the model remains relevant for network glasses with 

structures described by the modified continuous random network (CRN) model [11]. 

This includes metal oxide modified network glasses, where the percolation pathways 

are formed by inter-network channels of network modifiers and the non-bridging 

oxygens (NBOs) therein serve a corresponding purpose as the halide ions do for the 

doped glasses. Thus, the diffusion pathway model shows some similarities with the 

cluster bypass model, except that the interconnected regions are made up of the 

dopant salt or the network modifiers, instead of residual liquid in the cluster bypass 

model.  
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2.3.7. Jump and relaxation pathways  

Proposed by Elliott et al. [21], correlated forward-backward hopping 

sequences of individual mobile charged defects are the elementary process of jump 

relaxation in solid ionic conductors phenomenon is due to the repulsive interaction 

between defects. The microscopic dynamics of the relaxation is described in a 

simple model which yields in particular the frequency spectrum of the hopping 

motion. With the Help of this function, it is possible to explain the experimental 

manifestations of the "universal dynamic response", including the well-known arcs 

in the complex planes of conductivity and permittivity, the power-law frequency 

dependence of the ionic conductivity, as well as the non BPP-type behaviour of 

spin-lattice relaxation time and the broad components of elastic neutron scattering 

results. 

2.3.8. The Concept of Mismatch and Relaxation 

The Concept of Mismatch and Relaxation (CMR) of Funke et al. [22,23] 

describes the ionic conductivity of disordered materials quantitatively, and explains 

the frequency-dependent regime (dispersive regime) as a consequence of correlated 

forward-backward jumps of mobile ions. In the framework of the CMR model, it is 

assumed that the effective potential on each mobile ion consists of two different 

parts: a static potential, provided by the immobile glass network, and a time 

dependent potential, provided by the mobile ions. The jump of an ion to its 

neighbouring site causes a mismatch to the arrangement of the mobile ions nearby. 

To reduce this mismatch, either of the neighbours rearranges or the ion jumps back 

to its original position. This leads to a forward-backward correlation of successive 

jumps and consequently, to a dispersive regime in the conductivity spectra of ionic 
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materials. The CMR describes the ion dynamics mathematically by two coupled rate 

equations. Solid electrolytes with disordered structures, both crystalline and glassy, 

as well as supercooled ionic melts, exhibit surprisingly similar features in their 

conductivity spectra, ζ’(ω). This finding suggests that the dynamics of the mobile 

ions in the different systems should be governed by similar rules. Examples are 

given in this study, including new results on γ-RbAg4I5, β-AgI, and several glassy 

electrolytes. In spite of their overall similarity, however, the spectra also display 

characteristic differences in their shapes and in their scaling behaviour, the latter 

feature causing, e.g., Arrhenius or non-Arrhenius temperature dependences of the dc 

conductivity. The observed characteristics of the spectra, both the common and the 

more specific ones, are well reproduced with the help of two coupled rate equations 

describing the evolution of the ion dynamics with time. This treatment is based on 

the jump relaxation model, and is called the concept of mismatch and relaxation 

(CMR). 

( )
( ) ( )Kdg t

A g t W t
dt

      ……… (2.8)

( ) ( )
( )

dW t dg t
B W t

dt dt
       ……… (2.9) 

Here, W(t) is a time-dependent correlation factor, representing the 

probability for an ion to be still in its new position occupied directly after the jump. 

It is supposed that a hop of a mobile ion happens at t=0, and hence W(0)=1. 

Furthermore, W(∞) is the fraction of successful elementary hops. The mismatch 

function g(t), with g(0)=1, describes a normalized distance between the actual 

position of an ion and the position where its neighbours expect it to be. The 

parameter A is an internal frequency, proportional to the high frequency limit of the 
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specific conductivity ζ(∞), and B determines the ratio ζ(0)/ζ(∞) = exp(−B). Finally, 

the parameter K influences the shape of the conductivity spectra in the vicinity of 

the onset of the dispersion regime and is typically close to 2. 

