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Chapter 2 :Many Particle Aspects of Graphene 
 

The static structure factor,  pair correlation function, self-energy, screening charge 

density, screened potential and compressibility has been investigated theoretically 

using both the density-density and spin density response functions of doped single 

graphene sheet based on the random phase approximation and on graphene’s 

massless Dirac fermions concept. The local field effects have been considered in the 

simplistic Hubbard approximation. The static structure factor and pair correlation 

function are obtained by regularizing the dynamical polarization function, which 

otherwise is clearly divergent due to the interaction energy of the infinite Dirac sea 

of negative energy states. Ultraviolet wave vector cutoff has been used to exclude the 

effect of vacuum states. We find the structure factor to be dependent on the 

dimensionless coupling constant α, and for high values of coupling constant the 

magnetic structure factor indicates paramagnetic instability which is also 

corroborated from other theoretical investigations. The spin symmetric pair 

correlation function computed in the simplistic Hubbard approximation begins from 

zero at zero separation only at very high densities but the results for parallel spin and 

anti parallel spin pair correlation functions expose the short coming of this local field 

approximation. Our computed self energy of SLG sheet though displays a behavour 

similar to that of 2DEG and BLG, its magnitude differs drastically from that of later 

two systems.  Freidel oscillations are seen in computed screened potential and 

density of screening charge of graphene, which can be seen as a signature of Fermi 

liquid state in doped graphene. In agreement with experimental results, our 

computed pair distribution function, as a function of carrier density, suggests that 

exchange and correlation terms make negligible contribution to compressibility of 
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graphene. Incorporation of local field corrections reduces the magnitude of self 

energy, screening charge density and screened potential. This work should stimulate 

more investigations testing various other local field schemes and also quantum 

Monte Carlo based simulations. 

2.1 Introduction 

 
 Many particle aspects play an important role in understanding low 

dimensional systems such as one dimensional electron gas  (1DEG) and 2DEG etc., 

and obtaining ground state properties, excited states, relativistic effects, scattering 

theory of these systems. Interaction among many particle gives rise to some 

fascinating properties of a system like structure factor, pair correlation, self energy, 

exchange interaction and compressibility. These quantities for graphene qualitatively 

differ from normal 2DEG, observed in system like semiconductor heterostructures 

and MOSFETs. The approximate methods implemented to solve many particle 

aspects are Thomas-Fermi approximations (TFA), Random Phase Approximations 

(RPA), Improved RPA (IRPA), Singwi-Tosi-Land-Sjolander, Fermi liquid theory, 

Density Functional Theory (DFT) etc. 

 We have implemented one of the most widely accepted approaches i.e. the 

RPA. In this approximation it is assumed that only the single-particle excitations of 

the same wave vector as the Coulomb interaction plays an effective role in the 

screening process while the effects of others having different wave vectors cancel 

out. The RPA is more appropriate to use when the electron-electron interactions are 

strong enough that quantum coherence does not dominate. 

  A physical quantity of crucial utility in the understanding of the many body 

properties of condensed matter is the dynamic electron density-density response 

function χ, which has been briefly reviewed in Chapter 1. Many body properties like 
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ground state energy, electron-electron and transport scattering rate, collective 

excitations, compressibility, structure factor, pair correlation function etc are all 

calculated using this response function. This function for the peculiar case of 

graphene can be a function of one or all of the following parameters; wave vector   , 

frequency ω, chemical potential μ (μ=0 for intrinsic or undoped, μ≠0 for extrinsic, 

doped or gated), temperature T, band gap ∆ and disorder Г), and has been calculated 

for various combinations of these parameters by a host of authors [1, 4-18]. 

 Theoretical studies on graphene have established that transport and screening 

are considerably different from other conventional two dimensional electron gas 

(2DEG) systems. Also, unlike the 2DEG, in graphene, at low densities the effective 

velocity increases, the spin susceptibility is suppressed and the charge 

compressibility always remains positive, independent of the density [1, 2]. These 

peculiar features stem from the exchange interaction between electrons near the 

Fermi surface and electrons in the negative energy Dirac Sea. Another anomalous 

feature of graphene is that the electron-electron exchange and spin correlation is an 

increasing rather than decreasing function of carrier density [3]. In graphene even the 

vacuum state responds to an external potential and acts as a dielectric medium as the 

inter-band excitations are nearly similar to the virtual electron-hole excitations of a 

Dirac electron gas.       

