List of Figures | 1.1 | Types of reaction processes distinguished on the basis of the impact | | |-----|---|----| | | parameter at which these reactions occur. | 3 | | 1.2 | Decomposition of the total reaction cross-section into different compo- | | | | nents as a function of the orbital angular momentum parameters at | | | | which they occur | 6 | | 1.3 | Example of Threshold anomaly for $^{16}{\rm O}$ + $^{208}{\rm Pb}$ [1] | 10 | | 1.4 | Example of Threshold anomaly for $^{11}B + ^{209}Bi$ [2] | 11 | | 1.5 | Example of breakup threshold anomaly for $^6{\rm Li}$ + $^{208}{\rm Pb}$ [3] | 12 | | 1.6 | Example of breakup threshold anomaly for $^6{\rm Li}$ + $^{64}{\rm Zn}$ [4] | 14 | | 1.7 | Example of the real and imaginary potentials, at the strong absorption | | | | radius, for the elastic scattering of 6,7 Li + 80 Se [5] | 16 | | 2.1 | Schematic drawing of the Mumbai Pelletron accelerator facility. The left | | | | panel of the figure shows the 5 beam lines | 23 | | 2.2 | Schematic diagram of the 6 MV Folded Tandem Ion Accelerator | 26 | | 2.3 | The different regions of operation of a pulse mode gas detector. The | | | | pulse amplitude is plotted for two different energies of the radiation | 28 | | 2.4 | Typical energy levels diagram of an organic scintillator | 31 | | 2.5 | Schematic (a) and real (b) views of typical silicon surface barrier detector. | 33 | | 2.6 | Schematic diagram showing ΔE -E telescope setup. ΔE is generally thin | | |------|--|----| | | solid state detector or gas detector so as to pass the incident particle | | | | and E detector is thick solid state detector chosen to stop the remaining | | | | energy of incident particle | 36 | | 2.7 | Schematic block diagram of the experimental setup for the elastic scat- | | | | tering, quasi elastic and transfer angular distribution measurements | 39 | | 2.8 | Four silicon surface barrier detectors telescopes placed on the one mov- | | | | able arm of the scattering chamber and target ladder and gas detector | | | | also shown in the figure | 40 | | 2.9 | Scattering chamber of elastic scattering angular distribution experiment. | 42 | | 2.10 | Schematic block diagram of the complete electronic set up corresponding | | | | to a typical experimental set up as shown in Fig (2.7) | 45 | | 2.11 | Woods and Saxon potential graph shown in eq.(2.12) | 50 | | 2.12 | The linear schematic model for W (E), consisting of three straight line | | | | segments (19) | 56 | | 3.1 | A 2D spectrum (Δ E vs E _{res}) for the ⁷ Li + ²³² Th system at E _{lab} = 44 | | | | MeV and $\theta_{\text{lab}} = 60^{\circ}$ | 61 | | 3.2 | The projection of the $^7{\rm Li}$ elastic peak of the bi-parametric $\Delta {\rm E}$ vs ${\rm E}_{res}$ | | | | spectrum (from above two dimensional fig.(3.1)) | 62 | | 3.3 | Experimental elastic scattering cross section (σ_{El}) normalized to the | | | | Rutherford cross section (σ_{Ruth}) as a function of $\theta_{c.m.}$ for the $^6\mathrm{Li}$ + | | | | $^{232}\mathrm{Th}$ system (solid circles) (suitably scaled up for each energy) and | | | | their best fits from optical model calculations (solid lines). The curves | | | | corresponding to the best fits by ECIS code | 65 | | 3.4 | Figure of sensitivity of radius for 44 MeV for $^6{\rm Li}$ + $^{232}{\rm Th}$ systems, (a) | | | | real and (b) imaginary parts | 66 | | 3.5 | Experimental elastic scattering cross section (σ_{El}) normalized to the | | |-----|---|----| | | Rutherford cross section (σ_{Ruth}) as a function of $\theta_{c.m.}$ for the ⁷ Li + | | | | 232 Th system (solid circles) (suitably scaled up for each energy) and | | | | their best fits from optical model calculations (solid lines). The curves | | | | corresponding to the best fits by ECIS code | 68 | | 3.6 | Sensitivity radius for $^7\mathrm{Li}$ + $^{232}\mathrm{Th}$ systems, (a) real and (b) imaginary | | | | parts at 44 MeV | 69 | | 3.7 | Elastic scattering angular distributions at different energies for the ⁶ Li | | | | $+$ 232 Th system and their best fits from optical model calculations. The | | | | curves correspond to best fits were obtained using the Sao Paulo poten- | | | | tial (SPP) | 71 | | 3.8 | Elastic scattering angular distributions at different energies for the ⁷ Li | | | | $+$ 232 Th system and