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Chapter 2 
Issues arising from experimental and human errors 
 

SUMMARY 

This chapter starts with the account of data and software used in the study. It also 

mentions about the study areas for which the spectral observations were made. Then, it  

consists of a detailed discussion on the inherent quality issues with special reference to 

the following- Understanding the influence of smile effect, band-to-band registration and 

noise in data over vegetation assessment. It includes how the judgement of radiance 

values for vegetation lead to addressing and improvement in response of the airborne 

hyperspectral sensor.  It also includes the understanding based upon the studies pertaining 

to the effect of exposure time on vegetation’s radiance values, saturation radiance, 

insufficient sampling, presence of stacks of leaves, phenological stage, species and 

variety of vegetation through studying the vegetation spectra.  

 

BACKGROUND 

The presence of large number of bands, the inherent issues with hyperspectral remote 

sensors and the lack of understanding of some of the principles underlying hyperspectral 

data interpretation, lead to the mis-interpretation of the data and hence misleading results. 

Christophe et al (2005) conducted a comprehensive study on comparison and evaluation 

of quality criteria for hyperspectral imagery. These criteria were mainly meant for 

sensor’s performance in the laboratory and hold little relevance with the image. Since, 
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image is usually the only means for assessing hyperspectral data quality for the 

application scientist, systematic understanding of the quality issues need to be addressed. 

Christophe et al. (2005) indicated that for hyperspectral images, quality criteria have to 

be relevant to the corresponding applications.  

There are three critical elements of an Imaging Spectrometer: 

 Uniformity 

 Radiometric Precision or Signal-to-Noise-Ratio. 

 Calibration 

Uniformity is required for spectroscopy in the image domain. The second critical element 

is radiometric precision or SNR. High precision is critical as is required to answer 

questions of relevance in imaging spectroscopy. Low precision undermines detection, 

identification, quantification and monitoring. The third critical element is spectral, 

radiometric and spatial calibration which is important in imaging spectroscopy. These are 

some factors, apart from the factors like image corruption due to atmospheric effects or 

due to experiment design etc. It may be seen that numerous factors corrupt the 

hyperspectral image at various levels. How and to what extent these factors play their 

role in various capacities, is discussed in the following text. 

 

2.1 DATA AND SOFTWARE USED 

For analyzing various aspects of hyperspectral data for vegetation assessment, the data 

used was from all of the three types of platforms, viz. airborne (AIMS, AHySI), 

spaceborne (Hyperion, HICO) and hand-held (ASD Spectroradiometer). Moreover, the 
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observations using these instruments was performed over a number of sites. This ensured 

inclusion of dynamicity within the vegetation category. The same datasets, as well as the 

study areas are used for the analysis in the forthcoming chapters as well. 

 

2.1.1 Hyperion 

Hyperion is a space borne push-broom sensor, onboard NASA’s EO-1 satellite 

(https://eo1.gsfc.nasa.gov). It has 242 bands in 400nm-2500nm range of electromagnetic 

spectrum, at an average resolution of 10nm.  The data selected was of level 1Gst. The Gst 

data level is radiometrically corrected and orthorectified. Table 2.1 lists some of the 

important characteristics of the sensor. 

 

Table 2.1: Hyperion data specifications 

Number of bands 242 (196 calibrated and unique bands) 

Spectral range (nm) 400-2500 

Spatial resolution 30m 

Swath 7.5 km 

GSD 30m 

Quantization 12 bit 

Orbit height 705 km 

 

2.1.2 Hyperspectral Imager for Coastal Oceans 

Hyperspectral Imager for Coastal Ocean (HICO) sits over the International Space Station 

(ISS) and is largely meant for scientific research related to the coastal studies, though it 



98 
 

may be very well used for terrestrial applications. Table 2.2 briefly describes the HICO 

specifications (www.hico.coas.orgonstate.edu). 

 

Table 2.2: HICO specifications  

Parameter Specification 

Spectral Range 350-1080nm 

Spectral Channel width (Normal mode) 5.7nm 

SNR >200:1 for 5% albedo target 

Nadir cross track GSD 94m@400km 

Nadir along-track GSD 99m 

Scene size 42km x 192 km 

Saturation Does not saturate when viewing 95% 

albedo cloud 

 

2.1.3 Airborne Imaging Spectrometer  

India’s Airborne IMaging Spectrometer (AIMS) is a hyperspectral imager with 143 bands 

in the spectral range of 456 to 882nm within the electromagnetic spectrum (Anon, 1993). 

It has a nominal spatial resolution of 4.8m while spectral resolution of 3nm.  Being 

airborne, it is flown at different heights, as per the requirement. In this case, flight 

altitude was 6.5 km. Table 2.3 briefs the specifications of AIMS. 

 

Table 2.3: AIMS specifications 

Average Flight Altitude 6.5km 

Swath 1.84km  

Nominal Resolution 4.8m 

Spectral range 459-885nm 

Number of bands 143 

Spectral Sampling Interval 3nm 
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2.1.4 HyperSpectral Imager- Spaceborne and Airborne  

Hyper Spectral Imager (HySI) is a hyperspectral imaging remote sensor flown on-board 

Chandrayaan-1, India’s first mission to moon as well as on IMS-1 (Indian Mini Satellite) 

for Earth observations. The data used here for analysis is acquired by flowing HySI on-

board IMS-1. HySI has 64 contiguous bands in the VNIR region, in the spectral range of 

0.4-0.95 μm and exhibits spectral resolution of better than 15 nm and spatial resolution of 

505.6 m with swath coverage of 129.5 km (Kumar, 2008). The same instrument was 

flown on airborne platform also. In that case, it is called Airborne HySI (AHySI). The 

airborne adaptation has 512 contiguous bands. The spatial resolution is around 4.8m. 

Here, different bands of the instrument do not acquire the image of a given feature 

simultaneously. Successive bands look at the same feature with a time interval of around 

51.8ms. Tables 2.4 and 2.5 respectively list some of the specifications of HySI and 

AHySI. 