 In this chapter, we consider with the dynamical polarization function of 

doped SLG in the wave-vector frequency domain            at zero temperature and 

zero disorder, which has been obtained within RPA earlier [9,10]. This RPA 

polarization function for low energy excitation involving the graphene’s π electron 

energy bands and having linear energy dispersion gives rise to the mass less Dirac 

fermions (MDF) concept. This RPA-MDF response function has been utilised in 
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various studies of graphene to obtain the ground state properties [17], screening 

[9,10], low frequency Plasmon excitations [12], the stopping and image forces on a 

moving charged particle [18], spin polarization [19], etc.  

         In the study of many body properties, a central role is played by the electron 

pair correlation function, g   ). However, the results we obtain in this study on the 

many body properties of graphene are valid beyond the transport regime from where 

the correlation effects begin to play a noticeable role and therefore cannot be 

ignored. The g   ) is an average distribution of electrons about any electron, and it is 

defined as the probability that another particle is at position    if there is already one 

at   =0 [20], and gives a suitable description for electron-correlation due to 

Coulombic repulsion that is the correlation hole. A suitable model pair-correlation 

function and static structure factor has its immediate relevance as its availability over 

a wide density range is crucial for new developments and applications of the density 

functional theory, through the construction of ab initio exchange and correlation 

energy functionals in generalized gradient approximations and in other beyond 

Linear density approximation schemes. A wealth of computational results on 

structure factor and pair correlation  function from quantum Monte Carlo simulation 

studies for various systems have given a flip to resume and improve upon the study 

of these important functions and from time to time ingenious methods have been 

reported in obtaining expressions for this function [19]. For the case of graphene the 

pair correlation function has been worked out in ref.[21] and static structure factor in 

magnetic field has been obtained by Shiyuza [22]. 

 Knowledge of ground state properties of a system is essential in 

understanding its basic physics and to make use of it for device making. Single-

particle spectral function, associated mean free paths, quasiparticle properties, such 
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as inelastic quasiparticle lifetimes quasiparticle decay, renormalization factor, and 

renormalization velocity can be studied by knowing electron self-energy [23, 24]. 

Self-energy can also be used to obtain ARPES spectra which have been reported by a 

host of authors for graphene [25-27]. When a positive charge is placed in an electron 

gas, the electrons gather around the charge tries to compensate for the electrostatic 

potential it has induced. The phenomenon is known as screening and it is one of the 

simplest and most important manifestations of electron-electron interaction [28]. 

Because of reduced dimensionality and especially because of the semi-metallic 

nature of graphene’s π-electron bands, the problem of screening of charged 

impurities remains open. In this context, various authors have reported calculations 

on screening, few of which include scattering treatment of Coulomb impurities 

embedded within the graphene plane [29,30]. Calculations on charged impurity 

screening in graphene with the use of vacuum polarization has received a huge 

attention because of its importance for transport properties and a general 

understanding of the theory of graphene. Static screening determines transport 

properties through screened Coulomb carrier scattering by charged impurities [6, 

31]. The property of screening is also of interest for sensor applications of graphene 

in detecting atoms or molecules, which may be either absorbed on the upper surface 

of graphene or intercalated in the gap between the graphene substrate. It has been 

shown that within the RPA approach, screening of external charges by intrinsic 

graphene at zero temperature is characterized merely by a renormalization of 

graphene’s background dielectric constant due to interband electron transitions 

[6,9,12,31,32]. The most common feature observed in screened potential is Friedel 

oscillations, which arise because of derivative discontinuity.  
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 In an interacting electron system of uniform density, the inverse electronic 

compressibility is a fundamental physical quantity that is intimately related to the 

strength of inter-electron interactions. The compressibility of electron gas provides 

valuable information about the nature of the interacting ground state, particularly in 

