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Chapter 3 
Issues of Atmospheric Correction, Data 

Redundancy and Image Classification 
 

 

SUMMARY 

While analyzing remote sensing data in order to derive meaningful interpretation, 

atmospheric correction and image classification form the two essential steps. However, 

when the data is hyperspectral data, one more step becomes essential and that is removal 

of redundant bands. Thus, this chapter comprises of the discussions regarding these three 

aspects. At the onset is the hyperspectral data analysis for atmospheric correction. The 

two kinds of techniques, namely-relative and absolute are discussed here in connection to 

their effect on vegetation assessment. As regards to data redundancy, feature extraction as 

well as reduction techniques are discussed. Their success is measured through the 

improvement in classification accuracy owed to them. Furthermore, due to very large 

number of bands conventional classifiers are not suitable, so hyperspectral-centric 

classifiers are discussed. This has led to the identification of the feature 

extraction/reduction method and classifier which yield the best classification accuracy 

while using hyperspectral data in various domains of vegetation assessment. 
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3.1 ISSUE OF ATMOSPHERIC INTERFERENCE  

The solar radiation along the Sun-Sensor-Earth path undergoes absorption and scattering. 

The absorptions correspond to water vapor, oxygen, carbon dioxide etc. Amongst them, 

major atmospheric water vapor absorption bands are centered at approximately 

940,1140,1380 and 1880 nm, oxygen absorption band at 762 nm and carbon dioxide 

absorption band near 2080 nm (Gao et al., 2009). As mentioned in chapter 1, accurate 

removal of atmospheric absorption and scattering effects is required. This process is 

called atmospheric correction which aims at converting radiance to reflectance. In 

quantitative analysis, it is almost mandatory to calculate reflectance but not so in 

qualitative analysis. Yet, the reflectance spectra being easy to understand and 

comprehend, it is a better choice. The same can be realized through the following figure 

3.1. 

 

Figure 3.1: Radiance plot (Left) and Reflectance plot (Right) for vegetation 

 

Radiance plot of vegetation in the above image shows a large number of prominent dips 

corresponding to atmospheric constituents. When these dips are flattened after 
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atmospheric correction, the reflectance image of the type shown in the above picture is 

generated. This resembles the spectra of vegetation. Thus, merely looking at the spectral 

profile, one can deduce the target under consideration and its status as well.  

Now, atmospheric correction can be done through two methods -Relative or scene based 

empirical approaches and Absolute or radiative transfer modeling approaches. While 

relative methods do not give the actual reflectance but provide pseudo reflectance, 

absolute methods are more robust for they involve radiative transfer modeling. In 

quantitative analysis, the use of absolute methods is preferred but, can we use relative 

methods in hyperspectral data, is discussed in the following text. 

 

3.1.1 Relative atmospheric correction techniques 

During the mid-1980s, several scene-based empirical approaches were developed to 

remove atmospheric effects from hyperspectral imaging data for the derivation of relat ive 

surface reflectance spectra including flat field technique, Internal Average Relative 

Reflectance (IARR), Dark Object Subtraction (DOS) and log residuals. The kind of 

spectra these methods generate is discussed in the subsequent section. 

 

3.1.1.1 Method 

The atmosphere absorbs light very strongly in certain well-defined wavelengths. This 

causes image bands within those intervals to be relatively dark. The flat field correction 

technique is used to reduce this effect. Here, images, especially hyperspectral, are 

normalized in an area of known "flat" reflectance by assuming that there is an area in the 

scene that has spectrally neutral reflectance (Roberts et al., 1986). IARR (Kruse, 1988) 
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normalizes images to a scene average spectrum. This is particularly effective for reducing 

hyperspectral data to relative reflectance in an area where no ground measurements exist 

and little is known about the scene. The ‘Log Residuals’ remove solar irradiance, 

atmospheric transmittance, instrument gain, topographic effects and albedo effects from 

radiance data by creating a pseudo reflectance image. The logarithmic residuals of a 

dataset are defined as the input spectrum divided by the spectral geometric mean, then 

divided by the spatial geometric mean. It has a characteristic property of giving 

pronounced absorption at certain specific wavelengths. In DOS, atmospheric scattering 

corrections are applied to the image data. Here, the DN of the dark object in the image is 

subtracted from every pixel. This DN can be either the band minimum, an average based 

upon an ROI, or a specific value.  

These methods were applied over HySI data and the resulting spectral profiles were 

studied.  

 

3.1.1.2 Results and Discussions 

For flat field correction, spectra of shallow (sand laden) water was used. It had spectrally 

neutral spectra. The whole image was then normalized. Consequently, spectra from 

vegetation pixels was, shown in figure 3.2. The resulting spectra looks like that of 

vegetation. The typical peak of chlorophyll absorption at 550nm is not observed, 

nonetheless, the inflexion point of red edge near 700nm exists along with the typical 

plateau like high reflectance in NIR region. The irregularities are reflected in each target 

spectrum where pseudo reflectance for vegetation goes beyond 1. Thus, flat field 

correction may help in objectives like classification, where absolute atmospheric 
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correction is not generally needed but not for quantitative studies like biochemical 

parameter estimation. This is in accordance with the results of Souri and Sharifi (2012), 

who proved flat field to be effective in vegetation studies. 