2.4 Impedance Spectroscopy and its various formalisms 

To understand electrical properties and charge conduction mechanism, the 

most straightforward technique is the direct measurement of electrical conductivity 

by DC methods. However, A particular problem when applying a DC bias to an 

ionically conducting sample via two standard metal electrodes is polarization effects 

appearing at the electrodes due to the failure of the mobile ions to traverse the 

electrolyte/electrode interface (ionic current drops to zero). This difficulty can be 

overcome by using AC techniques, collectively, called Impedance spectroscopy. AC 

techniques are more suitable to carry out electrical conductivity studies on ion 

conducting materials than DC methods.  

Impedance spectroscopy is a versatile and established tool to understand 

various electrical processes like electrochemical reactions, electrode processes, 

charge transfer processes at electrode-electrolyte interfaces, in materials, 

electrochemical devices like super-capacitors, fuel cells, batteries, etc. It is a 

complex yet powerful technique to study and analyze electrical properties of 

materials, mainly ionic conducting and dielectric ones. Impedance analysis of ionic 

conducting solids helps in identifying transport properties such total conductivity, 

ionic transport, grain boundary conduction (for crystalline compositions), electrode-

electrolyte interface processes, and relaxation processes etc. It is a non-destructive 

technique and also can provide the dynamic properties to understand the 

microscopic nature of the conduction mechanism in superionic conducting materials.  
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In a general impedance spectroscopy experiment, an electrical stimulus (a 

known voltage or current) to the electrodes of the specimen is applied and the 

response is measured. Measurement of the phase difference and the amplitude (i.e. 

the impedance) allows analysis of the electrode process relating to contributions 

from diffusion, kinetics, double layer capacitance, coupled homogeneous reactions, 

etc. It is widely applied in studies of ionic solids, solid electrolytes, conducting 

polymers, corrosion, membranes and liquid/liquid interfaces [24]. Electrical 

measurement to evaluate the electrochemical behavior of electrode/electrolyte 

materials, two identical electrodes applied to the faces of a specimen in the circular 

form is used. The AC response of the sample to the applied perturbation may be 

different in phase and amplitude from the applied signal. 

2.4.1 Mathematical Foundations of Impedance Spectroscopy 

Impedance is generally measured by applying an AC potential to an 

electrochemical cell. Assume that a sinusoidal potential: 

V(t) = Vo e
 iωt

     ………. (2.10) 

is applied, then the alternating current corresponding to it can be expressed as 

follows 

I(t) = Io e
 i(ωt-ϕ ) 

   ………. (2.11) 

And the complex impedance can be determined from the equation  

 
 

 
 * cos sini

o o

V t
Z Z e Z i

I t

        ………. (2.12) 

where, ω is the radial frequency and ϕ is the phase difference occurring 

between applied V(t) & output I(t)  

and     
2 2

oZ  Z ' "Z Z     ………. (2.13) 
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The obtained complex impedance Z*(ω) can be resolved into its real and imaginary 

parts as follows  

     Z*(ω) = Z’ (ω) - i Z” (ω)   ………. (2.14) 

Comparing the eq.(2.12) and eq.(2.14), one gets the real and imaginary parts of 

Z*(ω) as follows. 

Z’ = │Z│cosϕ     ………. (2.15) 

Z”= │Z│sinϕ    ………. (2.16) 

where, Z’ and Z” are real and imaginary parts of the complex impedance Z*(ω). In a 

real impedance spectroscopy experiment, a test signal of fixed voltage level with a 

sequence of frequencies is applied, and the corresponding impedance, │Z│, and 

phase shift, ϕ, is measured at each frequency. Commercial equipments like 

Impedance gain-phase analyzers and LCR meters are capable of carrying out such 

measurements efficiently and accurately with a computerized interface. 

Different Formalisms of Impedance Spectroscopy 

The ion dynamics can be analyzed using various formalisms of impedance 

spectroscopy, namely complex impedance Z
*
=Z’(ω)-iZ”(ω), complex conductivity 

ζ
*
=ζ’(ω)+iζ”(ω), complex dielectric permittivity ε

*
=ε’(ω)-iε”(ω) and complex 

modulus formalism M
*
=M’(ω)+iM”(ω) , where, ω=2πf. 