 

Table 2.4: HySI specifications 

Average Flight Altitude ~720km 

Swath 129.5 km 

Nominal Resolution 505.6m 

Spectral range 0.4-0.95 µm 

Number of bands 64 

Spectral Sampling Interval 15nm 
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Table 2.5: AHySI specifications 

Average Flight Altitude 6.9 km 

Nominal Resolution 4.8 m 

Spectral range 0.4-0.95 µm 

Number of bands 480 (calibrated) 

 

2.1.5 Hand-held Spectroradiometer  

The hand-held Spectroradiometer used had 2151 channel within the spectral range of 

350–2500 nm. The instrument acquired hyperspectral data at a spectral resolution of 3 nm 

at 25º field of view. However, by re-sampling the instrument provided data at 1 nm 

interval.  Table 2.6 shows the main characteristics of the Spectroradiometer (ASD 

technical guide). 

Table 2.6: Characteristics of hand-held Spectroradiometer 

 

2.1.6 Image processing software 

Environment for Visualizing Images (ENVI) is an image processing software, used to 

process and analyze geospatial imagery. It has Interactive Data Language (IDL) in its 

backdrop. Version 4.4 of ENVI-IDL was used for processing images in this work. 

Spectral Range 350-2500 nm 

Spectral Resolution 3 nm @ 700 nm; 10 nm @ 1400/2100 nm 

Sampling Interval 1.4 nm @ 350-1050 nm; 2 nm @ 1000-2500 nm 

FOV 25º field of view 

Scan Time 100 milliseconds 
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2.1.7 Data simulation software 

The simulation studies corresponding to Phytoplankton was carried out using Coupled 

Ocean and Atmosphere Radiative Transfer (COART) model (Jin & Stamnes, 1994; Jin et 

al., 2006). It was a freeware online model. This tool calculates radiance and reflectance at 

many levels in the atmosphere and ocean and at various view and zenith angles. Varying 

levels of wind speed and chlorophyll could be set. In this model, when Ocean depth is set 

to 0, it reduces to the conventional atmospheric radiative transfer model.  

 

2.1.8 Statistical software 

For carrying out statistical computations and analysis, especially Step wise discriminant 

analysis and ANOVA, Statistical Package for the Social Sciences (SPSS) version 16 

(SPSS, 2007) was used. It is an interactive package for statistical analysis and is quiet 

user friendly. 

For identifying peaks in the hyperspectral data, peak fitting module of Origin Lab 

software was used. It is a proprietary computer program for interactive scientific graphics 

and data analysis. 

 

2.1.9 Spectra analysis software 

The spectra were evaluated through an in-house developed software ‘Spectral Analysis’ 

(Sanghvi et al., 2010). It is a free software tool designed to analyze the spectral 
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reflectance profiles. It can perform spectral averaging, remove continuum, generate 

derivative spectra, perform red edge analysis, smoothen curves, compute vegetation 

indices and generate folded spectra corresponding to other sensors according to their 

RSR. Some part of the spectral analysis was done by MS Excel.  

 

2.2 STUDY AREAS 

In order to account for the diversity in vegetation, five categories were studied. These 

include Mangroves, which essentially grow in the coastal saline regions; Tropical forests, 

which form the major composition of India’s forest types; Agricultural crops, which 

should have the maximum stake in hyperspectral remote sensing; Crop residue, which 

confuses with the other farm components when viewed from space and the ocean’s 

primary producers-Phytoplanktons. For each category, the study areas were different. The 

details are listed below. 

  

2.2.1 Bhitarkanika reserve forest  

This Reserve Forest lies in Kendrapara district in Orissa, India and forms the core area of 

Bhitarkanika mangrove forest. Figure 2.1 shows the study area. Heritiera fomes is the 

dominant species of this area (Upadhyay and Misra, 2008). Hyperion data was used for 

analyzing the mangrove forest. Additionally, hand-held Spectroradiometer observations 

were made for some of the mangrove species within the nursery plantation. This includes 

observations for Avicennia officinalis, Bruguiera gymnorrhiza, Lumnitzera racemose, 
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Bruguiera cylindrical, Aegiceras corniculatum, Sonneratia apetala, Amoora cucullata, 

Cerbera manghus and Rhizophora stylosa.  

 

 

Figure 2.1: Bhitarkanika reserve forest. Here observations were made using hand-

held Spectroradiometer. Hyperion data was also used.  

 

2.2.2 Jamnagar mangrove forest  

This study area comprises of mangrove vegetation along with mangrove associates in the 

creek, salt pans, and mudflat near the Rozi bet in Jamnagar, Gujarat, which is a part of 

the Gulf of Kutch Marine National park. The study area is dominated by Avicennia 

marina. Prosopis juliflora is found towards inland region. Mud flats saturate highly with 

sea water during high tides. Airborne hyperspectral data was used for this study site. 

Figure 2.2 shows the study area and its surroundings.  
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Figure 2.2: Jamnagar mangrove forests and surroundings. Here observations were 

made using hand-held Spectroradiometer. AIMS and AHySI data were also used. 

 

2.2.3 Forest Research Institute, Dehradun, Uttarakhand  

The experimental plots of Forest Research Institute, Dehradun, Uttarakhand, India are 

typical representative of some of the country’s major forest species i.e.  Chir pine (Pinus 

roxbhurghii), Tropical Pine (Pinus caribea), Teak (Tectona grandis), Sal (Shorea 

robusta), Saza (Terminalia tomentosa) and Eucalyptus (Eucalyptus hybrid). Figure 2.3 

shows the study area. Hyperion data was analyzed for this study site. 

 

Figure 2.3: FRI, Dehradun. Hyperion data was used for this area. 
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2.2.4 Laboratory spectra  

Spectral Measurements of Juvenile, mature and young leaves of nine tropical species, 

collected using Hand-held Spectroradiometer observations from the campus of Maharaja 

Sayajirao University of Baroda, Gujarat, India were used in this study. The tropical forest 

species included Tectona grandis (Teak), Mangifera indica (Mango), Ficus glomerata 

(Ficus), Syzigium commune (Jamun), Dendrocalamus strictus (Bamboo), Madhuca indica 

(Madhuca), Butea monosperma (Butea), Azadirecta indica (Neem) and Mitragyna 

parvifolia (Mitragyna). Leaves, healthy and homogeneous in color without any visible 

symptoms of damage, were used in the experiments. 