 

 

Figure 3.2: Vegetation spectra before (left) and after flat field correction (right) 

 

When IARR was applied on the hyperspectral image, the plot of the type shown in figure 

3.3 is generated. This method yields ‘vegetation like’ spectra, which is again the spectra 

of pseudo reflectance like that of flat field. However, two prominent dips are observed at 

500nm and 700nm. The dip at 700nm can be explained as due to ‘red-edge’ but the 

500nm dip is unexplainable. Thus, here too, for objectives like classification, where 

absolute atmospheric correction is not generally needed, this method is of use. Like flat 

field method, it is useful for vegetation studies. 
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Figure 3.3: Vegetation spectra before (left) and after IARR (right) 

 

In both the IARR and flat field approach, the derived relative reflectance spectra often 

have absorption features that are not present in reflectance spectra of actual materials 

(Clark & King,1987). The reason is that the mean spectrum of the “flat field” is not 100% 

spectrally neutral or ‘flat’. The use of such spectrum can introduce broad absorption 

bands in the resulting spectra.  

When the method of log residuals is applied, spectral plot of the type shown in figure 3.4 

is obtained. The method gives ‘vegetation like’ spectra with prominent dips at places 

(like near 700nm) having little resemblance with actual materials. But, this dip is nearing 

‘red edge’ region and hence emphasizes the presence of healthy green vegetation which 

shows sudden increase in NIR reflectance at red edge. Thus, it may be concluded here 

that Log residuals stresses upon the important absorption features.  When compared to 

flat field and IARR, this method appears to have more saw-wave type noise. Nonetheless, 

it may be used for classification purpose but not for quantitative assessments.  
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Figure 3.4: Vegetation spectra before (left) and after Log residuals correction (right) 

 

For the application of DOS, two kinds of spectrally dark features were considered- band 

minimum and deep water. Figure 3.5 shows the results of Dark object subtraction (DOS) 

applied on the image. When DOS is done using band minimum for subtraction, the 

resultant spectra is just a variation of the input spectra and does not show any 

resemblance to typical vegetation spectral profile, although it emphasizes upon the red-

edge inflexion point. When DOS involves subtraction using deep water DN, the typical 

vegetation spectral profile (pattern only) is observed. Gilmore et al. (2015) have proved 

the utility of DOS in discriminating wetlands using Landsat-8 data.  

      

 

Figure 3.5: Vegetation spectra before DOS correction (left), after DOS correction 

using band minimum (center) and DOS correction (right) 



163 
 

 

As is clearly visible from the above figures, the selection of minimum value used to 

conduct DOS is crucial to arrive at the optimum results. The best selection is of dark 

dense vegetation, during its absence band minimum is preferred over deep water values.  

 

3.1.2 Absolute methods 

To compensate for atmospheric effects, properties such as the amount of water vapor, 

distribution of aerosols, and scene visibility must be known. Highly accurate models of 

atmospheric radiation transfer to produce an estimate of the true surface reflectance are 

then used. Atmospheric corrections of this type can be applied on a pixel-by-pixel basis 

because each pixel in a hyperspectral image contains an independent measurement of 

atmospheric water vapor absorption bands. The models under this category include 

ATREM (Gao and others,1993), FLAASH (Matthew and others, 2000), ACORN (Miller, 

2002), HATCH (Qu and others, 2003) and ATCOR (Richter, 1996). Here, FLAASH is 

studied for retrieving reflectance over vegetation using HySI data and AIMS data, 

collected at nadir view. 

 

3.1.2.1 Method 

Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) is a first-

principles atmospheric correction method developed for Hyperspectral Images for 

correction of visible through SWIR channels. It is based on MODerate resolution 

atmospheric TRANsmission code (MODTRAN-4) (Cooley et al., 2002). The important 

inputs include atmospheric models, water vapor retrieval band, aerosol model and 
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visibility range. Depending upon the average surface air temperature and water vapor, the 

type of the atmosphere is defined. In this case, Tropical model was selected which 

suffices to the conditions of mean surface air temperature as 27
0
C and mean water vapor 

as 4.11g/cm
2
. To solve the radiative transfer equations that allow apparent surface 

reflectance to be computed, the column water vapor amount for each pixel in the image 

must be determined. For this water vapor absorption band at 1135 nm, 940 nm and for 

820 nm can be used. As aerosols change with the change in the type of study area. 

Likewise, three kinds of aerosol models exist, Rural, Urban and Maritime.  

Thus, broadly, the choice of water vapor retrieval band and aerosol models may interfere 

with the retrieval of actual reflectance. To what extent they influence the spectral curve 

forms a part of this study. For this, three cases were considered-1) Without retrieving 

water vapor and aerosol, 2) Retrieving water vapor at 820nm but no aerosol and 3) 

retrieving both, water vapor and aerosol. 

