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This chapter deals with theoretical aspects which form the basis of computational 

techniques used for calculating various properties of the manganites considered in the present 

thesis and understanding the formation of manganites by two popular methods: ball milling and 

sol-gel. The computational work performed is based on state-of-the-art Density Functional 

Theory (DFT). The present chapter starts with a brief history and idea of DFT followed by the 

original thought of Hohenberg and Kohn and their two theorems; the foundations of DFT. The 

subsequent section discusses the Kohn-Sham formulation, Local Density Approximation (LDA),

Local Spin Density Approximation (LSDA) and Generalized Gradient Approximation (GGA)

adopted for the exchange energy term. Finally, the computational details for Fe doped LSMO are 

discussed.

3.1 Electronic Structure calculations

As we know that the materials are made up of atoms and atoms are in turn made up of 

nuclei and electrons such that the net charge of an atom is zero. Therefore, the matter is

considered as a collection of interacting electrons and ions [1, 2]. Moreover, the electrons are 

quantum particle that their critical behavior can only be studied using quantum mechanics. 

According to quantum mechanics, the electrons cannot be localized to a particular point in space, 

but they are best thought of as matter waves characterized by a wave function.

The probability of finding a single electron for any wavefunction at the arbitrary point 

x in spaceis given by . We can determine the wavefunction by solving the time 

independent Schrödinger equation (Eq. 1). The motion of electrons in atoms is described using

the electronicstructure theory. The exact theory for such systems is expressed by well-known 

many body Schrödinger equation.

H (R , r ) = E (R , r ) (1)
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Where E, is the energy eigen value of the I, ri) is the many body wave 

function that describes the ground state of the system, RI represent the ionic position, while the ri

describes the position of the electrons and H is the Hamiltonian.

According to Born-Oppenheimer approximation, electrons are muchlighter than the 

nuclei that they always find their optimal distribution for any given configuration around the 

nuclei. Solving the electronic problem for a range of nuclear configuration gives potential energy 

surface. 

The Hamiltonian of non-relativistic electronicmany body Schrödinger equation keeping 

the nuclei fixed under Born-Oppenheimer approximation can be defined as follows:

H =  
2m 2M

Z e

4 r
 +  

Z Z e

4 R
+ 

e

4 r
,

                          (2)  

where, the suffixesi andj refers tothe electrons and nuclei respectively.

For heavier atoms, inner electrons are held tightly to the nucleus andtheir velocities 

increase with increase in theatomic number. As these velocities reach to the speed of light, 

relativistic effects become more prominent. In general, the relativistic effects are considered for 

the atoms with atomic number more than 25.

To solve the Schrödinger equation formaterials having large number of atoms using DFT 

approach, it is necessary tounderstand certain approximations employed for solving many body 

Schrödinger equation. There exist largenumber of model Hamiltonians such as Huckel, tight-

binding, the Hubbard and Heisenberg, the BCS [3] etc. However, for finite systems, one can use

the configuration interaction method [4].
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3.2 The Born-Oppenheimer Approximation

In the early days of development of quantum mechanics, Born formulated an adiabatic 

approximation for solving the Schrödinger equation for a real system containing both electrons

and ions. It was widely known that quantum mechanics could predict the properties of solids, 

considering only the electromagnetic interactions. However, the practical difficulty arises in 

dynamics of combined system of electrons and nuclei. In this case, the electrons move 

comparatively faster than the nuclei due to their smaller mass. Hence, one can assume that the 

electrons in anatom adjust instantaneously to the given configuration of the ions. This implies 

that electron remaining in an instantaneous ground state follow the ionic motion of the electronic 

Hamiltonian. The Born-Oppenheimer approximation for fixed set ofcoordinates R = {RI} can be 

given as,

H = (H +  H +  H ) = ( 
2m r

+  V +  V + V ) = E               (3)

Where, (RI, ri), is the function of the electronic co-ordinates ri and also depends 

parametrically on the ionic coordinates RI. The kinetic energy of the ions is not considered in the 

Hamiltonian due to very heavy masses of nuclei. The term VII is also neglected in the above 

equation, as it is not relevant to the problem of describing the electrons since VII is constant for a 

fixed nuclear configuration. 

The resulting separation of the states among electronic and ionic degrees of freedom is a 

very useful simplification of the problem and allows one to treat ions within classical framework. 