the strong-coupling regime where (in addition to the exchange energy) Coulomb 

interaction energy also plays a dominant role. It also provides information about the 

chemical potential, stability of the system and so on. Change of local electrostatic 

potential and thereby change in local chemical potential of graphene was measured 

with the use of scanning single-electron transistor microscopy when the carrier 

density was modulated [33]. Observed results on local inverse compressibility were 

found to be quantitatively described by kinetic energy alone with the electron 

velocity renormalized by 10–15%. It has been speculated that the exchange and 

correlation energy contributions to compressibility either cancel each other out or are 

negligibly small. It has been argued that in SLG linear energy dispersion and 

chirality conspire to allow complete cancellation of exchange and correlation 

contributions just as was observed in the experiment [34].  This motivated us to 

compute pair distribution function as a function of carrier density, n to study the n –

dependence of compressibility of graphene. 

 Many-body effects in SLG with zero gap and doping at zero temperature 

have been the subject of great interests [9, 31]. We evaluated structure factor, pair 

correlation function, self energy, density of screening charge, screened potential, 

compressibility using          with and without LFC. This Chapter is organized in 

Four parts: Section 2.2 gives insight of the essential formalism. The computed 

results are discussed in Section 2.3. References are quoted in 2.4 
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2.2 Essential Formalism 

 
 In the case of 2D Dirac electrons interacting via the long range Coulombic 

potential on an hexagonal graphene sheet, the Hamiltonian is given by [14], 

         
   
  

    
   
 

       
 

   

              
     

 

 
 

(1.1) 

 

where             and      is a two component field operator,    is the Fermi 

wave vector related to the chemical potential via              
    

       

 
        is 

the density operator, and 

               (2.2) 

 

is the 2D Fourier transform of the bare Coulomb interaction potential [14].  

 This effective Dirac-Weyl wave equation and the chirality of its eigenstates 

lead indeed to peculiar electron-electron interaction effects and unusual response to 

external   potentials. Because of the band overlap of the wavefunctions obtained for 

the preceding Hamiltonian, the dynamical density response function is modified 

from the response function of the conventional 2DEG by a multiplicative factor of  

             
                     

 

(2.2) 

 
 

where               
       is the overlap of the band states,   is the angle between     and 

               and         denote the band indices [6,10]. 

  As mentioned in the introduction the quantity of interest for many body 

problems is the dynamical density-density response function which is needed to 
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describe the different approximations to Hamiltonian equation (2.1), since it 

determines the effective electron-electron interaction. The fluctuation dissipation 

theorem relates the imaginary part of the density-density response function with the 

structure factor [22]. The dynamic structure factor gives information on the relevant 

excitations of the ground state through the density operator [14]. 

2.2.1 The Structure Factor and pair distribution function 

 

Using this response function the static regularised structure factor        and static 

regularised magnetic structure factor         can be expressed, respectively, through 

the following relations [35,1]; 
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             and               are the regularized imaginary part of the dynamic 

density-density and dynamic spin-density response functions, respectively, defined 

as [26-27]; 

          
          

    
   

               
 (2.6) 

 

 

               
           

    
   

               
  (2.7) 

 

 

With 
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(2.8) 

 

 

The regularized irreducible polarization function has been obtained by subtracting 

vacuum irreducible polarization               from           the temperature 

independent irreducible dynamic polarization function of doped graphene [2] ,  g   

is the magnetic moment of an electron; g is the Lande factor and    is the Bohr 

magneton,   
        and   

   
     are the symmetric and anti-symmetric spin 

effective potentials respectively given by the following equations [35,36]; 

  
   

                   (2.9) 

 

   
   

          
      (2.10) 

 

Where 

              
          (2.11) 

 

and 

                
         

(2.12) 

 

 

are the static LFC for the density-density and spin density fluctuations, respectively,  

in the Hubbard approximation [35].  

 The regularization is done to make the integrals converge as           

increases with    at large    and falls like     at large ω. The divergence is expected 

because the response function includes the vacuum fluctuations of the infinite sea of 

negative particles [1]. The non-zero vacuum weight is a relativistic signature of 
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graphene and is a consequence of particle-antiparticle pair creation or the Dirac Sea. 