 

2.2.5 Research farm at Anand Agricultural University  

Research farm of Anand Agricultural University comprises of more than twenty types of 

agricultural crops. Apart from the crop variety, the agricultural plot had more than six 

kinds of paddy. All varieties of paddy were in tillering stage (8 tillers on an average), had 

an average height of 60cm and ground cover of almost 50%. Other crops included 

Sorghum bicolor (Sorghum, ear bearing stage), Vigna radiata (green gram, fruiting 

stage), Macrotyloma uniflorum (horse gram, flowering stage), Cajanus cajan (pigeon 

pea, young), Vigna unguiculata (cow pea, pod formation stage), Sesbania bispinosa 

(dhaincha, young), Sachharum officinarum (sugarcane, mature), Gosypium (Cotton, 

mature), Beucarnia recurvate (elephant foot, mature), Curcuma longa (turmeric, mature), 

Arachis hypogaea (groundnut, mature), Glycine max (soybean, pod formation stage), 

Sesamum indicum (sesamum, pod formation stage), Helianthus (sunflower, flowering 
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stage) and Ricinus communis (castor, mature). The crop cover was almost 90%, in fact, 

better than that in some cases. For all of these crops, the spectra were collected using 

hand-held Spectroradiometer. Figure 2.4 gives a picture of the study site.  

 

Figure 2.4: Field pictures of groundnut and sesamum grown in AAU, Anand. 

Spectroradiometer observations were made for crops at AAU. 

 

2.2.6 Jallandhar, Punjab, India 

The study was carried out at the experimental farms of Central Potato Research Station 

(CPRS) as well as at the Farmers’ fields located at Jalandhar, Punjab (figure 2.5a). Also 

shown are the field photographs of various stages of wheat crop grown there (figure 

2.5b). During the time of observation wheat was the major crop at different phenological 

stages.  The spectra for different stages was taken using hand-held Spectroradiometer. 
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Figure 2.5a: CPRS, Jallandhar, Punjab. Spectroradiometer observations were made 

for crops here 
 

 

Figure 2.5b: Field photographs of various stages of wheat crop 

 

2.2.7 Agricultural fields of Moga and Naraingarh areas of Punjab  

Study was also conducted over agricultural fields of Moga and Naraingarh areas of 

Punjab state of India during the period of Wheat harvest. The crop is harvested either 
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manually or by a combine followed by a reaper. Hence, at any particular time during 

harvesting period, one can find fields with standing matured crops; combine, reaper and 

hand harvested fields and fallow lands. The soil type of Punjab is mostly sandy loam. So, 

hand-held Spectroradiometer observations were obtained for wheat residue, harvested 

through various techniques like combine harvesting, hand-harvesting and through 

combine and reaper. Figure 2.6 shows the location of the study site. 

 

Figure 2.6: Location of farms at Moga, Punjab. Spectroradiometer observations 

were made for crops here. 

 

2.2.8 Anonymous sites  

For sensors AIMS, HySI, HICO and AHySI, anonymous sites were also taken. Some of 

them were among the test runs of airborne flights. They were mainly from the states of 

Gujarat and Karnataka.  
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2.3 QUALITY CHECK FOR INHERENT ISSUES WITH 

HYPERSPECTRAL DATA FOR VEGETATION ASSESSMENT 

The typical reflectance spectra of vegetation have many troughs and peaks showing the 

presence of pigments like chlorophyll and also absorption by gases and water. An 

example is shown in figure 2.7. The characteristic chlorophyll dips are shown at 

~430/450 nm, 660/680nm and peak at 550nm.  It also shows high reflectance in NIR 

region and especially the sharp inflexion point of red edge (~670nm), although in 

different cases the position of inflexion point ranges between 670 to 720nm.  Typical 

plant reflectance is shown along VNIR region and then strong water absorption at 

~970nm, ~1400nm, ~1940nm. The presence of such sharp absorptions and peaks 

reflecting corresponding major characteristics clearly indicate that any shift from any of 

these wavelengths will create havoc in data interpretation and the final outcome. 

 

Figure 2.7: Figure showing various absorption regions in vegetation spectrum           

(Source: www.senteksystems.com) 
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2.3.1 Understanding the influence of smile effect 

Many times, visual inspection of hyperspectral images reveal gradient in brightness along 

different parts of the image, as shown in figure 2.8. Sometimes, this gradient is not easily 

perceived through naked eye. Nonetheless, in both the cases, a shift in bands from their 

ostensible positions may exist. This effect is smile or frown effect. The shifted bands 

corrupt the information extracted from them. This is because different molecules/atoms 

of the target under study have absorption in unique wavelengths and forms a 

characteristic feature of that particular target. With change in positions of the 

characteristic wavelengths, the diagnosis of the target falls under suspicion. To make the 

situation worse, smile effect changes with time (Neville et al., 2008). Hence, it needs to 

be detected and reported before any meaningful interpretation is done.  

 

Figure 2.8: Smile effect shown in different bands of hyperspectral images, extracted 

from AIMS and Hyperion 

 

2.3.1.1 Method  

The atmospheric gas absorption features are very sharp and errors in wavelength 

calibrations can produce significant errors in the retrieved land or ocean surface 
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reflectance around these features (Gao, 2004). The narrow oxygen absorption feature 

centered on 762 nm can be effectively used for assessing spectral calibration. Any shift in 

absorption band from 762nm signify the presence of smile. To use this characteristic 

wavelength for smile detection, a large number of Regions of Interest (ROIs) having 9 

pixels each (3*3) were taken at constant interval along the horizontal transect of the 

image. For each ROI, mean DN/radiance values were computed. The mean value 

accounts for the minor variability in the immediate neighboring pixels. For each ROI, the 

spectral plot was generated. Using peak fitting module of Origin Lab software, the peaks 

and dips were recorded for each spectrum. Following this, deviation from 762nm was 

plotted for each ROI. 

Once, smile effect is detected, a few questions arise-1) Does smile effect influence the 

whole image in equal amount? 2) Can bias correction be done or an image based model 

be fitted to account for smile effect? 3) Does smile affect all kinds of targets equally? and 

4) What implication does smile effect have on vegetation assessment? 

To cater to questions 1 and 2, smile detection is done at three portions of the image-

upper, middle and bottom. For question 3, ratio spectra were generated for three kinds of 

target-soil, mangrove and mudflat.   Here, the original spectrum is shifted by 1nm and 

then the ratio is computed between the original and shifted spectrum. Lastly, for studying 

the impact of smile effect on vegetation, a case study corresponding to different 

mangrove species was done. Here, red edge inflection point was recorded for each 

species. Red edge is the region of sudden change in reflectance of healthy green 

vegetation from visible to NIR region. It is found through computation of maxima in first 

derivative spectra. 
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To study smile effect, analysis was done for the two datasets, namely AIMS and AHySI. 