However, the electronic part is still a many body quantum problem as the electronic 

wavefunction of the system depends on the coordinates of all the electrons and cannot be 

decoupled in single electron contributions because of their mutual interactions. This makes the 
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solution complex as it requires the solution of a coupled differential equation of 3Ne degrees of 

freedom where Ne is the number of electrons. For atoms and smaller molecules, the number of 

electrons is usually in the range of Ne 1-100. However, for a solid the number of electrons is

greater than hundred. Hence, the problem is still too complicated for practical computations to 

solve suggesting further simplifications. However, the solution is achieved by applying the well-

known Density Functional Theory (DFT) on the Hartree–Fock equation.

3.3 Density Functional Theory (DFT)

Walter Kohn was awarded the Nobel Prize in Chemistry in 1998 for developing of the 

Density Functional Theory (DFT). The DFT based first principles calculations is presently the 

most successful and promising approach for computing the ground state electronic structure and 

related properties of matter. The DFT in its original development provides the ground state 

properties of a systemin which the electron density plays a key role. The density functional 

theory has been generalized to deal with many different situations: spin-polarized systems, 

multicomponent systems such as nuclei and electron hole droplets, free energy at finite 

temperatures, superconductors with electronic pairing mechanisms, relativistic electrons, time-

dependent phenomena and excited states, bosons, etc [5]. DFT has received great deal of help in 

the development from the famous Thomas-Fermi model and the Hartree-Fock-Slater method. 

The Thomas-Fermi model is a statistical model developed by Thomas [6] and Fermi [7] where

the concept of density to DFT has been taken.

In the Thomas Fermi model, the kinetic energy of an atom is expressed by the functional 

of electron density, and two added classical electronic densities representing nuclear-electron and 

electron-electron interactions. The model worked well with slowly changing density. 
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Eventhough, their model did not include all exchange and correlations effects, it worked quite 

well as a predecessor of the DFT calculations.

Dirac [8] in 1928, enhanced the capacity of Thomas-Fermi model by incorporating the 

exchange interaction. Although the Thomas-Fermi model is an important foundational step, its 

applications are very limited. The Hartree-Fock-Slater method is another ab initio method which 

is based on the ideas of Hartree [9] and Fock [10], in which the many-electron wave function is 

approximated using Slater determinant. The variational principle can be used to derive a set of N 

coupled equations arising for the N spin orbitals which can be solved self consistently. An exact 

solution can only be obtained for a hydrogen-like one-electron atom.

Slater considered the exchange potential in Hartree-Fock model, but still the many 

electron wavefunctions and requires enormous computational effort. In DFT approach, all 

physical quantities of interest are calculated using ground state density of the many electron 

system. Therefore, the knowledge of the ground state density becomes crucial instead of the 

knowledge of many-body wave function of the system.

The core spirit of the DFT founded by Hohenberg and Kohn [11] is to substitute the 

complicated many-electron wavefunction containing 3N variables (N is the number of electrons, 

and each electron has three spatial variables), with the functional of electron density, which 

contains only three variables and hence making it easy to handle. Hohenberg and Kohn proposed 

two theorems. The first theorem points out that the ground state energy uniquely depends on the 

electron density, which means that it is a functional of electron density whereas the second 

theorem states that the proved ground state energy can be obtained by minimizing the total 

energy of the system with respect to the electron density.
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To determine the electron density in the DFT based calculation; Kohn and Sham [11] in 

1965 introduced a system of N non-interacting one electron wave functions ( i). Therefore, there 

are N solutions of the Schrödinger equation in an effective potential Veff (r) developed for any 

can be written as:

+  V (r) (r) = E
 
(r) (4)

The first term in the external potential describes the interaction between the electrons and 

the nuclei. The second term represents the electrostatic interaction between the electrons 

themselves. The exchange–correlation potential is given by,

V (r) =  
( )

(5)

with EXC as the exchange-correlation energy and the n(r) as electron density and is given by,

n(r) =  (r)                                                                                                                                       (6)

The Kohn-Sham equations are solved self-consistently and in each cycle of calculation, 

the exchange-correlation potential is calculated with an appropriate approximation for the 

exchange-correlation energy. Kohn-Sham equationbecomes exact if the exchange-correlation is 

exact. Therefore, the determination and approximation of the exchange-correlation potential is 

crucial problem in the solution of the Kohn-Sham equations. In brief, DFT maps the many body 

problems to an effective single particle Schrödinger equation by introducing an exchange-

correlation functional.