By this renormalization procedure we have the chemical potential of undoped 

graphene as our zero of energy, and now the ω integrals are finite.      

    The RPA is a many body theoretic method by which quantitative predictions 

beyond the Hartree-Fock model can be made. And though it is very successful in 

describing many properties nevertheless has its shortcoming, one of which is that it 

misses to accommodate the local field effects due to electronic exchange and 

correlation. The electron-electron correlation and exchange effect beyond the RPA is 

taken into account by incorporating a term containing the local field corrections in 

the effective potential. 

 The Fourier transform of static structure factor and magnetic structure factor 

give the spin-symmetric       and spin anti symmetric   (  ), pair correlation 

functions respectively, which for the case of graphene can be written as follows 

[35,36]; 

         

 
  

       

     

  

 

 

 
                                      (2.13) 

        

 
  

       

     

  

 

 

 
                                                                           (2.14) 

where    is the radial distance. The double integral in Equations (2.13) & (2.14) over 

the other variable    is divergent, for which we introduce an ultra violet wave vector 

cut off      which becomes necessary to make quantitative predictions for the 

peculiar case of graphene [1, 21]. The dimensionless parameter   is defined as 

       where     is determined in a way so as to keep the number of states in the 

Brillouin zone fixed, that is,    
           , in which         

    is the area 
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of the unit cell in the honeycomb lattice and           is the carbon-carbon 

distance [3].  

 The       and        can be written as a combination of parallel spin 

correlation function        and anti-parallel spin pair correlation function        , 

as under [35, 36]; 

                      (2.15) 

                     (2.16) 

For a 2D system, self-energy        , density of screening charge,       and 

Screened potential,         can be given by [35]. 

2.2.2 Self Energy 

 

          
 

   
 

     

         
       

  

 

  
 

                                                    (2.17) 

2.2.3 Screening Charge Density and Screened Potential 
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                 (2.19) 

Equation 2.17 has been obtained by replacing    by        in      and          

respectively. 

2.2.4 Compressibility 

 
We have computed pair distribution function as a function of n to study the n –

dependence of compressibility of graphene. The compressibility can be defined  by 

           , where energy per particle functional,   can be expressed in terms of 
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kinetic energy per particle, t0  , Coulomb potential, Vcoul, pair correlation function,    

      as follows [37]; 

   

   
 

    

   
           

       

  
           

 
         

  
 

  
               (2.20) 

       for graphene can be given by 

         
 

   
                     
  

 
    (2.21) 

Where                 

       is static structure factor.  

       ,       and         has been also evaluated including local field effects. 

2.3 Results and Discussions 

 

2.3.1 The Structure Factor and Pair Distribution function 
 

  The properties of the Dirac electrons are defined in terms of a dimensionless 

density independent coupling constant           
         in which    

        is the product of spin and valley degeneracy,    is the average dielectric 

constant of the substrate and air and its value lies between 1 and 2 for SiC or SiO2 

substrate [3]. This coupling constant is the ratio of a typical Coulomb energy to the 

hopping energy and is similar to the rs  parameter defined for the case of usual non 

relativistic 2DEG of finite mass electrons, and is a measure of the strength of 

Coulombic attraction. It depends only on material properties and environmental 

conditions and it is the measure of the strength of the Columbic attraction. α is also 

used to characterize the ratio of coulomb interaction and band energy scales in 

graphene. The typical value of the coupling constant for graphene supported on SiC 
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or SiO2 substrate is also 1 or 2, but in some studies investigations have also been 

done keeping larger coupling constants values of around 3 & 4 [38]. The dielectric 

constant in graphene is a tuneable parameter which stems from the peculiar 

screening properties of graphene. The screening in graphene is a combination of 

metallic screening due to intra-band transition and insulating screening due inter 

band transition (which is absent in conventional 2DEG) leading two overall strange 

screening properties all of which can be traced back to the chiral relativistic nature of 

graphene [10]. 