For case study, Spectroradiometer observations were taken. 

 

2.3.1.2 Results and Discussions 

The airborne or spaceborne data goes through a series of processing steps before it 

becomes available to the user domain. At each step, the data quality is assessed and 

reported for further improvement (if any). In this light, AIMS as well as AHySI data were 

taken at various processing levels and were thoroughly analyzed for the presence of smile 

effect. Here, the Oxygen absorption wavelength method (as discussed above) was 

adopted. Figure 2.9 shows AHySI and AIMS datasets along with the deviation from 

762nm for across track ROIs. 

Visually, the brightness gradient is not apparent in both the images. When deviation from 

762nm is plotted, AHySI data reveals shift in wavelengths from center towards right. The 

deviation is as high as 4.5nm, although at a few points the deviation falls to 0. The 

presence of smile is rather random in this case. For AIMS dataset, the deviation of as 

high as 3.3nm exists along the two sides of the image. At the center, deviation is close to 

0 i.e. bands are not shifted. This kind of smile effect is somewhat similar to that of CASI, 

as reported by Jacobsen et al. (2000). 
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Figure 2.9: AHySI data, Mysore (top) and AIMS data, Mysore (bottom) along with 

the deviation from oxygen absorption channel track plotted for pixels acrosstrack 

 

It may be concluded here that Smile effect can be present in variable proportions across 

the image. Since, deviation can be positive as well as negative, so, no simple bias 

correction can be done. Also, since deviation does not follow any order. This poses 

limitation on fitting of empirical model to rectify these wavelength shifts. 

 

Now, the point of concern is whether smile effect change with data to data? To answer 

this query, another AIMS dataset was taken for which the same exercise was performed 

i.e. finding the spectral profile for across track ROIs. The deviation from ostensible 
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wavelengths for these spectral profiles for the pixels across track are plotted, shown in 

figure 2.10. Completely different from what was observed in figure 2.9, this set of data 

showed deviation throughout the image in varying proportions (Figure 2.10-above). This 

made one thing clear that smile effect should be checked every time before use as no two 

datasets have same level of smile. When this input was provided, AIMS data was 

corrected within the processing chain. The resulting image was again checked for smile. 

This time the image was corrected, smile per se (Figure 2.10-below). Thus, smile effect 

can be corrected at processing level. 

 

Figure 2.10: Deviation from oxygen absorption wavelength plotted for AIMS data 

before smile correction (above) and after smile correction (below) 
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One thing is clear from the above discussion that smile effect exists across the image. To 

understand its presence along the vertical dimension of the image, AHySI image was 

studied along the three parts -Upper, Middle and Lower. The spectral profiles of across 

track ROIs are plotted along with the deviation from the typical Oxygen absorption 

wavelength (figure 2.11).  

 

Figure 2.11: Deviation from oxygen absorption wavelength plotted for showing 

presence of smile in AHySI data along the three sections of the image 
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No doubt, in three parts of the image smile appears to be varying as is visible through 

figure 2.11. But, the level of deviation is significantly high which goes to as much as 

16nm. This indicates a call for reanalysis of Look Up Tables and rework in processing 

chain, which was later done. Yet, the point for which this investigation was done was not 

clear. So, corrected AIMS data as well as Hyperion data were also analyzed. The 

resulting plots showing deviation are shown in figure 2.12. 

 

Figure 2.12: Smile detection in Hyperion (left) and AIMS (right) for three parts of 

the image 
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Figure 2.12 summarizes that smile changes across track but along the image the 

variation is constant. 

Now, once it is clear that how and to what level smile affects the data, it is relevant to 

know its consequence on vegetation. So, spectra of two ROIs representing the same tree 

species were taken from AIMS data (AIMS data before smile correction). The plot is 

shown in figure 2.13. Here, due to smile, the oxygen absorption channel is shifted in both 

the cases and occurs at 758nm and 764nm respectively. This has resulted in the shift in 

‘red-edge’ region in both the cases, although the species type, vegetation condition and 

phenological age are the same for both the cases. The consequence is- smile can lead to 

wrong identification of the vegetation type and its condition. 

 

Figure 2.13: Spectral plots of different ROIs of same tree species of AIMS data 

 

Furthermore, to illustrate upon the wrong assumptions made due to the presence of smile, 

spectral plots for a few mangrove species were studied. The spectra (shown in figure 
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2.14) look similar in pattern within the visible range of the spectrum but as soon as they 

hit the red edge region, the story changes. Each spectrum, on account of its species, stage 

and condition, show variation in the inflection point of the red edge which essentially 

remains in the 680-730nm range. For all of these species, the inflexion point is shown in 

table 2.7. 

 

Figure 2.14: Spectral plots for mangrove species taken using Spectroradiometer at 

Bhitarkanika RF 

Table 2.7: Red edge inflexion point of mangrove species 

Mangrove species Inflection point (nm) 

Avicennia officinalis 732 

Bruguiera gymnorrhiza 718 

Lumnitzera racemosa 731 

Bruguiera cylindrica 656 

Aegiceras corniculatum 707 

Sonneratia apetala 733 

Amoora cucullata 703 

Cerbera manghus 746 

Rhizophora stylosa 727 
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From the table above, it can be seen that these inflexion points are very specific. Also, 

they lie near to each other. The smile effect which not only changes the ostensible band 

position in varying numbers but also changes in a random manner across the image, 

confuses the identification and discrimination of the vegetation species. For example, a 

shift of 4nm can lead to confusion between Rhizophora stylosa and Lumnitzera racemosa 

or between Amoora cucullata and Aegiceras corniculatum. This is in line with the study 

by Dadon et al. (2009) who showed problems in classification results owing to smile 

affected Hyperion data use. 

At last, one more question arises that whether smile is a problem with all kinds of land 

covers or does it affect vegetation more? To answer this question, hand-held 

Spectroradiometer observations were made for three land cover classes-soil, mangroves 

and mudflats. Then, all the kinds of spectra were shifted by 1nm and the ratio spectra 

were plotted (shown in figure 2.15). While soil and mudflat hardly showed any variation 

within the spectral range under study (probably because the constituting minerals in them 

have absorptions at higher wavelengths), vegetation spectra show the presence of many 

peaks and dips. This makes it clear that while for soil and mudflat, it really does not 

matter much but for vegetation, the shift in bands is of higher significance in the spectral 

range under study.  
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Figure 2.15: Ratio spectra obtained from ratio of original band and shifted band 

 

2.3.2 Understanding the issues in vegetation spectra 

The typical vegetation spectra, shown in textbooks, are of the type shown in figure 2.7. In 

reality, the spectra obtained for vegetation through airborne and spaceborne missions 

have many issues, especially with regards to range of values, that need to be understood. 