3.3.1 Hohenberg-Kohn Theorems

Density functional theory was proven to be the exact theory of many-body systems by 

Hohenberg and Kohn in 1964. The theory is constructed based on two theorems [12].
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Theorem I: The ground state particle density n(r) of a system of interacting particles in an 

external potential Vext(r) uniquely determines the external potential Vext(r). Thus, the ground 

state particle density determines the full Hamiltonian, except for a constant shift of the energy. In 

principle, all the states including ground and excited states of the many-body wavefunctions can 

be calculated. This means that the ground state particle density uniquely determines all properties 

of the system completely.

Proof: For simplicity, here the case for which the ground state of the system is non-degenerate is 

considered. It can be proven that the theorem is also valid for systems with degenerate ground 

states [10]. The proof is based on total-energy minimization principle. Suppose, there are two 

different external potentials Vext ext(r) which differ by more than a constant and lead to 

the same ground state density n0(r). The two external potentials would give two different 

Hamiltonians, H and H,, which have the same ground state density n0(r) but have different 

given by

H =  E  (6)

H, = E (7)

H,

E = H < H (8)

Assuming that the ground state is not degenerate, the inequality strictly holds. Because we have 

identical ground state densities for the two Hamiltonians, we can rewrite Eq. (8) as 

( ) H( ) ( ) =  ( ) H( ) ( ) + dr V
( )

(r) V
( )

(r) n (r) (9)
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Exchanging labels in Eq. (9), we obtain

( ) H( ) ( ) =  ( ) H( ) ( ) + dr V
( )

(r) V
( )

(r) n (r) (10)

Adding Eq. (9) and (10), we get

E  
, + E  < E  + E  

, (11)

Which leads to inconsistency and therefore provides by reduction and absurdum the proof that V(

r) is truly a unique functional of n(r).

Theorem II: The ground state energy can be derived from the electron density by the use of 

variational calculus. The electron density, which provides a minimum of the ground state energy, 

is therefore the exact ground state density. 

Since the external potential is uniquely determined by the density and since the potential in turn 

uniquely determines the ground state wavefunction, all the other observables of the system such 

as kinetic energy can be uniquely determined. Then onemay write the energy as a functional of 

density. Total energy expression from wavefunction representation to density representation can 

be written as

F[n(r)] T[n(r)] + E [n(r)] (12)

where T[n(r)] is the kinetic energy and E [n(r)] is the interaction energy of the particles. 

According to variational principle, for any wavefunction ,, the energy function E[ ,]:

E[ ,]   , T + V +  V , (13)

has its global minimum value only when ,
0, with the 

constraint that the total number of the particles is conserved. According to HK theorem I, if ,

correspond to a ground state with particle density n,(r) and external potential V (r), then E[ ,]

is a functional of n,(r).
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According to variational principle:

                  E[ ,]   , T + V + V ,  

=  E[n,(r)] 

                                   =  n,(r)V , (r)dr + F[n,(r)] 

> [ ] 

                                     =  n (r)V (r)dr + F[n (r)] 

= E[n (r)] 

Thus the energy functional E[n(r)] n(r)V (r)dr + F[n(R)] evaluated for the 

correct ground state density n (r) is indeed lower than the value of this functional for any other 

density n(r). Therefore by minimizing the total energy functional of the system with respect to 

variations in the density n(r), one could find the exact ground state density and energy [13]. 

3.3.2 Kohn-Sham Equations

Fig. 3.1: Basic equations of the Kohn-Sham theory [5].

(14)
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Kohn-Sham approach can be regarded as an attempt to include the benefits of the 

Hartree-Fock formalism in density functional theory while preserving all the electron

correlations. Utilizing the Hohenberg-Kohn theorems [13], we minimize the total energy with 

respect to the orbitals in order to obtain the orbitals corresponding to the ground state energy. 

The minimization is performed with respect to (r) instead of (r) using chain rule for 

functional derivatives. This works for all the terms except for kinetic energy. Kinetic energy may 

be differentiated directly with respect to the orbitals. Thus, we have,

( )
=  

( )
+ 

( )
+  

( )
+  

( )

( )

( )
=  (r)         (15) 

(r) + V  (r) + dr, ( ),

| ,|
+ [n] +  n(r)

[ ]

( )
(r) =  (r)        (16) 

Eq. (16) is in fact a system of equations, which when solved simultaneously represent the many-

particle system in terms of single-particle orbitals. Each of these equations resemble a single 

particle Schrödinger equation

[T + V ] (r) =  (r) (17) 

with the important difference that V which we have defined to be the sum of the terms VH, Vxc 

and V , depends on the density and indirectly on the orbitals. As a result, we have the unusual 

situation that any changes in the orbitals also effect the potential on which they in turn depend 

[13].