 We worked out the static structure factor in terms of the following scaled 

parameters; x=    /kF and y= ω/  . In the long wavelength limit, for      we 

obtain an analytical expression for the static structure factor without incorporating 

the LFC; 

          
  

   
       

  

      
                                                                      (2.22) 

We subtract from this equation the analytical structure factor obtained from the 

expression for spectral weight derived in the RPA for the graphene vacuum, given by 

[14]; 

   
      

  

     
                                                                                                   (2.23) 

which represents a collection of  intra-band particle-hole transitions, to get the 

regularised structure factor in the long wavelength limit; 

   
     [  (x→0)-   

    ]                                                                                  (2.24) 
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 In the case of graphene the f-sum rule, that determines the conservation of the 

particle number gives an infinite contribution due to the vacuum energy and 

therefore is of no physical significance as such.  The contribution from the lower 

filled band calls for an energy cut-off limit for the sum rule to be applicable and 

therefore to represent a real response of the system, as has been elaborately discussed 

in Ref.14.   

 In Figure 2.1, we plot the computed dynamic structure factor or spectral 

weight for undoped and doped SLG at x=1.  Curve A is for doped SLG and Curve B 

for undoped one. From the figure it is quite conspicuous that the Curve A exhibits a 

peak while curve B does not turns up with any peak.  The curve B remains zero up to 

x<1 and thereafter shows a finite value. It is well known that the undoped SLG there 

is no plasmon mode at zero temperature, since in an intrinsic (undoped) SLG the net 

electron density is zero and therefore Fermi energy is zero. However, at finite 

temperatures or when spin orbit interactions are included plasma oscillations can 

occur as well in undoped graphene. The curve A for doped SLG displays a peak 

which is a clear cut evidence for the existence of collective excitations in this 2D 

nanostructure.  

 If we simply plot the structure factor without regularising the response 

function we see that the structure factor grows with increasing values of x,      

         (figure 2.2 - Curves A and B), because of the contribution of the 

vacuum energy, in contrast to the normal observed behaviour              , of 

non relativistic electron gas - and for the particles on a lattice this behavior denotes 

the absence of short range particle correlations. This novel behavior like other 

peculiar aspects of graphene is well attributed to the relativistic nature of mass-less 

quasiparticles. In SLG the dielectric medium is few of virtual particle-hole pairs and 
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this ascending value of S(x) for increasing x is a result of pair creation at short 

distances.  It has been pointed out that an experimental determination of the vacuum 

spectral weight via the inelastic light scattering will be a clear signal of the quantum 

nature of the graphene vacuum state [22].  Therefore to suppress the effect of 

vacuum polarization we adopt the regularisation procedure as discussed above. The 

regularised dimensionless analytical static structure factor from equation (2.24) is 

plotted for four different values of coupling constants in figure 2.3. The small x 

behaviour of S(x) is important because it determines the oscillation-averaged long 

range part of pair correlation function [39].  

 From the figure 2.3, we observe that   
     shows a hump and at   

      , 

it tends to zero, which is a manifestation of the conservation principle for the number 

of particles. For increasing values of coupling constant the hump translates with 

momentum. In the other limit, that is for increasing values of x we notice that   
     

goes to zero again, which means that   
     is governed by the vacuum spectral 

weight for higher values of x and which is unrealistic as this expression is valid for 

small values of x. The computed numerical dimensionless structure factor from 

equation (2.2) incorporating the LFC is plotted in figure 2.4 for four different values 

of coupling constants. Here the structure factor shows a hump with a maximum 

value of about 0.275 for α=1, which is almost double of that observed for the case of 

analytical structure factor, and thereafter it saturates for increasing x. For increasing 

coupling strength values that is; α=2, 3 & 4, the maximum value of the hump 

diminishes and also it shifts and broadens, with a larger saturation value for α=2, but 

for α=3 & 4, it is observed that the curve begins to grow with increasing x. As far the 

as the magnitude of saturation value is concerned the       fails to recover the 

standard behaviour          observed for non-relativistic electrons. Figure 2.5 
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shows the computed       without LFC. Here we notice an enhanced saturation 

value for α=1, but the curves begin to grow faster with x than compared to that in 

figure 2.4 and from coupling value of α=2 itself.  