All of these formalisms are related to the basic Z
*
 formalism and are given in 

the Table 2.1 [25] and have been discussed in detail in forthcoming sections 

separately.  
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 Table 2.1: Different Formalisms of Impedance Spectroscopy and their inter-relations 

with complex impedance 

 Formalism Equation Real and imaginary parts 

1. Impedance 
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3. AC Conductivity  
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5. Dielectric Modulus  
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where,  = thickness of the specimen 

            = cross sectional area of the specimen 

            = permittivity of the free space = 8.85 10  F/m

            = geometrical capacitance of the

o
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A thorough treatment of various formalisms of impedance spectroscopy can 

be found in references like Macdonald [26] and Świergiel [27]. A first observation 

of these formalisms reveals that all of them can be obtained from the real and 

imaginary parts of Z* and are interchangeable. Although all of these formalisms are   

interchangeable and hence are manifestation of the same microscopic phenomena; 
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still each of them uniquely identifies various contributions towards charge 

conduction mechanism. A thorough description on advantages, uniqueness and 

drawbacks of each of them has been given in the following sections. 

2.4.2 Complex Impedance Formalism 

The response of a typical ion conductor to an Impedance spectroscopy 

measurement can be compared to the response of a parallel combination of 

resistance and capacitor as shown in Fig. 2.9 below, where R is the bulk resistance 

and C is bulk capacitance of the specimen. 

 

Fig. 2.9. A parallel combination of a Resistance and a capacitance. 

Z’ and Z” in context of the above equivalent circuit containing R and C can be given 

as,  

2
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1 ( )
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    ………. (2.17) 
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    ………. (2.18) 

Now eliminating ω from above equations 2.10 and 2.11, one reaches at the 

following equation. 

2 2

2' "
2 2

R R
Z Z
   

     
   

   ………. (2.19) 

Equation 2.19 is the equation of a semicircle with radius R/2 and center at 

(R/2, 0). It shows that the response of the parallel combination of R and C would 
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result into a regular semicircle intersecting the real axis Z’ at (R, 0) as shown in the 

Fig. 2.10 below. It is called the Nyquist plot or the complex impedance plot. 

 
Fig. 2.10. A typical impedance plane plot showing different parameters 

 

It should be noted that in the Nyquist plot of impedance spectroscopy data, 

each point corresponds to the impedance at one specific frequency; low frequency 

data are on the right-hand side, while those of higher frequencies are on the left-

hand side of the plot.  

For a glassy solid electrolyte, a typical Nyquist plot generally looks like as 

shown in Fig. 2.11 [28]. It shows a semicircular arc in the high frequency region, 

followed by a polarization spur or a second semicircular (with a comparatively 

larger diameter) in the low frequency region. The high frequency arc can be 

extrapolated (on both sides) to the real axis and the difference between these two 

intercepts with the real axis is taken as the bulk resistance of the sample specimen. 

The second semicircular arc or the spur occurs due to polarization of mobile ions at 

sample/electrode interface at lower frequencies. 
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Fig. 2.11. Nyquist plot of impedance for a glassy solid electrolyte with ion 

non-blocking electrodes. 

 

Equivalent circuit approach to model/understand the impedance response of 

the superionic conductors under study 

 The impedance response of superionic conducting materials can be 

reproduced by very simple electrical circuits having some basic circuit elements like 

resistance, capacitance, inductance, Warburg and Gerischer elements etc. [29]. The 

electrical circuit used to re-generate such impedance response is called an 

“equivalent circuit”. The complex impedance plots, in general, are modeled using 

equivalent circuit approach to understand various electrochemical reactions, 

electrode processes, or ion dynamic processes occurring etc.[29, 30]. However, 

choice of the equivalent circuit remains in question and sometimes is tricky because 

a lot of different combinations of resistances, capacitance and other key components 

like Warburg element, Gerischer element etc. produce the similar impedance 

responses. However, the equivalent circuit with minimum number of components 
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should be considered to be the ultimate one and in addition to that its interpretation 

should be realistic and practicable. For example, the impedance response shown in 

Fig. 2.10 may be modeled using either of the two equivalent circuits given in Fig. 