3.4 Local Density Approximation (LDA)

The main problem with KS-DFT is the proper selection of exchange and correlation 

interaction. The solutions of exchange and correlation energy, though far from actual simplest 

approximations are the Local-Density Approximation (LDA) and Generalized Gradient 

Approximation (GGA). LDA uses the uniform electron gas model to get the exchange energy 
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(the exact value can be achieved from the Thomas-Fermi model), and to get the correlation 

energy from fits to the uniform electron gas [5] whereas GGA is based upon the inclusion of 

density gradient. In many multi-body problems, GGA gives reasonable satisfactory results with 

experimental data as compared to LDA for most material properties. Despite LDA and GGA 

give satisfactory results; it’s still difficult to treat the strongly correlated systems, band gap in 

semiconductors, and strong dispersion systems in DFT [13]. The simplest approximation LDA 

assumesthat the density can be treated locally as uniform electron gas; the exchange correlation 

energy at each point in the system is the same as that of the uniform electron gas of the same 

density originally introduced by Kohn and Sham [12] and holds quite good for a slowly varying 

density. Using this approximation, the exchange-correlation energy for a densityis given by

E = (r) ( )dr (18) 

Where ( ) is the exchange-correlation energy per particle of a uniform electron gas of 

density [14].

For practical use of the LDA in calculations, it is necessary to determine the exchange-

correlation energy for a uniform electron gas for a given density. It is common to 

split ( ) into exchange and correlation potentials as given by [15]

( ) =  ( ) + ( ) (19)

v =  [ (r)] =  
( )

=  ( ) + (r)
( )

 (20) 

[ (r)] =  (r)   (21) 

3.5 Local Spin Density Approximation (LSDA)

The extension of density functional theory to spin-polarized systems is straight forward 

for exchange where the exact spin-scaling is known, but for the consideration of correlation,
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further approximations must be employed. A spin-polarized system in DFT employs two spin-

densities, and with  = +  , and the form of the local-spin-density approximation 

(LSDA) is [16]

E , =  dr (r) , (22) 

For the exchange energy, the exact result (not just for local density approximations) is 

known in terms of the spin-unpolarized functional [17],

E , =  E [2 ] + E 2              (23) 

The spin-dependence of the correlation energy density is achieved by introducing the 

relative spin-polarization [16], 

(r) =  
( ) ( )

( ) ( )
(24)

where = 0 and = ±1 correspond to the paramagnetic and ferromagnetic spin-

unpolarized situations. The spin correlation energy density for a given values of the total density 

and relative polarization, ( , ) is constructed so as to interpolate the extreme values. Several 

forms have been developed in conjunction with LDA correlation functional [18, 19].

3.6 Generalized Gradient Approximation (GGA)

As mentioned above, the LDA neglects the inhomogeneities of the real charge density

which could be very different from the homogeneous electron gas (HEG). The XC energy of 

inhomogeneous charge density can be significantly different from the HEG result. This leads to 

the development of various Generalized Gradient Approximations (GGAs) which include density 

gradient corrections and higher spatial derivatives of the electron density and give better results 

than LDA in many cases. Three most widely used GGAs are the forms proposed by Becke [20] 

(B88), Perdew et al. [21], and Perdew, Burke and Enzerh [22, 23]. The definition of the XC 
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energy functional of GGA is the generalized form in Eq. 22 of LSDA to include corrections from 

density gradient (r) as

E [ ] =  (r) [ (r)]dr + F [ (r), (r)]dr (25) 

where the function FXC is asked to satisfy a number of formal conditions for the exchange-

correlation hole, such as sum rules, long-range decay and so on. This cannot be done by 

considering directly the bare gradient expansion. What is needed from the functional is a form 

that mimics a re-summation to infinite order, and this is the mainidea of the GGA, for which 

there is not a unique recipe. Naturally, not all the formal properties can be enforced at the same 

time, and this differentiates one functional from another. The Perdew-Wang 1991 (PW91) 

functional is an analytic fit to this numerical GGA, designed to satisfy several further 

exactconditions [5]. Plane waves and pseudopontential are the hallmarks of the method, andthey 

form a very natural alliance, since they are fundamental that their strengths and weaknesses 

deserve special attention.

