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Chapter 4 
Role of spatial and Spectral resolutions on 

vegetation 
 

 

SUMMARY 

While designing hyperspectral sensors, it becomes important to have suitable spatial and 

spectral resolutions as well as an idea about the dynamic range of values so that 

appropriate SNR can be defined. This chapter defines the optimum spectral resolutions 

for three broad cases of vegetation assessment -Species discrimination, Crop residue and 

for Phytoplanktons. The optimum spatial resolution is also defined by showing the 

reduction in contrast with coarsing spatial resolutions. Dynamic range of radiance is 

defined and based upon it the requirements for SNR are also disussed. 

 

 

4.1 OPTIMUM SPECTRAL RESOLUTION 

The uniqueness of hyperspectral data lies in the spectral domain-narrowness and large 

number. The higher spectral resolution of hyperspectral sensors compared to 

multispectral data enhances accuracy of vegetation related applications (Transon et al., 

2018). Even with same spatial resolution, the sensor having better spectral resolution 

outperforms the other. This was shown by Bostan et al., 2016 where they demonstrated 

better performance of Hyperion over Landsat in classifying crops, while they both have a 

30-m GSD. Thenkabail et al. (2004) also concluded the same for rainforest classification. 
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No doubt, role of optimum spectral resolution is noteworthy which is demonstrated here 

for discriminating vegetation species, discriminating crop residue and its management 

type and in identifying Phytoplanktons. 

  

4.1.1 Method 

For discriminating Crop residue using Cellulose Absorption Index (CAI) 

Crop residue, when seen from space, resemble much like mature crop as well as like 

other farm components. Hyperspectral data can be very well used to discriminate it from 

other farm components. Singh et al. (2013) showed Cellulose Absorption Index (CAI) to 

be one of the best for this purpose. Hence, this index was used for the analyses. The 

Cellulose Absorption Index (CAI) is a continuum-removed spectral index in SWIR 

region and is based on the depth of the alcoholic C-OH absorption at 2100 nm not shared 

by common soil minerals thereby leading to a consistent contrast between dry residues 

and soils (Serbin et al, 2009). Its computation is through the following method (Daughtry 

et al, 2001). 

CAI=100*(R2200+R2000)/2-R2100)……………(1) 

Spectral resolution taken from Spectroradiometer observations was degraded from 1nm 

to 100nm by simple averaging. CAI values were computed for all resolutions for the two 

group of observations, namely, crop residue discrimination and secondly for 

distinguishing management practices. The choice of optimum spectral resolution was 

done through F value check of Analysis of Variance (ANOVA). 
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For discriminating vegetation species using number of peaks method 

Different species respond differently to different channels of the spectra because of the 

distinguishing constituting pigment. These pigments lead to specific peaks and troughs in 

the spectra. This information can be used to identify suitable bands for a specific species 

which can lead to species identification. Once the spectral resolution is decreased, the 

characteristic peaks and troughs fade away into the broader channel definition. This 

makes identification difficult. In order to study the same, the spectra for two classes of 

mangroves was taken from the Spectroradiometer observations. Each spectrum was then 

degraded to10nm, 20nm, 40nm and 80nm by simple averaging technique. Following this, 

peak fit tool of origin Lab software was used to pick the characteristic absorption values 

for all the classes.  

 

For identifying Phytoplanktons 

Water attenuates the sunlight falling on it to a large extent. When ocean colour is to be 

studied, the surface radiance should be high enough to be recorded by the sensor. The 

radiance varies with the chlorophyll content. At the same time, the spectral resolution 

plays a significant role because the smaller spectral resolution collects more energy than 

finer spectral resolution. So a simulation study was carried out to observe any loss of 

information owing to broadening of bandwidth. Thus, a simulation study was carried out 

using Coupled Ocean and Atmosphere Radiative Transfer (COART) model. This tool 

calculates radiance and irradiance at any levels in the atmosphere and ocean. In this 

model, when Ocean depth is set to 0, it reduces to the conventional atmospheric radiative 
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transfer model. So, the model was executed by varying the bandwidths. The observations 

were made at solar zenith 45
0
 when azimuth was set at 30

0
. The optimum spectral 

resolution was identified based upon the radiance profile in bandwidth broadening. The 

spectral resolutions studied ranged from 5nm, 10nm, 15nm and 20nm for chlorophyll 

setting at 0.05g/cubic metre (very low) and 5mg/cubic metre (high). 

 

4.1.2 Results and Discussions 

For discriminating Crop residue using Cellulose Absorption Index (CAI) 

In the case of CAI, for all spectral resolutions and for both the groups of data, ANOVA 

(Figure 4.1) yielded a very low ‘P’ value, indicating that the classes are significantly 

different up to the spectral resolution of 150nm. However, the highest F value exists for 

spectral resolution of 10nm, thereby, indicating it to be the optimum spectral resolution 

for best discriminating crop residue from soil, straw and mature wheat. On looking at 

Figure 4.2, one finds a consistently low F value throughout but a low P value as well. 