2.12.  

  

(A) Series combination of two parallel R-C loops  (B) Series combination of two parallel R-CPE loops 

Fig. 2.12. Different Equivalent circuits used to model the impedance response of occurrence of two 

semicircular arcs in complex impedance plots. 

 

The impedance response presented in Fig. 2.10 can be reproduced either by 

Series combination of two parallel R-C loops or Series combination of two parallel 

R-CPE loops, where C is the geometric capacitance between the electrodes, R is the 

bulk resistance of the sample and CPE is a constant phase element due to the 

polarization distribution at the interface between blocking electrodes and glass and 

its impedance can be generally defined using the equation, 

ZCPE =A(iω)
- α 

    ………. (2.20) 

where, A is an arbitrary constant and α is a constant, usually having values 

between 0 and 1. With α = 0 means it is a purely resistive component and α = 1 is 

attributed to a purely capacitive behavior. 

2.4.3 Complex Conductivity Formalism 

AC responses of the vitreous solid electrolytes have been widely examined 

and recently reviewed by Ingram [31]. The first measurement of the frequency-

dependent conductivity of Ag
+
 conducting vitreous solid electrolytes was reported 

on the Ag7I4AsO4 glass by Grant et al. [32], where the Jonscher type [33] frequency 

dependence of the bulk conductivity was observed. 
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Complex conductivity may be calculated from the measured complex 

impedance data conductivity using the following relation,  

*
*

2 2
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
 
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  ……… (2.21) 

*( ) '( ) ''( )i         ……… (2.22) 

The real part of ζ
*
 is called AC conductivity, ζ’, and it has extensively been 

used and analyzed/interpreted by several workers to study/identify various electrical 

properties of different ion conducting systems like glasses, crystals, polymers, melts 

etc. [34] . And it can be given as follows from equation 2.20,  
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   ……… (2.23) 

AC conductivity spectra are considered to be a universal feature of ion 

conducting glasses and other disordered systems [35]. Analysis of impedance data 

using ac conductivity formalism adds a new dimension to the interpretation of 

relaxation data obtained from the complex impedance measurements.  

The frequency response of conductivity in glasses may be entirely due to the 

translational and localized hopping of ions [36]. The translational hopping gives rise 

to long range electrical transport at very low frequencies, while the high frequency 

dispersion may be correlated to the forward-backward hopping of the ions at high 

frequencies which requires only a fraction of energy that is involved in the long-

range diffusion of ions. The frequency independent plateau at low frequency region 

arises due to contribution of dc conductivity and the switch over of the frequency 

independent region to frequency dependent region at higher frequencies implies the 

onset of conductivity relaxation behavior [37], i.e. long range migration of ions at 

low frequencies shifts to short range back and forth hopping between equivalent 
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sites at higher frequencies and relaxation process starts. Fig. 2.2 shows typical AC 

conductivity spectra for Ag
+
 ion conducting AgI-Ag2O-B2O3 glass system. 

The plateau in the low frequency region occurring before high frequency 

dispersion may be extrapolated to find out the ζDC value. These frequency dependent 

conductivity spectra can be best fitted to the well-known Jonscher‟s universal power 

law [38], 

ζ' (ω) = ζo + A ω
n
    ……… (2.24) 

where, ζo is the bulk conductivity, A is an arbitrary constant, ω is the radial 

frequency and n is a constant called the frequency exponent and its value is 

generally between 0 and 1. (usually 0 < n < 1). 