 

3.1.2.2 Results and Discussions 

In the first case, water vapor channel was not defined. In that case, the water vapor was 

fixed at one value for the entire scene. Consequently, the reflectance image of HySI 

appears to be flattened, with little resemblance to the expected spectra (Figure 3.6). With 

the inclusion of water vapor retrieval at 820nm, the spectral plot bears little resemblance 

to the actual spectra, which gets further refined on retrieving aerosols. It may be noted 

here that still now the reflectance plot does not resemble the typical vegetation spectra. 

This is due to the quality issues discussed in last chapter. 



165 
 

 

Figure 3.6: Reflectance images (a) Water vapor and aerosol not retrieved, (b) Water 

vapor retrieved at 820 nm but aerosol not retrieved, (c) Water vapor retrieved at 

820 nm and aerosol retrieved 

When the same kind of study was performed over AIMS data with basic corrections 

done, results of the kind shown in figure 3.7 are obtained. The range of wavelength is 

kept same in figures 3.6 and 3.7 so as to understand the ambiguity of the spectra in HySI 

image without correction. Here, variation of reflectance with different water absorption 

bands is studied. It is observed that using water vapor band is important but the 

wavelength region used out of the three mentioned above does not make much difference. 

However, in all the cases, the reflectance observed is higher than the standard reflectance 

(yellow line) obtained from Spectroradiometer observations in the NIR region and lower 

in the visible region. However, Rudjord and Trier (2012) showed that using FLAASH, 

reflectance in NIR region is less than the expected values but Kruse, 2014 supported the 

results discussed here. 
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Figure 3.7: Reflectance image of spectra post application of FLAASH on AIMS data 

 

Thus, it may be concluded that water vapor retrieval using one of the water vapor 

absorption channel is important in improving atmospheric correction.  

When different methods for atmospheric correction are employed, namely FLAASH with 

atmosphere models Tropical and Mid-latitude summer; Empirical line method; 6S code 

and through Spectroradiometer observations, the variations in reflectance values are 

observed for vegetation. In figure 3.8, these methods are compared for three 

characteristic wavelengths of vegetation-red (NIR), green and blue, which are used for 

creating FCC. 
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Figure 3.8: Comparison of reflectance values of vegetation obtained from various 

techniques for three bands used for creating FCC. 

From the figure, it is clear that reflectance values obtained from Spectroradiometer and 

through 6S code match closely but vary significantly from both the absolute as well as 

relative methods of atmospheric correction. The use of either of the inbuilt atmospheric 

models in FLAASH doesn’t affect the reflectance values greatly. 

 

3.1.3 Other Factors 

3.1.3.1 Effect of cross-track illumination 

Airborne images are best acquired while the sensor platform is flying towards the sun as 

in that case the sun provides similar illumination conditions to all the targets captured in 
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the image (www.gege.fct.unesp.br). In practice, it is often not possible because of many 

reasons. The effect of varying azimuth angle and/or changing solar elevations occurs in 

terms of radiance. Visually too, it affects the image, as can be seen by figure 3.9. 

. 

 

Figure 3.9: Image blurring on account of cross track illumination 

 

3.1.3.2 Effect of change in zenith angle 

Vegetation canopies are not lambertian reflectors and so their reflectance varies with sun 

and view angle change (Shibayama & Wiegand, 1985). Since, the nadir view is not 

always possible, so, impact of zenith angle variation on reflectance/radiance is important 

to know.  The same holds true for Phytoplanktons. The surface radiance from the 

phytoplankton colonies changes with change in zenith angle. The same can be understood 

through figure 3.10. Here, with change in zenith angle from 0
0
 to 90

0
, the surface 

radiance increases by 4-5 times. This calls for taking into account this effect before any 

inference is made from the data. The same kind of observation was shown by Xin et al 

(2012) for MODIS snow mapping in forests and also by Li et al. (2016).  
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Figure 3.10: Effect of zenith angle change on surface radiance by Phytoplanktons 

with chlorophyll composition 10mg/m
3
, as simulated 

 

3.2 DATA REDUNDANCY 

Literature cites a number of dimensionality reduction techniques. The main being Step-

wise Discriminant Analysis, Principal Component Analysis and Minimum Noise 

Fraction. These techniques are discussed here in terms of their role in utilizing 

hyperspectral data to its full potential. Additionally, a novel method of feature extraction 

based on image texture is also shown and discussed.  

 

3.2.1 Method 

Step-wise Discriminant Analysis (SDA) 
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The typical absorption features of any target correspond to the most important constituent 

of any target. Here comes the use of SDA which was performed through SPSS 16.0 

software. It gives the best discriminating wavelengths using multivariate separability 

measures like Wilk’s lambda, F value etc (Thenkabail, 2002). Wilk’s lambda tests 

whether there are differences between the means of identified groups on a combination of 

dependent variables. Higher the value, less is the discrimination potential and vice versa 

as Wilk’s lambda is an inverse measure (Chatfield and Collins, 1986). A combination of 

low Wilks’ Lambda and high F-value shows higher discrimination and a zero value of 

Lambda indicated perfect separability. This method was implemented over 

Spectroradiometer observations of agricultural crops for discrimination of crop types, 

crop stage (Mango) and crop (Paddy) variety.  Crop discrimination was based only on 

considering the trough locations but for Paddy varieties discrimination, the position of 

various absorption points as well as intensity of magnitude of the spectra were 

considered. This method was also implemented for discrimination of crop residue from 

standing matured crop and soil. 