This leads to the conclusion that changing spectral resolutions does not affect better 

identification of management practices when CAI is used.  
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Figure 4.1: ANOVA output corresponding to CAI of visibly alike crop residue farm 

components for determining spectral resolution (till 150nm) beyond which crop 

residue discrimination become difficult 

 

 

 

Figure 4.2: ANOVA output corresponding to CAI of different management 

practices for determining spectral resolution (till 150nm) beyond which crop residue 

discrimination become difficult 
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For discriminating vegetation species using number of peaks method 

When two mangrove species Avicennia marina and Prosopis juliflora were investigated 

for the number of peaks their spectra had, the maximum number of distinguishing peaks 

existed for spectral resolution smaller than 10nm. Beyond 10nm, the distinguishing peaks 

sharply reduce and remain more or less same till spectral resolution of 80nm. This can be 

seen through figure 4.3. This indicates that possibility of species level classification with 

high accuracy is more for spectral resolution<10nm. 

 

 

Figure 4.3: Graph showing decrease in number of peaks with coarser resolution 

 

Considering the need for defining spectral range, when this analysis was done at 5nm, 

10nm and 20nm spectral resolution, figure 4.4 is obtained. Here, at 5nm case, the 

maximum number of unique peaks exist (~40) within the wavelength region 1200-

2500nm. At 10nm, visible through SWIR region displays unique peaks (~13) but at 
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20nm, the number of peaks fall to very few number (~3) and that too between 1800-

2200nm. This suggests that beyond 10nm species level identification of vegetation is not 

possible. It is also made clear from this study that if there exists a band shift, the unique 

peaks would be lost. 

 

Figure 4.4: Number of Peaks at different spectral resolution corresponding to two 

mangrove species 
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Another example where effect of coarsing spectral resolution on species level 

discrimination is seen is presented here. Here, variation in number of distinguishing 

peaks on account of reducing spectral resolution for discriminating between four 

mangroves is seen in figure 4.5. 

 

 

Figure 4.5: Decline in number of distinguishing peaks with reducing spectral 

resolution 

 

For identifying Phytoplanktons 

Radiance was simulated at 5nm, 10nm, 15nm and 20nm for sparse phytoplankton colony 

(chlorophyll at 0.05g/m
3
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3
) (shown 
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in figures 4.6 and 4.7 respectively). In both the figures, the spectral curves flatten out at 

15nm and more at 20nm. At 5nm, although lots of dips and peaks are seen yet scene 

noise dominates but at 10nm, the characteristic absorption points are highlighted along 

with very little scene noise component. Thus, 10nm spectral resolution is most suitable 

for the study of Phytoplanktons. 

 

 

Figure 4.6: Surface radiance (mW/cm
2
/str/µm) at 5nm, 10nm, 15nm and 20nm from 

sparse phytoplankton colony 
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Figure 4.7: Surface radiance (mW/cm
2
/str/µm) at 5nm, 10nm, 15nm and 20nm from 

dense phytoplankton colony 

 

4.2 EFFECT OF SPATIAL RESOLUTION 

The optimum spatial resolution required to address various remote sensing studies has 

been one of the most crucial concerns for both the instrument designers as well as the 

scientists. There have been many research activities to understand the varying spatial 

resolution requirements for different missions for earth and planetary observations 

(Townshend, 1988, Curran and Williampson, 1988, Singh et al. 2002, Dadhwal, 1985, 
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Singh et al., 2011). Transon et al. (2018) discussed that medium spatial resolution is one 

of the limitation of spaceborne hyperspectral sensors because airborne hyperspectral 

sensors provide promising results due to high spectral resolution combined with a high 

spatial resolution. Thus, there is a further need to carry out similar studies helpful in 

identifying optimum spatial resolution for hyperspectral datasets.  The effect of spatial 

resolution on surface characterization depends on two broad conflicting parameters viz. 

mixed pixels and scene noise. If the spatial resolution is decreased, the large ground 

resolution elements are likely to include a greater proportion of boundary information 

(mixed pixels) and if the spatial resolution is increased the smaller ground resolution 

elements are likely to pick up the finer details of the surface resulting in increased 

spectral overlap (scene noise). Indiscriminate refinement of spatial resolution is not 

advisable, as this will highlight the internal heterogeneity of the targets as well (Cushnie, 

1987). The crossover in the dominance of scene noise and boundary effect occurs in the 

range of optimal spatial resolution which is related to the objective of the study and the 

scale of estimation. Spatial resolution is generally studied using the size of the target to 

be identified, analysis of the spatial variability and image contrast and accuracy 

assessment, post classification/mapping.   

 

4.2.1 Method 

As a rule of thumb, coarse resolution images have poor spatial variability then fine 

resolution images. Fine resolution images have sharp pixel edges or in other words show 

sharp contrast at the boundary line of a dark and bright object. This property is used here 

to identify the optimum spatial resolution. Here, original hyperspectral images (AIMS 



207 
 

data in this case) were spatially aggregated to coarser resolutions. It involved applying 

the filter with known weights (Cushnie, 1987) and resampling by half by skipping every 

line and every pixel. This leads to qualitative perception of the effect of spatial 

degradation that can be clearly seen through the images. But, for quantitative 

understanding, reduction in contrast (equation 2) of the images with decreasing spatial 

resolution were studied. 