Apart from giving the necessary information about the phenological state, vigor, health 

etc. of the vegetation, study of vegetation spectra serves an important purpose of 

checking the response of the hyperspectral instrument. This feature is illustrated in this 

section. 

The remote sensing images are generally provided in Digital Numbers (DN) which are 

converted to radiance units by using the saturation radiance or gain setting of the 

instrument and the level of quantization (equation 1). 



121 
 

Radiance=(DN/Quantization) * (Lmax-Lmin)+Lmin........................(1) 

where, Lmax=Saturation Radiance, Lmin= offset and quantization defines the radiometric 

resolution or the number of bits. 

If needed, atmospheric correction is also done over the radiance images to yield images 

of actual and sometimes apparent reflectance. At both the radiance and reflectance levels, 

the range of values is of significance, as stated earlier and shown below.  

 

2.3.2.1 Method 

The spectral plots in radiance domain were taken for two kinds of vegetation-forests and 

agricultural crops. The pattern and magnitude of the spectra were analyzed for both the 

cases using AIMS data. Based on this analysis, inputs were provided at the processing 

level leading to improved AIMS version. The spectral plots in reflectance domain were 

then studied for forests and again scope for further refinement was suggested, which was 

duly done. Once, all the suggestions were ingested, spectral profiles for vegetation 

through AIMS data were compared with those of Hyperion. But, the issues with the range 

of values still existed, so, reflectance plots of three kinds of targets were compared using 

Spectroradiometer observations and AIMS data after folding Spectroradiometer 

observations to AIMS specifications for sufficing to one-to-one match. But, still some 

anomalies existed. So, an experiment was conducted in the clean room facility for 

checking AIMS observations with those of ASD Spectroradiometer at four known 

illumination levels. The radiance was recorded for both the instruments and deductions 

were made. 
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2.3.2.2 Results and Discussions 

ROIs of 3 pixels by 3 pixels were taken from a class of dense forests and full cover crops 

of AIMS data. Mean radiance was computed for both the classes and is shown in Figure 

2.16. Sharp gaseous absorption feature is observed at 762nm corresponding to Oxygen. 

Minor absorption features near 520nm, 690nm and 840nm were also observed. The 

features nearing 840nm are mainly owed to water vapor while 690nm corresponds to 

chlorophyll absorption. Despite this, the spectra do not resemble the typical vegetation 

spectra, especially because these are the spectra for dense vegetation which should have a 

small peak at 550nm and then high radiance in NIR region. Moreover, near 650nm, sharp 

dip in radiance value is seen which indicates some kind of fault with the sensor element 

or in the processing stage. Furthermore, huge out of band response is seen throughout the 

spectrum. This results in shielding or concealing of the relevant peaks and dips.  

 

 

Figure 2.16: Radiance plots generated for vegetation using AIMS data 



123 
 

Post this analysis, AIMS data was rectified. So, again, the spectrum was taken for 

vegetation (figure 2.17).  

 

 

Figure 2.17: Reflectance plot for vegetation generated from AIMS data 

 

The typical pattern of vegetation spectra is seen in this case- relatively high reflectance at 

550nm in visible region and high reflectance in NIR range. But, there are certain issues as 

well which demand further action. These are: 1) This is a reflectance spectrum, but, still 

the dip nearing 762nm exists, which is not related to Oxygen absorption as this was an 

atmospherically corrected image. The same is true for other absorption regions, 2) The 

change in reflectance from visible to NIR is not sharp but rather subdued. This kind of 

feature is generally present in stressed vegetation. But, in this case the vegetation was 
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healthy, as confirmed from the ground observations, 3) The spectra exhibited huge out of 

band response. Due to which, the characteristic absorption features as well as the 

corresponding range of reflectance values are difficult to interpret. This is shielding the 

characteristic absorption features of many molecules including water. All of these factors 

imply that AIMS data needed further refinement. 

After further refinement in the data, the spectra were then taken for Mangroves, fallow 

land and mudflat and are shown in figure 2.18. Also shown are the spectra for the same 

classes from Hyperion data. Irrespective of the class and slight smoothing, AIMS spectra 

showed two unique yet prominent features between 500 and 550nm. These features are 

systematic for every target in the scene and do not owe their presence to any commonly 

known target. This implies the presence of significant problem with the data that has to 

be handled at payload or at the processing end. Moreover, the range of data values does 

not match at all. The radiance values for Mangroves are relatively higher (~ 6 

mW/cm
2
/sr/μm) than other targets in NIR region, but still less than what is expected from 

high biomass and rich chlorophyll regions. For e.g., in case of grain formation stage of 

Sorghum, a case of high biomass and chlorophyll, radiance values reached nearly 10 

mW/cm
2
/sr/μm when HySI data was used (Kumar, 2010) and also for Mangroves, the 

radiance value in NIR region reached up to 10 mW/cm
2
/sr/μm when Hyperion data is 

considered (Panigrahy et al., 2011). 
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Figure 2.18: Radiance plots for vegetation using AIMS data and the corresponding 

areas Hyperion data 

 

Now, it was clear that the data needed further check or refinement as it did not match 

well with the values cited in literature. So, hand-held Spectroradiometer measurements 

were taken to analyze AIMS data. Since, Spectroradiometer specifications were different 
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from those of AIMS, Spectroradiometer specifications were simulated to match with 

AIMS and then the observations were plotted (shown in figure 2.19). 

 

Figure 2.19: Reflectance plots for AIMS data and from hand-held 

Spectroradiometer data folded to AIMS specifications 

 

The reflectance plots of AIMS from the figure show that even after atmospheric 

correction, out of band response could not be corrected. Moreover, the unexplained 
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strong absorption points found earlier still exist, in addition to a few more. In view of 

these issues, it was decided to examine the AIMS instrument with hand-held 

Spectroradiometer in the laboratory at known illumination levels. 