 

 

Principal Component Analysis (PCA) 

For the Hyperion scene, random pixels in terms of regions of interest (ROIs) were taken 

on the radiance image and then were subjected to factor analysis so in order to identify 

underlying factors (bands) that explain the pattern of correlations. Principal components 

analysis (PCA) is a popular technique for data compression that produces uncorrelated 

bands, segregates noise and reduces dimensionality (Richards, 1999). The first 
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component has maximum variance. Successive components explain progressively smaller 

portions of the variance and are all uncorrelated with each other. The later components 

appear noisy because they contain very little variance, much of which is due to noise in 

the original spectral data (Richards and Jia, 2006). The technique adopted for rotation 

was Varimax method with Kaiser Normalization, which is an orthogonal rotation method 

that minimizes the number of variables that have high loadings on each factor (Norusis, 

2004). This method simplifies the interpretation of the factors. Eigenvalues over one were 

only extracted and principal components were analyzed on the basis of correlation 

matrix. The selection of uncorrelated wavelengths was done using factor analysis tool in 

SPSS version 16.0. PC bands with large eigenvalues contain the largest amount of data 

variance, while bands with lower eigenvalues contain less data information and more 

noise. 

 

Minimum Noise Fraction Based Dimensionality Reduction 

Farrell et al (2005) suggested that for targeting at activities like discrimination of objects, 

PCA is not suitable. Nonetheless, Minimum Noise Fraction (MNF) transform, which 

essentially is noise adjusted PCA, is a better alternative. It is a two stage linear transform 

where noise is decorrelated and rescaled followed by PCA (Green, 1988). This method 

was implemented over Hyperion dataset. 

 

Image Texture Based Dimensionality Reduction 

Two basic categories of texture analysis can be defined, namely, statistical and structural. 

Statistical texture analysis techniques primarily describe texture of regions in an image 
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through higher-order moments of their grayscale histograms (Tomita and Tsuji, 1990). In 

simpler terms, it can be said that statistical approach sees an image texture as a 

quantitative measure of the arrangement of intensities in a region. On the other hand, 

structural texture analysis techniques describe texture as to comprise of well-defined 

texture elements. Texture analysis based on extracting various textural features from a 

gray level co-occurrence matrix (GLCM) (Haralick et al, 1973) is the most popular and 

cited technique. The GLCM approach is based on the use of second-order statistics of the 

grayscale image histograms. The GLCM functions characterize the texture of an image 

by calculating the co-occurrences of pixels with specific values in an image, creating a 

GLCM, and then extracting statistical measures from this matrix. The GLCM of an image 

is an estimate of the second-order joint probability, Pδ(i,j) of the intensity values of two 

pixels (i and j), a distance δ apart along a given direction θ. Haralick et al. (1973) 

proposed 14 textural parameters calculated from Pδ, all of which are seldom used. 

However, the correct choice of parameters lies in their ability to extract the most 

prominent features. For example, in areas with smooth texture, the range of values in the 

neighborhood around a pixel will be a small value; in areas of rough texture, the range 

will be larger. Similarly, calculating the standard deviation of pixels in a neighborhood 

can indicate the degree of variability of pixel values in that region. Here, GLCM based 

texture analysis was implemented over Hyperion dataset. This method includes 

‘variance’, ‘homogeneity’ (Measures closeness of elements in GLCM to the diagonal 

elements), ‘contrast’ (Measures local variations), ‘dissimilarity’, ‘correlation’ (Measures 

joint probability) and ‘entropy’ (Degree of randomness) of the image in order to assess 
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the suitable bands for discrimination purpose. Table 3.1 describes methods of 

computation for the said texture parameters.  

 

Table 3.1: Computation Formulae for Texture Parameters 

Texture Parameter Method of computation 

Entropy S= -Σi=1 to n Σj=1 to n Pδ (i,j) log Pδ (i,j) 

Contrast C=Σk=0 to n-1 k
2
Σi=1 to n Σj=1 to n Pδ (i,j) 

Correlation Co= (Σi=1 to n Σj=1 to n i.j Pδ (i,j)-μxμy)/σxσy 

Homogeneity H= Σi=1 to n Σj=1 to n Pδ (i,j)/(1+|i-j|) 

Variance (σ)
1/2

 

Mean 
μx= Σi=1 to n Σj=1 to n Pδ (i,j) 

μy =Σj=1 to n Σi=1 to n Pδ (i,j) 

Standard Deviation 

σx= Σi=1 to n (i-μx)
2
 Σj=1 to n Pδ (i,j) 

σy= Σj=1 to n (j-μy)
2
 Σi=1 to n Pδ (i,j) 

 

 

In order to select the suitable bands for vegetation discrimination, the texture parameters, 

variance, homogeneity, contrast, dissimilarity, correlation and entropy were computed 

using GLCM. The GLCM matrix was created using each pixel along with its immediate 

horizontal neighbor (x shift=1 and y shift=0) for a 3*3-pixel window. Each texture 

parameter owned 196 images. Good quality bands (SNR>10) were selected for each 

texture parameter. This reduced the number of bands corresponding to each parameter. 