2.4.4 Complex Dielectric Formalism 

Dielectric formalism of impedance spectroscopy has been traditionally 

applied to investigate dipolar relaxation in liquids and solids where reorientation of 

permanent dipoles gives rise to characteristic frequency-dependent features of the 

complex permittivity [39]. Hence, studying the dielectric properties of an electrically 

conducting material may seem deceptive, however, as pointed out by Sidebottom et 

al. [40] that in practice, polarization is inseparable from the eventual conduction 

process. The mobile ion, which creates polarization by reorienting locally, is the 

same ion that later separates from its immediate neighborhood to produce 

conduction at lower frequencies. In ion conducting materials polarization and 

conduction are, therefore, integrated into a single, continuous process. And hence 

dielectric analysis may shade more lights towards understanding of the ion transport 

process in ion conducting materials. In an ion conducting system, motion of ions is 

followed by accumulation of mobile ions at specimen/electrode interface and leads 
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to polarization of superionic conducting materials [40]. In an ion conducting system, 

the dielectric constant has contribution from dipoles as well as from mobile ions to 

the relative permittivity of the materials. 

Complex dielectric function along with modulus function and AC 

conductivity add valuable contribution to understand ion transport mechanism in 

super ion conducting systems. The complex dielectric function ε
*
 is given as [41]  

*( )
*( )

oi

 
 

 



 = ε’(ω) – i ε”(ω)   ……… (2.25) 

where, εo is the permittivity of free space and ω is the radial frequency. The 

real and imaginary parts of ε
*
 may be separated as follows, 
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To study the dielectric properties of prepared glass system, frequency 

dependent real and imaginary parts of dielectric permittivity are calculated and 

analyzed using equation (2.26) and (2.27). For this, real (ε’) and imaginary (ε”) parts 

of permittivity as function of frequency at different temperatures are plotted and 

analyzed further. The real part, ε' is considered to be the true dielectric constant or 

dielectric permittivity and the imaginary part, ε” is considered to be occurring due to 

losses that are inhibited by motion of mobile cations and is generally termed as 

dielectric loss.  

For an ideal Debye type system, ε' (ω) spectra exhibit a step-like change 

from low to high frequency with two plateau regions in lower and higher frequency 

regions designated as εs and ε∞ respectively, where, ε∞ is the high frequency 

permittivity value determined from the ε'(ω) at sufficiently high frequencies and εs is 
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static dielectric constant, or static permittivity [42]. In ionically conducting solid 

materials, the difference s      (the change in the dielectric permittivity) 

represents dielectric relaxation strength and it is caused by the relaxation of hopping 

of ions, and its magnitude depends on the ion-ion correlations as well. In other 

words, the Δε term results from the relaxation of hopping of ions [43]. In ion 

conducting glasses, Δε is believed to be influenced by ionic transport processes. 

Sidebottom suggested that the hop of an ion between equivalent anionic sites is 

analogous to the rotation of a permanent dipole and can be approximated to the 

Debye model of dipolar relaxation. And the permittivity change, Δε, can be given as 

[43], 

2( )

3 o

N qd

kT





     ………… (2.28) 

where, N = total mobile-ion concentration, γ = fraction of N ions that are mobile, q = 

the charge of the mobile ions, d is the distance traversed in a single hop, a resultant 

of the product ‘qd’ is the effective dipole of a hopping ion, k = Boltzmann‟s constant 

and T is absolute temperature.  

However in a real system, a difficulty occurs while calculating Δε. The prime 

reason is that ε∞ can be determined by taking measurements at sufficiently high 

frequencies, but the real trouble is faced in determining the low frequency εs value. It 

has been discussed in impedance and AC conductivity formalisms (sections 4.2 & 

4.5 respectively), that polarization effects become dominant at lower frequencies 

due to accumulation of mobile ions at electrodes, and it is quite difficult to separate 

the true static dielectric constant from the polarization effects. To overcome this 

difficulty a different approach has been taken by Ngai et al. [44] to estimate εs at low 

frequencies by utilizing the high frequency ε∞ values. They introduced the following 
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expression to calculate εs using ε∞ value (determined at sufficiently high frequencies, 

when it approaches a constant value)  

 
2

(2 / )