3.7 The Pseudopotential Approximation

The fundamental theory of the pseudopontential began as an extension of the 

orthogonalized plane-wave (OPW) method. Aside from the possibility it offers of refining OPW 

calculations, it also provides apartial explanation for the success of nearly free electron 

calculations in fitting actual band structures. Its purpose is to describe the implementation of 

electronic pseudopotentials in modern electronic calculations [24-26]. Pseudopotentials are not 

unique and give the freedom to choose forms that simplify the calculations and the interpretation 

of the resulting electronic structure. The advent of ab-initio norm conserving and ultrasoft 

pseudopotentials has led to accurate calculations that are the basis for much of the current 

research and development of newmethods in electronic structure [27]. Pseudopotential 
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approximation replaces the actual nuclear potential in the electron-nuclear interactions with a 

much weaker counterpart corresponding to ions. The core electrons have screening effect which 

results in a weaker potential. The core region is defined by a cutoff-radius r chosen so that the 

nodes of true valence wavefunction are contained within it. Outside the core region the pseudo-

wavefunction matches exactly the true valence wave function, while inside the core region the 

former is much smoother than the latter (see Fig. 3.2). There are mainly twokinds of 

pseudopotentials; (i) Norm-Conserving and (ii) Ultrasoft.

The different approach known as ultrasoft pseudopotentials reaches the goal of accurate 

calculations by a transformation that re-expresses the problem in terms of asmooth function and 

an auxiliary function around each ionic core that represents the rapidly varying part of the 

density.

Fig. 3.2: Schematic representationof the pseudopotential method [5].

3.8 First principle calculation of Fe doped LSMO manganite system

Ferromagnetic perovskite manganites attract much attention because of its interesting

properties such colossal magnetoresistance as found in some phases [28]. A first-principles 
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calculation makes better understanding and characterization of such devices. The structural and 

electronic properties of rhombohedral Fe doped LSMO are investigated from first-principles

calculations based on density-functional theory. A number of previous studies have used DFT 

calculationsto obtain parameters of typical Hamiltonians for manganite systems [29-32]. 

Beyond-DFT approaches are particularly necessary to correctly predict structural distortions, 

magnetic energies and bandgap in LaMnO3, since they are wrongly described by DFT [33-35]. 

DFT is unable to describe the JT instabilities, and stabilize a metallic ferromagnetic solution in 

contrast to experimentally observed JT-distorted AFM insulating state [32].

In parallel, many studies within density-functional theory (DFT) have been performed. 

Since the pioneering works of Pickett and Singh [36, 37] gave a clear description of the 

electronic and magnetic structure of LSMO, many papers were devoted to the Fermi surface 

study of this important material [38].

In this scenario, apart from providing a detailed structural and electronic understanding of 

the Fe doped LSMO insulator-metal-transition (IMT) and of the associated competition between 

distorted and undistorted phases, our calcualtions predicts that the onset of metallicity is 

associated with FM spin transition and the FM-metal state. We give a detail description of the 

calculated electronic and structural properties of iron doped LaSrMnO3.

3.9 VASP code for DFT calculations of Fe doped LSMO

Ab initio calculations have been performed within LDA to the exchange-correlation 

potential within the framework of density-functional theory using the quantum mechanical 

molecular dynamics simulation code; the Vienna ab-initio Simulation Package [39, 40] and is 

one of the most accurate schemes of solid-state electronic-structure calculations [41]. The ab-

initio calculations in the present study for La0.67Sr0.33Mn1-xFexO3 (x=0.15, 0.25 and 0.35) have 



[Chapter 3: Brief Formalism of Density Functional Theory] 
 

The M. S. University of Baroda Page 73 
 

been performed within the local density approximation (LDA) and local spin density 

approximation (LSDA) to the exchange correlation potential. We have used unit cell of LSMFO 

within ferromagnetic (FM) orders to simulate the rhombohedral R-3c structure. The Brillouin 

zone sampling was performed according to Monkhorst-Pack [42] method using 10 × 10 × 10 grid 

and 12 × 12 × 12 k-points, whereas the density of states was calculated using the tetrahedron 

method [42] to generate the k-points within the irreducible wedge of the Brillouin zone. For 

structural optimization procedure, each lattice parameter (a, b and c) as well as the corresponding 

angles between them) and all internal structure degree of freedom (all atomic positions) have 

been fully relaxed with the starting crystal parameters of the LaSrMnFeO3 which was taken from 

our present XRD data [42].
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