Finally, intersection of sets of bands was done to yield final number of reduced bands 

available for further analysis. Table 3.2 shows the permissible values for different texture 

parameters corresponding to SNR>10, above which the bands were removed. Outside the 

permissible values, the bands extracted played insignificant to poor roles in image 
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classification either by not affecting classification accuracy at all or by decreasing it by a 

few percentages.  Also, each texture parameter was analyzed for its significance in 

modulating classification accuracy. This was done by deliberately removing one texture 

parameter at a time in the analysis to check the effect it imparts to the classification 

accuracy. Because, no significant contribution was shown by the parameters homogeneity 

and correlation in feature reduction by observing classification results, consequently, the 

same were dropped from further analysis. 

Table 3.2: Texture parameters 

S. No. Texture parameter Permissible value 

1 Variance >30 

2 Homogeneity Not suitable 

3 Contrast <10 

4 Dissimilarity >4 

5 Entropy >1 

6 Correlation Not suitable 

 

3.2.2 Results and Discussions 

Step-wise Discriminant Analysis 

This method helps in identifying the spectral regions most suitable for discriminating a 

particular category. This is shown through discriminating agricultural crop types, 

agricultural crop varieties and stages and agricultural crop residue. The method is mostly 

applicable in cases where data is in non-image mode. 

The performance of SDA is seen through its application for Paddy variety discrimination. 

Here, six varieties of paddy (paddy gr 4 to paddy gr 9) were studied. Figure 3.11 shows 

the spectral signatures of these varieties. It can be observed from the plot that all varieties 
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are distinguishable from each other but from visualization alone, it is not clear that which 

bands contribute the maximum in target discrimination. Thus, SDA was performed so as 

to find the best discriminating bands. 

 

Figure 3.11: Spectral plots of paddy varieties 

SDA yielded table 3.3 which shows the discriminating wavelengths, their Wilk’s lambda 

as well as F value. Bands within the range of 646-686nm are mainly attributed to 

chlorophyll content. Hence, it is the quantitative difference in amount of chlorophyll 

content that remarkably differentiates the paddy varieties. Soil organic carbon and soil 

texture contribute mainly to the bands centered near 366nm, 416nm, 456nm and 1046nm. 

966nm which corresponds to plant biochemical pigment concentration. Besides this, 

other bands, probably, are the outcome of the structural differences in the varieties of 

paddy. As a result, it can be said that with the hyperspectral set of bands appropriately 
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reduced through SDA, even minute discrimination between varieties of a particular crop 

can also be picked up. 

 

Table 3.3: Step wise discriminant analysis results for Paddy variety discrimination 

Wavelength Wilk's lambda F value 

366 0.337 44.536 

366, 686 0.043 86.128 

366, 686, 646 0.028 54.055 

366, 686, 646, 416 0.019 42.133 

366, 686, 646, 416, 456 0.016 33.623 

366, 686, 646, 416, 456, 1046 0.012 28.922 

366, 686, 646, 416, 456, 1046, 2096 0.006 30.11 

366, 686, 646, 416, 456, 1046, 2096, 1966 0.005 27.983 

366, 686, 646, 416, 456, 1046, 2096, 1966, 766 0.004 26.357 

366, 686, 646, 416, 456, 1046, 2096, 1966, 766, 966 0.003 25.097 

366, 686, 416, 456, 1046, 2096, 1966, 766, 966 0.003 27.841 

366, 686, 416, 456, 1046, 2096, 1966, 766, 966, 2186 0.002 26.207 

366, 686, 416, 456, 1046, 1966, 766, 966, 2186, 2016 0.002 28.879 

 

On similar grounds, the spectra of mango crop at three different stages- young, middle 

and mature ages was analyzed through SDA. The spectra are shown in Figure 3.12.  

Table 3.4, as an outcome of discriminant analysis, lists the bands suitable for 

discriminating the same. 
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Figure 3.12: Spectral plots of three stages of Mango 

Table 3.4: Results of Discriminant analysis for Mango stages 

Wavelength (nm) Wilks’ Lambda F-test 

700 0.020 297.71 

700,1010 0.002 129.48 

420,700,1010 0.000 280.89 

420,700,1010, 1970 0.000 316.44 

420,700,1010, 1450,1970 0.000 606.58 

420,700,1010, 1450,1970,2280 0.000 747.64 

420,700,1010, 1450,1970,2110,2280 0.000 1080.54 

420,700,1010, 1450,1970,2080, 2110,2280 0.000 1862.79 

 

From the above figure, it may be observed that within the same species, age variation is 

clearly picked up by the spectra. This phenomenon is attributed to absorption features of 

Chlorophyll a and b in the blue region at around 430/450 nm and in the red domain at 

around 660/640 nm (Curran, 1990). The visible part of the vegetation reflectance 

spectrum is characterized by low reflectance values due to very strong absorption of the 

leaf pigments (Bertels et al., 2005). In mature leaves, reflectance in NIR region increases 
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as compared to young leaves because of increased leaf thickness. On the contrary, in far 

red region, opposite is observed owing to higher amount of photosynthetic pigments in 

young leaves. The same was observed by Gitelson et al. (2003). 