(1 / )
s


  








   ………… (2.29)

 

where, Γ is the gamma function, ε∞ is the high frequency permittivity value obtained 

from the ε' (ω) → log f spectra at sufficiently high values as shown in the graph, and 

β is the stretched exponential constant obtained from the fitting of the dielectric 

modulus function (discussed in the next section). Hence the dielectric relaxation 

strength (or dielectric change) can be given as 
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  ………… (2.30) 

2.4.5 Complex Modulus analysis 

In AC conductivity analysis, polarization effects become dominant at lower 

frequencies and hence it is extremely difficult to differentiate between polarization 

effects and relaxation processes. To overcome this, a new formalism called 

dielectric modulus formalism was developed by Macedo et al. in early 70s [45]. It is 

called; „electric modulus‟, „dielectric modulus‟ „modulus function‟ or simply 

„modulus‟ also. The dielectric modulus and dielectric permittivity are related to each 

other by, 

 

*

*

2 2 2 2

*

1

' "

' " ' "

' "

M

i

M M iM



 

   



 
 

 

   ……… (2.31)

 



75 
 

If one considers initially the frequency dependence of M
*
 for a conductor 

which exhibits a frequency independent relative permittivity, εs, and conductivity, 

ζDC, the equation of dielectric constant may be rewritten as 

* DC
s

o

i


 


      ……… (2.32) 

Now combining above two equations and introducing the additional 

parameters, 
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One may write, M
*
 as follows 
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* ' "M M iM      ……… (2.36) 

In equation 2.34 & 2.35, ηζ has unit of time and it is termed as „conductivity 

relaxation time‟ and is equivalent to the ordinary Maxwell relaxation time for an RC 

circuit and determines the rate at which the electric field, E, decays to zero in a 

conducting dielectric under the constraint of constant displacement vector, D. 

One of the significant features of equation 2.35 is that it is identical in form 

to the expression used to describe the relaxation of shear modulus of liquids in cases 

where use of a single relaxation time is sufficient and ηζ is analogous to the shear 

relaxation time, ηg [45].  

The main advantage of modulus formalism is that the polarization effects 

occurring at the electrode-electrolyte interface are suppressed and the true relaxation 
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behavior is easily distinguished, generally, in form of a single asymmetric peak in 

the M” → log f spectra for most material systems. 
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Fig. 2.13. Real and imaginary parts of modulus. 

Fig. 2.13 shows typical spectra of real and imaginary parts of modulus for a 

glass system. It may be noted that M’ exhibits a step like increase from low 

frequency to high frequency region. The tail like “curve” in the low frequency 

region is devoted to suppression of polarization effects. The M” spectrum shows 

presence of an asymmetric peak in the mid frequency region.  And it indicates that 

the relaxation process is of non-Debye type and instead of having a single relaxation 

time, a distribution of relaxation times prevails. 

The frequency corresponding to peak value of M" is called the characteristics 

relaxation frequency fmax, and is related to the conductivity relaxation time by the 

following equation, [46, 47], 

max 1                  ……… (2.37) 

where, ωmax = 2πfmax.  

The frequency range below M"max determines the range where charge 

carriers are mobile over long distances and contribute to the DC conductivity, 

whereas in the higher side of the ωmax, the charge carriers are confined to their 
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potential wells and are able to make hops of short ranges only [48]. Thus, the peak 

frequency ωmax is indicative of transition from long range to short range migration of 

mobile ions. The consistent shift of the fmax position with rise of temperature may be 

explained on the basis of the distribution of attempt frequencies for the barrier cross-

over or a distribution of jumps or flight distances following the cross-over. The 

broadening of the M" versus log f curve is interpreted in terms of the distribution of 

relaxation times for distinguishable processes. According to Hasz et al. [49] 

distribution of relaxation times is connected with a distribution of free energy 

barriers for ionic jumps, in which, distribution is increased with increasing disorder; 

whereas Grant et al. [50] attributed that distribution of relaxation times is not due to 

the disordered structure of glasses but is assumed to be the consequence of the 

cooperative nature of the conduction mechanism (correlated backward-forward 

hopping of Ag
+
 ions). 