  In figure 2.6 we plot the magnetic structure factor for four different values of 

the coupling constants. This behaviour of the regularised structure factor is very 

similar to the subtracted structure factor reported in Ref.22. The following features 

noted in Ref.22 is also seen here for        that is, (a);           for x    (b) 

          as x  ,  which means that for increasing x the contribution due to 

polarization vacuum energy is dominant, (c)        shows a broader hump than 

      about the value 0.275 for α=1 however with increasing  coupling strength the 

trend is reversed from that observed for          that is        begins to increase with 

α=2. A new striking feature that appears in our study in  the case of        in contrast 

to the       behaviour is the observation of sharp peaks with enhanced value of 

about 1.3 for α=3 & 4. The peaks observed are indicative of paramagnetic instability 

and this corroborates with the findings in Ref.37, where it is reported that exchange 

interactions between Dirac Fermions evaluated in the Hartree-Fock model can 

stabilize a ferromagnetic phase at low doping when the coupling is sufficiently large. 
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 Figure 2.1 Plot of S(x,y) At x=1. Solid curve A for doped graphene and    

dotted curve B for undoped graphene. 
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Figure 2.2 Plot of S(x) vs x : Solid curve A for doped graphene and dotted curve B       

for undoped graphene. 
 



Many Particle Aspects of Graphene 

68 
 

However in contrast to this prediction the RPA low density calculation involving   

both exchange and correlation has ruled out a spontaneous magnetic phase transition 

even at large coupling constants [40]. In the Hubbard approximation for the LFC, 

which we have used, only spin exchange interaction is considered and the 

contribution due to electron-electron correlation interaction is zero, hence the 

conformity of the predictions between us and Ref.38. These contradicting predictions 

beckon experimental investigations to check whether graphene supports any form of 

ferromagnetism. However, the results we have obtained on the static structure factor 

can be used to calculate the exchange energy per electron of the graphene in the 

electric potential created by its own exchange hole and the electron-electron 

correlation energy. And by a familiar strategy of integration of the structure factor by 

combining with another coupling constant our results can be used to obtain the 

interaction energy contribution to Helmholtz free energy or the thermo dynamical 

potential of the 2D Dirac electron gas [36]. Besides the results can be of interest in 

building beyond linear density approximation exchange-correlation energy density 

functionals and also the magnetic response of the 2D Dirac electron gas. 
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Figure 2.3 Static dimensionless long wavelength limit regularised analytical  

structure factor,   
                   plotted in the curves A, B, C & 

D, for dimensionless coupling constants               respectively. 
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Figure2.4 Static dimensionless regularised structure factor, 

                     plotted in the curves A, B, C & D, for 

dimensionless coupling constants               respectively 
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Figure 2.5 Static dimensionless regularised structure factor, 

                     plotted in the curves A, B, C & D, 

for dimensionless coupling constants   
           respectively. 
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Figure 2.6  Magnetic static dimensionless regularised structure factor,  

            with LFC, plotted in the curves A, B, C & D, for 

dimensionless coupling constants   
           respectively. 
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From the results of the structure factor we computed the pair correlation functions 

from equations (2.13)-(2.16). The cut off parameter   may be written in terms of the 

coupling constant   and electron density n as;              The value of β is 

small in heavily doped samples and is large for lighter systems. The symmetric spin 

pair correlation function from equation (2.13) is plotted in Figure 2.7 with LFC and 

in figure 2.8 sans LFC. It is known that the RPA gives grossly unphysical result for 

the pair correlation function which deteriorates further for low dimensional systems 

[41]. For graphene in this Hubbard approximation the pair correlation function is 

found to be sensitively dependent on the cut off parameter. We observe that for low 

densities which corresponds to high cut off value of the parameter β, the spin 

symmetric pair correlation function yields negative values at zero separation. But 

when the density is enhanced such that          which correspond to        

        at      the g     gets rid of negative value for higher coupling strengths. 

But for small coupling strength of     it begins with a slightly negative value as 

can be noticed from figure 2.7. In figure 2.8 the trend observed in figure 2.7 is 

reversed, however only a small difference of values of the four curves at x=0 is seen. 