 

Similarly, for discriminating the spectra of ten different agricultural crops, SDA was 

performed. The crops appear to be spectrally similar (Figure 3.13) but with marked 

differences in magnitude. However, there does exist some bands which are capable of 

discriminating various crops.  Table 3.5, as an outcome of discriminant analysis, lists the 

bands suitable for discriminating the same. 

 

 

Figure 3.13: Spectral plots of spectrally similar crops 
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Table 3.5: Discriminating bands for various crops 

Wavelength Wilk's lambda F value 

1396 0.043 334.668 

1396, 1636 0.011 126.371 

1396, 1636, 1806 0.003 92.064 

1396, 1636, 1806, 1136 0.001 79.914 

1396, 1636, 1806, 1136, 1356 0 82.842 

 1636, 1806, 1136, 1356 0 132.166 

1636, 1806, 1136, 1356, 1346 0 132.533 

1636, 1806, 1136, 1356, 1346, 496 0 111.032 

1636, 1806, 1136, 1356, 1346, 496, 616 0 100.917 

1636, 1806, 1136, 1356, 1346, 496, 616, 706 0 97.56 

1636, 1806, 1136, 1356, 1346, 496, 616, 706, 1176 0 91.793 

1636, 1806, 1136, 1356, 1346, 496, 616, 706, 1176, 366 0 85.335 

1636, 1806, 1136, 1356, 1346, 496, 616, 706, 1176, 366, 446 0 79.53 

1636, 1806, 1136, 1356, 1346, 496, 616, 706, 1176, 366, 446, 

2236 0 73.746 

1636, 1806, 1136, 1356, 1346, 496, 616, 706, 1176, 366, 446, 

2236, 516 0 69.226 

1636, 1806, 1136, 1356, 1346, 496, 616, 706, 1176, 366, 446, 

2236, 516, 1756 0 64.089 

 

The discriminating bands near 1396 and 1636nm precisely correspond to the vegetation 

water content, 446 and 706nm correspond to the crop nitrogen content while 496nm to 

the crop biochemical pigments. Rest of the absorption bands either are attributed to soil 

texture/ composition or structural differences between crops. 

 

Finally, SDA was employed for discriminating crop residue from other farm components. 
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The spectral curves of residue and different related land covers are shown in figure 3.14 

where residue, straw and mature crop had absorption features in 2100nm region due to 

cellulose absorption, while soil has absorption features in 2200 nm due to clay-hydroxyl.  

It can be also observed that all the classes had mostly featureless curves in 400-1200 nm 

region. There is mainly magnitude difference in reflectance. Similar results were found in 

the Stepwise Discriminant Analysis. Ground based hyperspectral data collected for wheat 

crop residue was analyzed using the technique to select optimum bands for 

discrimination. In all, seven best bands (400, 990, 2200, 940, 1980, 2030, 2440 nm) were 

obtained suitable for discrimination between above mentioned targets (Table 3.6). Out of 

these seven bands, four were from the SWIR region. The bands 400, 990, 2440 nm got 

selected because of the magnitude difference in spectral reflectance of the four classes. 

The bands 1980, 2030 and 2200 nm got selected because of the typical absorption 

features, i.e. water, cellulose, clay-hydroxyl, respectively. 

 

 

Figure 3.14: Average spectral plots of crop residue, matured crop, soil and straw heaps  
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Table 3.6: Stepwise Discriminant Analysis of different residue related classes 

Wavelengths Wilks’ Lambda F Value 

400 0.036 327.1 

400, 990 0.002 278.8 

400,990, 2200 0.000 273.1 

400,990, 2200, 940 0.000 272.1 

400,990, 2200, 940, 1980 0.000 245.8 

400,990, 2200, 940, 1980, 2030 0.000 238.3 

400,990, 2200, 940, 1980, 2030 0.000 216.0 

 

Thus, SDA is successful in discriminating crop species, variety, growth stage and residue. 

But, in all cases, Spectroradiometer observations were given as input. When the 

hyperspectral data comes in the form of image, apart from the high number of bands, the 

factors of noise etc. also dominate. In such cases, the methods which address these issues 

also are needed.  

 

Principal Component Analysis and Minimum Noise Fraction 

MNF is noise adjusted PCA. Application of PCA on Hyperion data lead to the 

development of scree plot of figure 3.15 showing Eigen value and Component number. 