Contrast = (DNmax - DNmin ) / (DNmax + DNmin)........(2) 

In contrast reduction method, the brightest (DNmax) and the darkest targets (DNmin) from 

the scene were analyzed for a number of randomly selected bands and their contrasts 

were evaluated. The contrasts for different resolution images were then compared with 

each other. The detailed approach is shown in the flow chart (Figure 4.8). 

 

 

Figure 4.8: Flowchart of method of degrading spatial resolution 
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4.2.2 Results and Discussions 

To implement the above methodology, AIMS data at 8m spatial resolution was taken. It 

was degraded to 16m and 32m. The effect of coarsing the resolution can be seen through 

figure 4.9. Visually, the effect of decreasing the spatial resolution is clear. The boundary 

between the pixels is increasingly getting blurred. This results in decrease in contrast.  

 

 

Figure 4.9: AIMS FCC at 8m, 16m and 32m spatial resolution 

 

Thus, a quantitative analysis was needed to find the extent to which contrast decreases at 

each step of coarsing the spatial resolution. Contrast ratio was calculated for a large 

number of bands spread across the electromagnetic spectrum. Contrast ratio with 
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decreasing spatial resolution is plotted in figure 4.10 for bands centered at 450 nm, 550 

nm, 650 nm, 750 nm, 850 nm and 900 nm. 

 

Figure 4.10: Graph showing reduction in contrast ratio as resolution becomes 

coarser 

 

There is a continuous decrease in the ratio as the resolution advances indicating mixing of 

pixels resulting in lesser information. So, for targeting different objects different 

resolutions are required which depends on object size and characteristics to be retrieved. 

450 nm band showed 73.14 percent reduction in contrast as compared to 94 percent 

reduction in case bands 550 nm, 850 nm and 900 nm while it was 95 percent for 650 nm 

and 94 percent for 750 nm as the resolution advances from 8.0m to 32.0m.  

For spaceborne data Hyperion, the same exercise was done which yielded figure 4.11 
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Figure 4.11: Effect of degrading spatial resolution on Hyperion data 

Corresponding to the figure, reduction in contrast is shown by figure 4.12. As can be 

seen, contrast remains high till 60m after which it falls sharply. 

 

Figure 4.12: Decline in contrast ratio with decrease in spatial resolution for 

Hyperion 

0 

10 

20 

30 

40 

50 

60 

30m 60m 90m 120m 

C
o

n
tr

a
st

 

Spatial Resolution 



211 
 

4.3 DYNAMIC RANGE AND DEFINITION OF SNR 

The airborne hyperspectral instruments have a limited dynamic range and must be set to 

capture data over the appropriate range of signal strength. In general, the dynamic range 

of the instruments need to cover the darkest as well as brightest targets. There exist two 

types of targets-low albedo like deep water and high albedo like clouds. Vegetation 

comes in between the two cases. In this context, typical range of radiance values of 

various targets was computed. The data used for this analysis was obtained from HICO 

and Hyperion.  Characteristically, ROI of dimension 3*3 pixels were taken for individual 

targets including coastal water, inland water, deep-ocean and cloud (shown in figures 

4.13 and 4.14).  

 

Figure 4.13: ROIs for which radiance values obtained through HICO data 

 

Figure 4.14: ROIs for which radiance values obtained through Hyperion data 
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Corresponding to these ROIs, the radiance values for the targets from HICO and 

Hyperion datasets are tabulated in tables 4.1 and 4.2 respectively. 

 

Table 4.1: Radiance in mw/cm
2
/st/μm for various targets using HICO data for 

selective wavelengths 
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Table 4.2: Radiance in mw/cm
2
/st/μm for various targets using Hyperion data for 

selective wavelengths 

 

 

It may be observed here that three bands are common in HICO and Hyperion, centered at 

427nm, 925nm sand 1023nm. The bands show variation in radiance values. The 

difference may be mainly attributed to the difference in spectral resolution which is 

5.7nm for HICO and ~10nm for Hyperion, so the accumulated energy differs in both the 

cases.   The other factors contributing to this difference in values is the difference in gain 

setting and the system’s SNR.  
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As is evident from the figures above, radiance falls to below 1 mW/cm
2
/st/μm for Deep 

Ocean from ~700nm onwards while reaches a high of ~8-9 mW/cm
2
/st/μm for lower 

wavelengths. At the same time, for clouds it may reach more than 32 mW/cm
2
/st/μm. 

Hence, it would be judicious to define SNR separately for high as well as low radiance 

targets. Also, for low radiance targets (~0 to 1 mW/cm
2
/st/μm), SNR should be defined 

for typically three wavelength slots, as shown in table 4.3.  

 

Table 4.3: Suggestions for SNR 

Wavelength slot Typical radiance value for deep water 

1150-2500nm <0.5 mW/cm
2
/st/μm 

600-900nm 2-5 mW/cm
2
/st/μm 

375-490nm ~5-9 mW/cm
2
/st/μm 
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