Thus, an experiment was conducted in the clean room facility for checking AIMS 

observations with those of ASD Spectroradiometer at four illumination levels. The 

radiance was recorded for both the instruments (Figure 2.20). Corresponding difference 

in radiance measured by the two instruments is shown in figure 2.21. 

 

Figure 2.20: Radiance (mw/cm
2
-sr-um) measured in Lab by AIMS & ASD 

Spectroradiometer at different lighting level 
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Figure 2.21: Difference in Radiance measured between AIMS & ASD 

Spectroradiometer at different lighting levels 

From the above figures, following inference were made-1) Radiance values measured by 

AIMS and ASD Spectroradiometer were of similar order, 2) AIMS radiance values were 

lower than ASD by 8-12% in visible bands (up to 673 nm), later on the values were 

within 5% of ASD, 3) There is small jump in radiance of AIMS around 673 nm. 

Thus, all of these analysis, mainly based upon vegetation spectra, bought clarity to the 

observations and gave an insight on creating correction coefficients for AIMS data. 

 

2.3.3 Band-to-band registration 

Many times, due to the aircraft/spacecraft jitter and/or due to scanning mechanism, the 

hyperspectral sensors suffer from band-to-band mis-registration. Sometimes, it is visible 
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through the naked eye, sometimes on zooming and sometimes it is difficult to find on 

visual inspection. The three cases are shown in figure 2.22. Out of these three cases, the 

most troublesome is the third case because in such cases the user is under the impression 

of perfect registration but on doing quantitative analysis and/or geotagging, the 

unexpected results arrive. 

 

Figure 2.22: Band-to-band registration seen at different zooming levels in different 

images 

Thus, in addition to qualitative assessment of band-to-band registration, quantitative 

analysis is also necessary. 

 

2.3.3.1 Method 

Band-to-band registration can be checked through two means-qualitative as well as 

quantitative. For qualitative check, a number of bands, spread across the spectrum, were 

randomly selected. These bands were then linked together for visual inspection using 

ENVI image processing software. Change in position of the cursor in one band leads to 
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the same location in all other bands displayed, confirms good band-to-band registration. 

So, a number of ROIs were selected, whose position shift is easily conceivable like sharp 

features involving road crossing, curves etc. For quantitative assessment, a large number 

of Ground Control Points (GCPs), analogous to ROIs mentioned above were taken. Root 

Mean Square Error (RMSE) was computed for each. A lower RMSE value signifies 

correct band to band registration, preferably below 0.3 pixels (Wang et al., 2013; Jiang et 

al., 2013). Furthermore, to understand its implication on vegetation assessment, a 

classified image of mangroves was discussed. 

 

2.3.3.2 Results and Discussions 

Sometimes band-to-band registration is too poor such that it is visible clearly like in 

Figures 2.23 and 2.24 representing two sets of AHySI data.  

 

Figure 2.23: AHySI data showing poor band-to-band registration along with lots of 

noise 
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Figure 2.24: AHySI data showing poor band-to-band registration 

But, many a times, band-to-band mis-registration is not visible from the naked eye. For 

such cases, quantitative assessment has to be done. To demonstrate this idea, AIMS data 

was selected. Qualitative assessment was done by selecting evenly spaced bands (total 

seven in number) and shown in figure 2.25. In the figure, region enclosed in red box 

shows the same area (a typical sharp curve) in different bands from AIMS data. This 

qualitatively shows a good band-to-band registration. 

 

Figure 2.25: Different bands representing same locations for AIMS data 
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For quantitative assessment, a total of 15 GCPs were taken. Care was taken in selecting 

the GCPs such that they should exist on the sharp curves or intersections so as to pin-

point their location. Table 2.8 gives RMSE for different bands w. r. t. band 100. The 

choice of band 100 is based upon the fact that it lies at the middle of the spectral region 

and so is assumed to be free from calibration and noise issues. 

 

Table 2.8: RMSE values for GCPs  

Band no.  RMSE for Jamnagar 

20 0.2 

30 0.3 

40 0.2 

50 0.7 

60 0.4 

70 0.4 

80 0.4 

90 0.4 

100 0.5 

110 0.5 

120 0.5 

130 0.5 

140 0.5 

 

The results from the above table imply that although the images look perfect, the band-to-

band mis-registration may exist. In this case, RMSE varied from 0.2 to 0.7, which is 

outside the acceptable range given by Wang et al. (2013) and Jiang et al. (2014). Thus, a 

quantitative check is a necessary requirement for checking band-to-band registration 
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before further analysis. Its implication on vegetation assessment can be understood from 

the following example, shown in figure 2.26. This figure shows classified image having 

pockets of mangrove species. There are certain regions (circled in red colour) which 

show two classes occurring together or are adjacent to each other. These are the classes 

where the effect of band-to-band mis-registration is most pronounced because in such 

cases when the two species are adjacent and if this issue exists, the pixel may be wrongly 

classified. 

 

Figure 2.26: Classified image of Jamnagar mangroves using AIMS data. Adjacent 

classes which may be affected by band-to-band mis-registration shown in red circles 
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2.3.4 Noise 

Determination of noise through an image is difficult although in extreme cases it is easily 

visible, like in figure 2.27 wherein lots of stripes are seen. In the Hyperion imagery, all of 

these stripe artifacts are of one-pixel width (Yokoya et al., 2012). Noise due to striping 

deteriorates smile and keystone detection results. When the noise is apparent from the 

images but it becomes difficult to understand which bands to screen, one needs a 

quantitative assessment. 

 

Figure 2.27: Hyperion image showing stripes 

 

2.3.4.1 Method 

Quantitative assessment of noise can be done through the computation of scene’s Signal 

to Noise Ratio (SNR). To compute SNR, mean and standard deviation are taken for each 

pixel, which takes into account the neighbouring eight pixels in a window of size 3*3 

pixels each. This is required to classify bad bands to be excluded from further analysis, 

using the following equation: 

Scene SNR= (mean of 3*3 pixel window)/ (S.D. of 3*3 pixel window)………….. (2) 



135 
 

where, S.D. is standard Deviation 

As is evident from the formula, higher the S.D., lower is the scene SNR, indicating high 

scene noise.  Bands having SNR <5 are removed from the analysis because such bands 

imply large noise (Rose, 1973). 