The plot revealed that the inherent dimensionality of the data was two. The cumulative 

percentages of the components started at 97.10% for the first component. PC 1 alone 

contained maximum information (97.10%), followed by PC 2 (2.25%). With two PCs, 

more than 99% information had been captured.  
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Figure 3.15: Cumulative percentages of the 196 principal components 

 

Forward MNF transform was applied over Hyperion dataset. This yielded a large number 

of bands but with a constraint of Eigen value > 10 along with the simultaneous check on 

image noise, 6 MNF bands were obtained. These were the bands that were used for 

discrimination purpose. 

 

Image Texture Based Dimensionality Reduction 

The Image Texture Based Dimensionality Reduction reduced the number of bands. 

However, the different texture parameters ended up with different sets of bands. Hence, 

intersection of sets was performed to select the bands common to all parameters. 

Accordingly, out of 196 unique bands, best 56 bands were selected of which 22 fell in the 

range 427-630nm (Chlorophyll absorption region), 1 band centered at 681nm 

(Chlorophyll absorption region), 2 bands within 1073-1083nm, 7 bands between 1114 

and 1185nm, 21 within 1457-1659nm (Lignin, cellulose and nitrogen absorption regions) 
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and 3 within 1861-1901nm.  These bands were then adopted for further analysis i.e. 

classification. It is noteworthy that dominant absorption features are automatically 

selected through this procedure. Figure 3.16 shows the bands selected as a consequence 

of image texture analysis. It may be noted that frequency value 4 shows the common 

bands obtained through all the texture parameters collectively and hence the 

corresponding bands were selected. 

 

 

Figure 3.16: Bands selected after intersection of sets of bands corresponding to 

different texture measures 

The effect of the above two techniques, namely image texture based feature extraction 

and MNF based dimensionality reduction, is observed through the results obtained after 

image classification in the following section. 
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3.3 IMAGE CLASSIFICATION 

Supervised classification requires n
2
-1 training sites (Hughes, 1968) where n is the 

number of bands. For broadband data this condition is easily met but not with 

hyperspectral data. Large number of bands in hyperspectral data pose serious limitations 

on selection of training sites (Hughe, 1968, Richards and Jia, 2006), classifier adopted 

and hence degrades classification accuracy. Consequently, the standard classifiers used 

for multi-spectral data are not suitable. Techniques specific to hyperspectral data like 

Spectral Angle Mapper (SAM) are the substitute. However, if features are appropriately 

selected/extracted, the richness of other classifiers can also be explored. 

 

3.3.1 Method 

Here, the dimensions obtained by using the two techniques (image texture based and 

MNF) were evaluated by comparing the classification results obtained from the use of 

various classifiers. Apart from the conventionally used Maximum likelihood, Minimum 

distance, Mahalanobis and Parallelepiped classifiers, the comparatively newer techniques 

like Support Vector Machine (SVM), Spectral Angle Mapper (SAM), Neural Network 

and Binary Encoding were also evaluated. In MD, Euclidean distance from each 

unidentified pixel to the mean vector for each class is computed. All pixels are classified 

to the nearest class unless a standard deviation or distance threshold is specified, in which 

case some pixels may be unclassified if they do not meet the selection criteria (Richards, 

1999). SAM is a physically-based spectral classifier that utilizes an n-D angle to match 

pixels to reference spectra. The algorithm determines the spectral similarity between two 

spectra by calculating the angle between the spectra and treating them as vectors in a 



185 
 

space with dimensionality equal to the number of bands. SAM compares the angle 

between the endmember spectrum vector and each pixel vector in n-D space. Smaller 

angles represent closer matches to the reference spectrum. Pixels further away than the 

specified maximum angle threshold in radians are not classified (Kruse et al., 1993). 

SVM provides high-quality classification results from intricate and noisy data (Chang 

and Lin, 2001). It separates the classes with a decision surface that maximizes the margin 

between the classes. The surface is often called the optimal hyperplane, and the data 

points closest to the hyperplane are called support vectors. The support vectors are the 

critical elements of the training set (Wu et al., 2004). Binary encoding encodes the data 

and spectra into binary numbers, based on bands falling below or above the spectrum 

mean, respectively. An XOR function compares each encoded reference spectrum with 

the encoded data spectra and produces a classification image (Mazer et al, 1988). 

Here, these classifiers were evaluated for the different dimensionality reduction 

techniques. Supervised classification was performed by using the ground truth map of the 

study area.  Confusion matrices were generated post classification.  

 

Confusion Matrix 

Once the image classification is done, post classification accuracy check is done. For this, 

confusion matrix with ground truth ROIs are used. The classes of all the classified images 

and the ROIs were matched to obtain the report on accuracy assessment. The report 

displays the overall accuracy, kappa coefficient (К), errors of commission, errors of 

omission, producer accuracy, and user accuracy for each class.  
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Jeffries-Matusita (J-M) distance analysis 

For the quantification of spectral separability between various classes (obtained after 

image classification), separability index was used. It uses the square of Jeffries-Matusita 

(J-M) distance analysis. The J-M distance technique gives a value between 0 and √2. 

Value ≥1.90 indicates the separability of any two classes (Thomas et al., 2003).  Because 

the J-M distance measure was a parametric scheme, it was necessary to decrease the 

number of spectral features (bands) prior to the calculation. In other words, it was not 

possible to calculate the J-M distance using all the selected (after data reduction) bands 

because of the singularity problem of matrix inversion.  

