List of Tables

Table	Title of the table	Page
No.		no.
1.1	Spectral and spatial characteristics of missions currently in operation, under construction and in planning stage	48
2.1	Hyperion data specifications	97
2.2	HICO specifications	98
2.3	AIMS specifications	98
2.4	HySI specifications	99
2.5	AHySI specifications	100
2.6	Characteristics of hand-held spectroradiometer	100
2.7	Red edge inflexion point of mangrove species	118
2.8	RMSE values for GCPs	132
2.9	Effect of SR on three airborne sensors	148
3.1	Computation formulae for texture parameters	173
3.2	Texture parameters	174
3.3	Step wise discriminant analysis results for paddy variety discrimination	176
3.4	Results of Discriminant analysis for Mango stages	177
3.5	Discriminating bands for various crops	179
3.6	Stepwise Discriminant Analysis of different residue related classes	181
3.7	Evaluation of classifiers for dimensionality reduction through texture analysis and MNF transform	187
3.8	Accuracy of Hyperion classified images	189
3.9	Selected bands, Wilks' lambda and F statistics from SDA	190
3.10	The J-M distances between the pairs of mangrove classes	190
4.1	Radiance in mw/cm ² /st/ μ m for various targets using HICO data for selective wavelengths	212
4.2	Radiance in $mw/cm^2/st/\mu m$ for various targets using Hyperion data for selective wavelengths	213
4.3	Suggestions for SNR	214

List	of	Figures
------	----	----------------

Figure	Title of the figure	
No.		No.
1.1	Schematic representation of radiation components reaching the remote sensor	31
1.2	Relation between IFOV, sensor altitude and GIFOV	34
1.3	(a) Whiskbroom imaging, (b) Pushbroom imaging, (c) Framing mode	36
1.4	Spectrum of green leaf	45
2.1	Bhitarkanika Reserve Forest. Here observations were made using hand-held Spectroradiometer. Hyperion data was also used	103
2.2	Jamnagar mangrove forests and surroundings. Here observations were made using hand-held Spectroradiometer. AIMS and AHySI data were also used	104
2.3	FRI, Dehradun. Hyperion data was used for this area	104
2.4	Field pictures of groundnut and Sesamum grown in AAU, Anand (also shown). Spectroradiometer observations were made for crops at AAU	106
2.5a	CPRS, Jallandhar, Punjab. Spectroradiometer observations were made for crops here	107
2.5b	Field photographs of various stages of wheat crop	107
2.6	Location of farms at Moga, Punjab. Spectroradiometer observations were made for crops here.	108
2.7	Figure showing various absorption regions in vegetation spectrum	109
2.8	Smile effect shown in different bands of hyperspectral images, extracted from AIMS and Hyperion	110
2.9	AHySI data, Mysore (top) and AIMS data, Mysore (bottom) along with the deviation from oxygen absorption channel track plotted for pixels acrosstrack	113
2.10	Deviation from oxygen absorption wavelength plotted for AIMS data before smile correction (above) and after smile correction (below)	114
2.11	Deviation from oxygen absorption wavelength plotted for showing presence of smile in AHySI data along the three sections of the image	115
2.12	Smile detection in Hyperion (left) and AIMS (right) for three parts of the image	116

	2.13	Spectral plots of different ROIs of same tree species of AIMS data	117
	2.14	Spectral plots for mangrove species taken using Spectroradiometer at Bhitarkanika RF	118
	2.15	Ratio spectra obtained from ratio of original band and shifted band	120
	2.16	Radiance plots generated for vegetation using AIMS data	122
	2.17	Reflectance plot for vegetation generated from AIMS data	123
	2.18	Radiance plots for vegetation using AIMS data and the corresponding areas Hyperion data	125
	2.19	Reflectance plots for AIMS data and from hand-held Spectroradiometer data simulated as per AIMS specifications	126
	2.20	Radiance (mw/cm ² -sr-um) measured in laboratory by AIMS & ASD Spectroradiometer at different lighting level	127
	2.21	Difference in radiance measured between AIMS & ASD Spectroradiometer at different lighting levels	128
	2.22	Band-to-band registration seen at different zooming levels in different images	129
	2.23	AHySI data showing poor band-to-band registration along with lots of noise	130
	2.24	AHySI data showing poor band-to-band registration	131
ľ	2.25	Different bands representing same locations for AIMS data	131
	2.26	Classified image of Jamnagar mangroves using AIMS data.	133
		Adjacent classes which may be affected by band-to-band mis- registration shown in red circles	
	2.27	Hyperion image showing stripes	134
	2.28	Randomly selected AIMS bands spread across the entire range	135
	2.29	SNR value for AIMS bands. 1 st 22 bands noisy	136
-	2.30	Wobbles in airborne hyperspectral imagery	137
	2.31	Target areas shown in AIMS image for which radiance is collected at two exposure times	138
	2.32	Radiance plots for targets of interest (shown in figure 2.31) at different exposure times-10ms (above), 5ms (below)	139
	2.33	Effect of reducing number of samples on spectral behavior of Vigna unguiculata (Cow pea)	140
[2.34	% difference in reflectance with change in number of samples	141
	2.35	Effect of leaf stacking on spectral response of <i>Tectona grandis</i> (Teak)	142
	2.36	% Change in reflectance with leaf stack	143