 

2.3.4.2 Results and Discussions 

Images from bands no. 1,5, 10, 15, 20, 25, 30, 60, 100 and 143 of AIMS are displayed in 

figure 2.28. Many bands in the AIMS scenes have moderate to high noise rendering some 

of them to be of limited use when further application is concerned. The initial few bands 

look noisy and hence can be easily removed, but later, noise does appear in some of the 

images. At this point, it becomes difficult to know where to put the threshold. In such 

cases, computation of scene SNR becomes important.  

 

Figure 2.28: Randomly selected AIMS bands spread across the entire range 
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Using equation 2, scene SNR was computed for all the bands. The SNR w.r.t. band 

numbers is plotted in figure 2.29 for the scenes corresponding to figure 2.28 above.  

 

Figure 2.29: SNR value for AIMS bands. 1
st
 22 bands noisy.  

 

Following Rose criterion, a total of 22 bands were removed. The influence of this was 

observed through vegetation classification. With all bands included, classification 

accuracy came out to be 62% which increased to 79% with the low SNR bands removed. 

Thus, removal of noisy bands ups the classification accuracy. 

 

2.3.5 Image distortion 

There are certain issues that are specific to airborne imaging. For e.g. Geo-referencing 

accuracy. Due to problems in synchronization between the navigation system and the 

sensors, sometimes small timing errors may occur causing scan lines to be positioned 
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incorrectly leading to development of "wobbles" in the imagery (http://arsf-

dan.nerc.ac.uk/trac/wiki/Reports). This can be seen through figure 2.30.  

 

Figure 2.30: Wobbles in airborne hyperspectral imagery 

 
 

2.4 SOURCES OF EXPERIMENTAL ERRORS THAT AFFECT 

DATA QUALITY 

Even if the instrument is well calibrated and of scientific quality, yet it can offer poor 

quality end products due to human induced experimental errors. The errors induced at the 

time of data acquisition seriously affect the end products. Such factors are discussed in 

the following text. 

 

2.4.1 Effect of change in exposure time 

Exposure time refers to the time for which the scene on ground is exposed to the sensor. 

If the exposure time is high, it leads to blurring of the image. On the other hand, low 

exposure time causes low SNR (Janschek & Tchernykh, 2001). Therefore, while 
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acquiring hyperspectral images through AIMS data over a piece of land having 

agricultural crop field, forest, fallow land and water body (figure 2.31), acquisition time 

was set to 5ms and 10ms. For the ROIs representing targets of concern, shown in the 

figure below, mean radiance was computed, corresponding to which spectral plots were 

generated in radiance domain. These spectra were then analyzed. 

 

 

Figure 2.31: Target areas shown in AIMS image for which radiance is collected at 

two exposure times 

 

2.4.1.1 Results and Discussions 

There is a trade-off between the duration of the exposure time. Longer exposure time 

allows more light to enter the camera thereby increases the luminance of the image while 

a prolonged exposure leads to image blurring due to the movement of the objects. At two 

exposure times of 5ms and 10ms, the spectral analysis leads to some fixing facts. Figure 

2.32 shows the radiance profile of the targets of interest shown in figure 2.31 at two 
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exposure times. At lower exposure times, the typical curves of the targets of interest are 

not observed. Also, the radiance values are subdued. However, with increase in exposure 

time, the magnitude of radiance values is increased but show a little higher range than 

normal. The pattern of the spectral profiles looks to be fine, apart from the out of band 

response. Overall, it may be said that exposure time of 10ms is better than 5ms. 

 

Figure 2.32: Radiance plots for targets of interest (shown in figure 2.31) at different 

exposure times-10ms (above), 5ms (below) 
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2.4.2 Effect of inappropriate sampling 

Field Spectroradiometers generally measure a much smaller area, therefore, sampling 

complete area of interest becomes difficult. So, appropriate sampling strategy should be 

adopted. Even otherwise, when spectra are retrieved from the image, appropriate 

sampling  

is necessary. One study suggests 10 samples is a good number 

(https://discover.asdi.com). The effect of sampling can be seen from figure 2.33. In this 

figure, three reflectance spectra, collected from hand-held Spectroradiometer, are shown 

for Vigna unguiculata (Cow pea). The spectra are obtained for three categories-1) when 

the number of samples is 5 and 2) when the number of samples is 7 and 3) for samples 

10. 

 

 

Figure 2.33: Effect of reducing number of samples on spectral behavior of Vigna 

unguiculata (Cow pea) 
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As can be seen from the figure, with the increase in number of samples, the diversity 

within the field is addressed well. Thus, the magnitude of the spectra changed 

substantially especially in the NIR region. Beyond 10 samples, the change in spectra is 

insignificant and is not shown in the plot. For quantitative estimates, percentage 

difference in the spectra is estimated. The same is shown through figure 2.34. 

 

Figure 2.34: % difference in reflectance with change in number of samples 

 

From the figure, it is seen that a difference of the order of 10-15% is observed within the 

visible range for sample size 5 and 7 or 10. Not much difference is observed between 

sample no. 7 and 10.  
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2.4.3 Effect of leaf stacking 

When vegetation is mapped from the space or from any airborne platform, the effect of 

canopy as a whole comes. This includes several stacks of leaves, branches, flowers etc. It 

is expected that stack of leaves should increase the magnitude of the reflectance. So, 

spectral observations of leaves in stack of 1,2,3,4,5,6,7 and 8 leaves were taken. Figure 

2.35 shows the spectral plots for a single leaf, two and seven leaves stacked of Tectona 

grandis (Teak). 

 

 

Figure 2.35: Effect of leaf stacking on spectral response of Tectona grandis (Teak) 

 

As was expected, as the number of leaves in a stack increases, the magnitude of the 

spectra increases. This may create confusion in identifying two spectra. For e.g. a dense 

spectra of one vegetation may mimic less dense spectra of another. Thus, associated 

ground information is also necessary while labelling the target vegetation in the image. 

The extent to which the reflectance varies can be seen from figure 2.36. 
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Figure 2.36: % Change in reflectance with leaf stack 

 

As soon as the number of leaves change from 1 to 2 in a stack, the reflectance increases 

and it keeps on increasing with the increased number of leaves in a stack. However, the 

change in reflectance is comparatively low between a stack of 2 leaves and 7. Thus, it 

may be concluded that reflectance of single leaf does not give the actual picture of the 

canopy but a stack of even two leaves is better.  