 

3.3.2 Results and Discussions 

Image classification of hyperspectral data was studied using Hyperion data at two sites-

FRI, Dehradun and Bhitarkanika, Orissa 

 

Study site-FRI, Dehradun 

Post dimensionality reduction through image texture based approach and MNF, the 

resulting bands were subjected to classifiers. The classified output was then compared 

with the ground truth map of the study area and confusion matrix was generated.  Table 

3.7 shows a detailed comparison of different classifiers, in terms of accuracy (obtained 

through confusion matrix) when compared to ground truth map of the study area, vis-à-

vis dimensionality reduction techniques. 
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Table 3.7: Evaluation of classifiers for dimensionality reduction through texture analysis 

and MNF transform 

Classification  

Technique 

 

Feature reduction 

through 

Texture analysis 

(Overall accuracy %) 

 

Kappa 

coef. 

Feature reduction 

through 

MNF transform 

(Overall accuracy 

%) 

 

Kappa 

coef. 

Binary 

Encoding 

40.9 

 
0.203 

52.6 

 
0.323 

Minimum 

Distance 

52.2 

 
0.335 

62.7 

 
0.484 

Neural 

Network 

25.3 

 
0.129 

15.5 

 
0 

Parallelpiped 
55.3 

 
0.351 

65 

 
0.55 

Spectral Angle  

Mapper 

67.9 

 
0.484 

53.5 

 
0.35 

Support Vector  

Machine 

82.73 

 
0.67 

64.7 

 
0.507 

 

It is clearly evident from table 3.7 that overall accuracy of classification is highest at 

82.73% with SVM as classifier and feature reduction through image texture analysis. 

However, with MNF transform, maximum accuracy is yielded by Parallelpiped classifier 

(65%). Figure 3.17 shows the classified image using SVM classifier and image texture 

based feature reduction. Thus, combination of SVM classifier and image texture based 

dimensionality reduction outperforms all other combinations. 
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Figure 3.17: Classified scene of the study area using image texture based 

dimensionality extraction and SVM as classifier 

 

Study site- Bhitarkanika Mangrove forests 

When the same methodology of image classification (SAM, SVM, and MD) was 

implemented for Hyperion, Bhitarkanika, figure 3.18 is obtained. Post classification 

accuracy revealed that SVM was a better classifier, as was in previous case study [bands 

taken = 196, overall accuracy = 97.97%, Kappa coefficient (К) = 0.97)] than either MD 

(75.28%, 0.69) or SAM (65.39%, 0.59). Apart from 196 bands, the image was also 

subjected to SVM classification using 148, 98, 88, 76, 63, 39, 23 and 8 bands. The 

decrease in classification accuracy was insignificant for 148 bands (0.89%), remained the 

same for 98/ 88/ 76/ 63/ 56 bands (1.12%), again decreased slightly for 39 bands 

(1.57%), and significantly decreased for 23 and 8 bands. Based on these results, between 

98, 56 and 39 number of bands, the selection was made for 56 bands. This is because 98 
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bands would have added redundancy while 39 bands were avoided to prevent further loss 

of information. 

 

 

Figure 3.18: a) FCC of the image; b) SAM classified, c) MD classified and d) SVM 

classified images  

Class 1 of the SVM classified image represented dense and dominant community of 

Heritiera fomes.  Class 2,3 and 4 represent mixed mangroves in various combinations 

Mangrove associates and salt tolerant grasses were denoted by Class 5. The classification 

accuracy for these classifiers is shown in table 3.8  

Table 3.8: Accuracy of Hyperion classified images  

Classifier Support Vector 

Machine 

Minimum Distance Spectral Angle 

Mapper 

Overall accuracy (%) 96.85 72.81 70.11 

Kappa coefficient К 0.96 0.66 0.64 
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Post classification, the optimal Wilks’ Lambda was achieved with four bands for 

discriminating the five mangrove classes (L = 0.000, F-value = 29.19) (Table 3.9). The 

pair-wise spectral separability in terms of J-M distance was calculated using the 4 bands 

of table 3.9 and is shown in table 3.10.  The results of the table revealed that the overall 

spectral separability between the pairs of the mangrove classes was high, since most of 

them acquired levels of separability much higher than the selected threshold of 0.9.  

Table 3.9: Selected bands, Wilks’ lambda and F statistics from SDA 

Step Wavelength(s) in nm Wilks’ lambda F value 

1 630.32 0.336 4.93 

2 630.32, 2193.73 0.010 20.55 

3 630.32, 1063.79, 2193.73  0.001 28.28 

4 630.32, 983.08, 1063.79, 2193.73  0.000 29.19 

 

Table 3.10: The J-M distances between the pairs of mangrove classes 

Class 1 2 3 4 5 

1 -     

2 1.99     

3 2.00 1.99    

4 1.98 1.99 1.99   

5 1.99 2.00 2.00 1.98 - 

 

From both the case studies, it may be concluded that SVM classifies vegetation better 

when species level discrimination is required.  
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