Further, the M" spectra can be best fitted to the stretched exponential KWW 

(Kohlrausch-Williams-Watts) function [51, 52] , using the procedure described by 

Moynihan et al. [53], 
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 
     ……… (2.38) 

where, η is the characteristic relaxation time and β (0 < β <1) is a relaxational 

parameter representative of distribution of relaxation times and ϕo is a constant. The 

function ϕ(t) suggests that the shape of M" plot should be asymmetric around the 

peak and is able to describe the stretched exponential character of relaxation of the 

electric field. 

The exponent β can be evaluated by knowing the FWHM (Full Width at Half 

Maximum) of the M" plot (frequency axis in log scale), using the relation:                  
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β = (1.14/FWHM).  It denotes deviation from the ideal Debye behavior. Hodge et al. 

[54] later found that in glasses, higher value of β is related to lower deviation from 

the ideal Debye behavior. Moreover, value of β is an indicative of ionic conductivity 

in glasses; higher values of β mean lower ionic conductivity whereas higher ionic 

conductivity is found to be associated with lower values of β [54].  

2.4.6  Electrical Relaxations and the Decoupling Index 

Now, as the present system is a class of amorphous solid electrolytes or fast 

ion conducting glasses, the motion of Ag
+
 ions in the glass matrix may be 

considered to be analogous to their motion in a highly viscous fluid. The Diffusivity 

of particles in a fluid may be given by the Stokes-Einstein diffusion relation, 

6 i

kT
D

r
     ………. (2.39) 

where, D = diffusivity, η = viscosity , ri = radius of the particles 

Howell et al. [55] and afterwards Angell [56, 57] reported that this law does 

not hold in case of some of molten salts like Ca(NO3)-KNO3 (CKN) and most 

vitreous solid electrolytes. He further categorized the ionic conducting glass forming 

materials into two classes: (1) the coupled systems: for which the Stokes-Einstein 

relation holds & (2) the decoupled systems: for which this law significantly breaks 

down. He found that the glass forming vitreous solid electrolytes or super ion 

conducting glasses belong to the category of decoupled systems. During cooling 

from melt to glass state, all systems show enormous increase in viscosity (or shear 

relaxation time), but favorable systems show only a small rise in conductivity 

relaxation time. Thus, a high conductivity is preserved in the glassy state.  

Decoupling of these diffusing particles in the fluid or mobile ions in case of 

amorphous solids may be represented by the ratio of the average structural 
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relaxation time ηs (Tg) to the average conductivity relaxation time ησ (Tg) at the glass 

transition temperature, now popularly called decoupling index, 

sR






      ………. (2.40) 

Generally ηs = 200 s at Tg (as it is difficult to determine its value at other 

temperatures) [58-60], while the ηζ (Tg) values are determined by extrapolating the 

log ηζ →1000/T plot (Fig. ) to Tg of the respective glass samples. Hence we have, 

200
R


      ………. (2.41) 

Because this quantity varies between 10
14

 and 10
-3

 for different systems, it is 

usually sufficient to have approximate values of ησ at Tg. Therefore, it is convenient 

to choose the simple Maxwell relaxation time, an average of a distribution of 

relaxation time < ησ >, defined by Macedo et al. [61] can be given as, 
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    ………. (2.42) 

where, ζDC is the measured conductivity. Hence, combining equations 2.41 & 

2.42, decoupling index Rη, therefore, can be defined simply in terms of the DC 

conductivity at the reference temperature T* = Tg, as determined by scanning 

calorimetry at 10˚C/min (Tg = glass transition temperature) [62]. 

13
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9 10
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
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
    ………. (2.43) 

Or, 

log 14.3 log DCR       ………. (2.44) 

The conductivity term, ζDC, in equations 2.43 and 2.44 is taken at glass 

transition temperature by extrapolating the respective Arrhenius plots of ζDC to the 

glass transition temperature. 
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