 

2.4.4 Effect of phenology 

Phenology refers to timing of life cycle events of a vegetation especially w.r.t. changes in 

season. This means phenology of vegetation includes all the life stages of vegetation 

including sapling, fruiting, mature age etc. At each level, the constituting pigments also 

vary in proportion. To understand this clearly, two cases are considered-for tropical tree 
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species Madhuca indica and Tectona grandis. For Madhuca indica, spectra for two stages 

are plotted in figure 2.37- for very young leaf and for mature leaf.  Since the pigment 

composition, leaf’s surface properties, structure and water content of young leaf and 

mature leaf vary greatly (Croft and Chen, 2017), the spectra of the two leaf types also 

vary. The spectral plot for the mature leaf is the standard one and is usually found on 

ground as well as in spectral library. The spectrum of young leaf does not resemble the 

typical reflectance curve for vegetation. If this signature is used for training purpose, the 

resulting classification would be erroneous. This is an example where spectra 

interpretation can introduce huge conflict. Thus, knowledge of phenological stage of the 

vegetation is of utmost importance before using the spectra for further analysis. 

 

 

Figure 2.37: Spectral plots of the two growth stages of Madhuca indica 
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In another example, various stages of Tectona grandis (Teak) starting from young age to 

mature age is taken. The spectra of the same is plotted in figure 2.38.  

 

  

Figure 2.38: Phenological stages of Tectona grandis (Teak) 

 

Here, unlike the spectrum of Madhuca indica, the variations in spectra are mainly in 

magnitude and not the pattern (apart from a few variations).  

From above, it may be concluded that the phenological stage of the vegetation under 

study should be borne in mind before any deduction is made. 
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2.4.5 Effect of variety 

The variation in spectra owing to the change in species is show by many researchers 

(Zhang et al., 2012; Singh et al., 2012; Jeffery et al., 2014). Within the same species also, 

the varieties may be different (Moharana & Dutta, 2014). To understand the range of 

variation of the reflectance within the same species, spectra from six different varieties of 

paddy were studied. The spectral plots are shown in figure 2.39. Here, three important 

observations are made: First, the spectral plots vary mostly in the NIR range, both in 

magnitude and the position of absorbing wavelengths, Second, the position of red edge 

changes with each variety and thirdly, the magnitude of green peak also varies with 

variety. Thus, the paddy varieties, which apparently look similar are easily 

distinguishable using hyperspectral remote sensing.  

 

Figure 2.39: Spectral curves of various varieties of paddy crop obtained using ground based 

Spectroradiometer 
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2.4.6 Effect of sensor saturation radiance 

Saturation Radiance (SR) is the radiance recorded by the sensor at saturation, which 

occurs when the energy flux exceeds the sensitivity range of the detector. It is an 

important parameter while designing the sensor. For a given quantization level, higher SR 

may lead to decrease in spectral discrimination while the lower SR may result in 

saturation over the desired area of interest. To understand the influence of sensor SR, let 

us take two cases for the three hyperspectral instruments whose SR is shown in figure 

2.40.  

 

Figure 2.40: Saturation radiance plots for the three airborne sensors-AIMS-1, 

AIMS-2 and AHySI 

 

Case 1 corresponds to radiance at 450nm from all of the three instruments when 

quantization is 8 bit and case 2 corresponds to the same calculations for 12-bit 

quantization. It is assumed that the target has DN=100. 

Radiance can be computed from the standard equation (1) and assuming Lmin to be 0. 

Table 2.9 displays the calculated values for the two cases. 
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Table 2.9: Effect of SR on three airborne sensors 

 AIMS-1 radiance AIMS-2 radiance AHySI radiance 

Case 1 31.25 19.5 5.9 

Case 2 1.95 1.22 0.37 

 

No doubt, same DN value corresponds to variable radiance with change in SR. Thus, the 

choice of SR plays a great role in obtaining the radiance for the target of concern. 

 

2.4.7 Species considerations 

Different species vary in pigment composition and quantity (Kiang et al., 2007; Croft & 

Chen, 2017). As a result, they show variation in spectral behavior. Jeffrey et al. (2014) 

and Zhang et al. (2012) have showed role of various spectral regions in species 

discrimination from hyperspectral data. This can be understood from the spectral plots 

shown in figure 2.41 (for agricultural crops) and figure 2.42 (for mangrove tree species). 

The spectral variations are seen both in magnitude and points of absorptions, especially in 

the VNIR regions and the red edge positions for both the agricultural crops and the 

mangrove species. 
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Figure 2.41: Spectral variations seen in typical reflectance spectra of agricultural crops 

 

Figure 2.42: Spectral variations seen in typical reflectance spectra of Mangrove tree species 
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2.4.8 Others  

Other factors that need to be addressed beforehand include: 

• Field Spectroradiometers generally measure a much smaller area, therefore, 

sampling complete area of interest becomes difficult. So, appropriate sampling 

strategy has to be adopted. 

• Many times, field measurements include scattered light from clothes of observer. 

It is thus advisable that the observer avoids bright cloths and keeps himself away 

from the camera’s Field of View (FOV).  

• For repeated observations, the hand may not remain still leading to changes in 

observations. Therefore, a well levelled tripod or stand is required.  

• When using the instrument outside, reference spectra should be taken as soon as 

sun’s angle change, atmospheric changes, like cloud cover or humidity, 

temperature changes etc. 

• Appropriate number of scans should be taken for each target spectra.  

• Noise in the spectra may be routinely checked. Noise may be due to fault in the 

electronics or the breaks in the cable. 

• Instrument should be properly warmed up before starting measurements.  

• Now-a-days Spectroradiometers are provided with wireless communication. To 

avoid communication loss, care must be taken to avoid any RF signal or jammer 

in the vicinity. 
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• If field data collection is aimed for validation of hyperspectral image, the timing 

of data collection should match with that of hyperspectral image so that same 

illumination conditions must be observed. 

• The selection of a particular sampling strategy should be based upon the 

objectives of the study. If the objective is to develop a spectral library, the 

required targets should be placed in all expected conditions including background, 

illumination, slope and aspect, and target surface architecture. 

• For hyperspectral image validation, viewing geometry similar to the sensor is 

required. For developing spectral library, usually, nadir view in direct sunlight is 

required. Care should be taken to avoid diffuse sunlight. 

• The height of data acquisition should be carefully considered and should be in 

concurrence with the FOV of the instrument. 
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