2.37	Spectral plots of the two growth stages of Madhuca indica	144
2.38	Phenological stages of <i>Tectona grandis</i> (Teak)	
2.39	Spectral curves of various varieties of paddy crop obtained using ground based Spectroradiometer	146
2.40	Saturation radiance plots for three airborne sensors-AIMS-1, AIMS-2 and AHySI	147
2.41	Spectral variations seen in typical reflectance spectra of agricultural crops	149
2.42	Spectral variations seen in typical reflectance spectra of Mangrove tree species	149
3.1	Radiance plot (Left) and Reflectance plot (Right) for Vegetation	157
3.2	Vegetation spectra before (left) and after Flat field correction (right)	160
3.3	Vegetation spectra before (left) and after IARR (right)	161
3.4	Vegetation spectra before (left) and after Log residuals correction (right)	162
3.5	Vegetation spectra before DOS correction (left), after DOS correction using band minimum (center) and DOS correction (right)	162
3.6	Reflectance images (a) Water vapor and aerosol not retrieved, (b) Water vapor retrieved at 820nm but aerosol not retrieved, (c) Water vapor retrieved at 820nm and aerosol retrieved	165
3.7	Reflectance image of spectra post application of FLAASH on AIMS data	166
3.8	Comparison of reflectance values of vegetation obtained from various techniques for three bands used for creating FCC	167
3.9	Image blurring on account of cross track illumination	168
3.10	Effect of zenith angle change on surface radiance by Phytoplanktons with chlorophyll composition 10mg/m^3 , as simulated	169
3.11	Spectral plots of paddy varieties	175
3.12	Spectral plots of three stages of Mango	177
3.13	Spectral plots of spectrally similar crops	178
3.14	Average spectral plots of crop residue, matured crop, soil and straw heaps	180
3.15	Cumulative percentages of the 196 principal components	182
3.16	Bands selected after intersection of sets of bands corresponding to different texture measures	183

3.17	Classified scene of the study area using image texture based dimensionality extraction and SVM as classifier	188
3.18	a) FCC of the image: b) SAM classified c) MD classified and d)	189
5.10	SVM classified images	107
4.1	ANOVA output corresponding to CAI of visibly alike crop	200
	residue farm components for determining spectral resolution (till	
	150nm) beyond which crop residue discrimination become	
	difficult	
4.2	ANOVA output corresponding to CAI of different management	200
	practices for determining spectral resolution (till 150nm) beyond	
	which crop residue discrimination become difficult	
13	Graph showing decrease in number of peaks with coarser	201
т.5	resolution	201
4.4	Number of peaks at different spectral resolution corresponding to	202
	two mangrove species	
4.5	Decline in number of distinguishing peaks with reducing spectral	203
	resolution	
4.6	Surface radiance at 5nm, 10nm, 15nm and 20nm from sparse	204
	phytoplankton colony	
4.7	Surface radiance at 5nm, 10nm, 15nm and 20nm from dense	205
	phytoplankton colony	
4.8	Flowchart of method of degrading spatial resolution	207
4.9	AIMS FCC at 8m, 16m and 32m spatial resolution	208
4.10	Graph showing reduction in contrast ratio as resolution becomes	209
	coarser	
4.11	Effect of degrading spatial resolution on Hyperion data	210
4.12	Decline in contrast ratio with decrease in spatial resolution for	210
	Hyperion	
4.13	ROIs for which radiance values obtained through HICO data	211
4.14	ROIs for which radiance values obtained through Hyperion data	211

Abbreviations

Term	Abbreviation
Airborne Hyperspectral Imager	AHySI
Airborne Imaging Spectrometer	AIMS
Analysis of Variance	ANOVA
Cellulose Absorption Index	CAI
Compact Airborne Spectrographic Imager	CASI
Coupled Ocean and Atmosphere Radiative Transfer	COART
Dark Object Subtraction	DOS
Digital Number	DN
Electro-Magnetic	EM
False Colour Composite	FCC
Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes	FLAASH
Field of View	IFOV
Gray Level Co-occurrence Matrix	GLCM
Ground Control Points	GCP
Ground IFOV	GIFOV
Ground Sampling Distance	GSD
Hyper-Spectral Imager	HySI
Hyperspectral Imager for the Coastal Ocean	HICO
Internal Average Relative Reflectance	IARR
Jeffries-Matusita	JM
Minimum Noise Fraction	MNF
Near Infra-Red	NIR
Principal Component	PC
Principal Component Analysis	PCA
Radiative Transfer	RT
Regions of Interest	ROI
Remote Sensing	RS
Root Mean Square Error	RMSE
Saturation Radiance	SR
Short-Wave Infrared	SWIR
Signal to Noise Ratio	SNR
Spectral Angle Mapper	SAM
Step-wise Discriminant Analysis	SDA
Support Vector Machines	SVM
Thermal Infra-Red	TIR
Visible and NIR	VNIR