The parallel spin pair correlation functions from equation (2.15) with and without 

LFC are plotted in figures 2.9 & 2.10, respectively. And the anti parallel spin pair 

correlation functions from equation (2.16) is depicted in figures 2.11 & 2.12, 

respectively. The g        with LFC plotted in figures 2.9  turns  up with a  negative 

unphysical value of about -0.9 for     at x=0,  which slightly improves for 

increasing     The situation worsens when g        is plotted without LFC in figure 

2.10, as is the case with RPA, but here it is seen that all the curves for different   

merge together. Similarly the g        shown in figure 2.11 begins with a little 

unrealistic positive value of 0.87 which improves with increasing     and for     it 
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betters to 0.79. Similar to the case of figure 2.10 the situation deteriorates when 

g        is computed sans LFC as displayed in figure 2.12. The computational 

results of both g        & g         expose the shortcoming of Hubbard 

approximation. It remains to be seen whether this deficiency in the Hubbard LFC 

scheme can be overcome with some other static or dynamical LFC methods. Also it 

is envisaged that this work will stimulate further studies in this regard through self 

consistent computing schemes and also quantum Monte Carlo simulation based 

investigations to obtain the pair correlation function for graphene. 
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Figure 2.7   Spin symmetric dimensionless regularised pair correlation function, 

g                         in the curves A, B, C & D, for 

dimensionless coupling constants              respectively. 
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Figure 2.8 Spin symmetric dimensionless regularised pair correlation function, 

g                         in the curves A, B, C & D, for dimensionless 

coupling constants              respectively. 
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Figure2.9 Parallel spin dimensionless regularised pair correlation function, 

g                           in the curves A, B, C & D, for 

dimensionless coupling constants              respectively. 
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Figure 2.10 Parallel spin dimensionless regularised pair correlation function, 

g                           in the curves A, B, C & D, for 

dimensionless coupling constants              respectively 
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Figure 2.11  Anti parallel spin dimensionless regularised pair correlation function, 

g                           in the curves A, B, C & D, for 

dimensionless coupling constants              respectively. 
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Figure 2.12  Anti parallel spin dimensionless regularised pair correlation function, 

g                           in the curves A, B, C & D, for 

dimensionless coupling constants              respectively. 
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We computed equations (2.17-2.19, 2.21) numerically to obtain self energy, density 

of screening charge, screened potential and compressibility of SLG. The first three 

quantities has been also evaluated for Bilayer Graphene (BLG) and compared with 

that of SLG. The difference in magnitude of        ,         and        , of SLG, 

BLG and 2DEG is because of difference in values of intrinsic parameters of three  

systems, which enter into the quantities through static dielectric function that can be 

described by               for SLG, BLG and 2DEG. Where    is equal to 

              which depends on n in case of 2DEG and BLG, while for SLG it is 

independent of n. 

2.3.2 Self Energy 

 
The self-energy is the central quantity for determining the many Fermi liquid 

parameters. Our computed          from equation (2.17) is plotted as a function of 

  in figure 2.13 without LFC and in figure 2.14 with the inclusion of LFC. We also 

computed self-energy of 2DEG and BLG to compare it with that of doped SLG. As 

is seen from figure 2.13 and figure 2.15, behaviour of computed          of SLG 

with   is very similar to that of 2DEG and BLG. However, magnitude of           

of doped BLG is greater than SLG which in turn is greater than 2DEG. For 

computing      of 2DEG, we have used            and         Further to see 

the effect of LFC on self-energy, we computed           including LFC within HA 

for doped SLG.  
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 As is seen from figures; 

i. magnitude of self-energy reduces marginally 

ii. downward slope of      verses x enhances, especially for      , on 

inclusion of LFC. This suggests that local fields does not play very important 

role in determination of self-energy in a doped SLG. 

iii. The larger magnitude of screened self energy of BLG than of that of SLG, 

suggests that the quasiparticle life time for BLG is much larger than that for 

SLG. 
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Figure 2.13 Normalized screened self energy,              is plotted against 

normalized wave vector         Solid Curve displays Self energy of 

graphene while dashed curve is for 2DEG, without LFC. 
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Figure 2.14 Normalized screened self energy,           as a function of       

without LFC (solid line curve) with LFC (dashed line curve). 
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Figure 2.15 Screened self energy for BLG                     x Curve-A is for 

           while Curve-B is for              
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2.3.3 Density of Screening Charge and screened Potential 

 Our computed        is plotted as a function of      in figure 2.16 for two 

values of    (=2 & 4) at fix value of n and in figure 2.17 for two values of n (  

                               ) for      Computed        is finite for r 

tending to zero and it exhibits oscillations, which eventually decays for lager values 

of   . These oscillations are known as Friedel oscillations and are the result of the 

non-analyticity which occurs because of the discontinuity [9, 42]. 

As is displayed in figure 2.16, on increasing the value of α  for fixed value of  ;  

(i)       substantially enhances for lower values of r (close to      and  

(ii) Friedel oscillations becomes more pronounced. The behaviour of our computed 

      is very similar to that observed in a Fermi liquid where many body effects 

influence the amplitude of oscillations which are characterized by power law decay 

and depend on the strength of the interactions [9].   

Figure 2.17, shows that on increasing carrier density at fixed value of  α,   magnitude 

of       reduces specially for                   and the amplitude of Friedel 

oscillations decreases. Inclusion of LFC reduces the magnitude of       at all r-

values and makes it better behaved for    , as is seen from figure 2.18. Our 

computed screened potential with the use of equation (2.19) is plotted in figure 2.20. 

Friedel Oscillations are clearly observed in the potential images which are in good 

agreement with the experimental work conducted on 2DEG, using low temperature 

Scanning tunneling microscope [43]. Inclusion of LFC reduces the magnitude of 

        too and makes it better behaved as is displayed in figure 2.20 Under the 

RPA approximation, which assumes that the induced charge density is proportional 

to the total potential, the screened potential oscillates spatially. The observation of 
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Friedel oscillations in screened potential and screening charge density can be seen as 

a signature of Fermi liquid state in graphene [44].  

 The Friedel oscillations can be used to gain insight into the microscopic 

nature of disorder. We compared our computed        and          of doped SLG 

with that of 2DEG and BLG. It is found that the overall behavior of        and 

         of doped SLG is not very different from that of 2DEG and BLG (figures 

2.19 and 2.21), though the nature of charge carriers in two systems is very different 

[37].  It therefore can be inferred that the linear energy dispersion and chirality of 

SLG does not significantly influence gross many particle properties. 
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Figure 2.16  Density of screening charge plotted against     for        

         at      (Curve-A) and for       (curve-B). 
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Figure 2.17 Density of screening charge           
  plotted against     for SLG 

for     at                   (curve-B) and        
         (curve-A). 
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Figure 2.18 Density of screening charge           
  with LFC (dashed line) and 

without LFC (solid line)for     at                  . 

 

 
 



Many Particle Aspects of Graphene 

89 
 

0 2 4 6 8 10

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
S

c
r
e
e
n

in
g

 c
h

a
r
g

e
 d

e
n

s
it

y
/Z

e
k

f
2

kfr

B

A

 

Figure 2.19 Density of screening charge           
  versus     for BLG Curve-A 

is for            while Curve-B is for              
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Figure 2.20  Screened potential              ; with LFC(dashed line), without 

LFC (solid line) 
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Figure 2.21 Screened Potential          versus     for BLG for            
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2.3.4 Compressibility 

 
We computed      as a function of   at different  -values. To study the pair 

distribution function as  a function of   we took               at a fixed 

              Further for computation we take dimensional less quantity     , 

where                Our computed results are displayed in figure 2.22 for 

different values of α. For all values of α, computed        as a function of carrier 

density saturates at higher values of z, as is exhibited in the figure. Figure 2.22, 

clearly suggests that the variation of        with n is roughly zero over the 

experimentally observed range of n in doped SLG. Looking at figure 2.22 and 

Equation (2.20), we can conclude that exchange and correlation terms make 

negligible contribution to compressibility in SLG, as has been observed in 

experimental results on compressibility of SLG [33]. 
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Figure 2.22 Pair distribution function          for                   

                      (dashed line) 
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