their best fits from optical model calculations. The | | | | curves correspond to best fits were obtained using the Sao Paulo poten- | | | | tial (SPP) | 73 | | 3.9 | Energy dependence of the real and imaginary potentials at $R_s = 12.14$ fm | | | | and 11.27 fm for $^6\mathrm{Li} + ^{232}\mathrm{Th}$ and $^7\mathrm{Li} + ^{232}\mathrm{Th}$ systems, respectively. The | | | | straight line segments represent various fits of imaginary potential $W(E)$ | | | | and the corresponding curves for real potential V(E) were obtained from | | | | these by using the dispersion relation. Figs. (a) and (b) correspond to | | | | the real and imaginary potential curves for $^7\mathrm{Li} + ^{232}\mathrm{Th}$ system, whereas | | | | (c) and (d) represent the $^6\mathrm{Li}$ + $^{232}\mathrm{Th}$ system | 75 | | | | | | 3.10 | Energy dependence of the normalization factors N_R and N_I , for the | | |------|---|----| | | real and imaginary potentials, corresponding to the Sao Paulo potential | | | | (SPP) with two free parameters, for the $^6\mathrm{Li}$ + $^{232}\mathrm{Th}$ and $^7\mathrm{Li}$ + $^{232}\mathrm{Th}$ | | | | systems. The lines represent possible behaviours of N_R and N_I that | | | | are compatible with the dispersion relation [7,14]. Figs. (a) and (b) | | | | correspond to the real and imaginary potential curves for $^7\mathrm{Li}$ + $^{232}\mathrm{Th}$ | | | | system, whereas (c) and (d) represent the $^6{\rm Li}$ + $^{232}{\rm Th}$ system | 76 | | 3.11 | The total fusion cross sections (σ_{fus}) calculated by CCFULL and total | | | | reaction cross sections (σ_R) for the $^{6,7}{\rm Li}$ + $^{232}{\rm Th}$ systems obtained by | | | | using ECIS code and SPP calculation shown in 7 ((a,b)) respectively | | | | plotted as a function of the bombarding energy. The total fission cross | | | | sections (σ_{fis}) [60] and the total fusion cross sections for the $^{6,7}{\rm Li}$ + | | | | 232 Th systems are plotted in 7 (c) | 78 | | 3.12 | Reduced total reaction cross section vs reduced projectile energy for the | | | | 6,7 Li + 232 Th reactions using the prescription given in Ref [67] | 79 | | 4.1 | A typical two dimensional plot of ΔE versus E_{res} (residual energy) for | | | | the $^{11}\mathrm{B} + ^{232}\mathrm{Th}$ system at $\mathrm{E_{lab}} = 61$ MeV and $\theta_{lab} = 90^{\circ}$. The bounded | | | | region (dashed line) on $Z=5$ events shows quasi-elastic events | 83 | | 4.2 | One dimension spectrum from above two dimensional figure (4.1) of the | | | | bounded region (dashed line) on $Z=5$ events | 84 | | 4.3 | Quasi-elastic scattering angular distributions normalizes with Ruther- | | | | for
d cross section for $^{10}{\rm B}$ + $^{232}{\rm Th}$ system at various energies after suit- | | | | ably scaling. Solid line represents Woods-Saxon fitting procedure | 86 | | 4.4 | Quasi-elastic scattering angular distributions normalizes with Ruther- | | | | for
d cross section for $^{11}{\rm B}$ + $^{232}{\rm Th}$
system at various energies after suit- | | | | ably scaling. Solid line represents Woods-Saxon fitting procedure | 87 | | 4.5 | Sensitivity radii based on the crossing of the real (a) and imaginary (b) | | |------|---|----| | | parts of the WSP potential at $E_{\rm lab} = 65~{\rm MeV}$ for different diffuseness | | | | parameter values (a $_{v}$ and a $_{w}). \ \ .$ | 89 | | 4.6 | Sensitivity radii based on the crossing of the real (a) and imaginary (b) | | | | parts of the WSP potential at $E_{\rm lab} = 65~{\rm MeV}$ for different diffuseness | | | | parameter values (a $_{\rm v}$ and a $_{\rm w}$) | 90 | | 4.7 | Energy dependence of the real and imaginary potentials at sensitivity | | | | radii $R_s=12.39~{\rm fm}$ for $^{10}{\rm B}+^{232}{\rm Th}$ system in Panels (a), (b) and at R_s | | | | = 12.45 fm for $^{11}\mathrm{B}$ + $^{232}\mathrm{Th}$ in panels (c), (d). Solid (red) and dashed | | | | (blue) lines are two different sets of line-segment fits. Arrows in the | | | | panels (b) and (d) indicate the positions of Coulomb barriers (V_b) for | | | | $^{11}\mathrm{B}$ + $^{232}\mathrm{Th}$ and $^{10}\mathrm{B}$ + $^{232}\mathrm{Th}$, respectively | 92 | | 4.8 | Transfer angular distributions for 12,13 C, 9,10 Be and 6,7 Li at various bom- | | | | barding energies for $^{10,11}\mathrm{B}$ + $^{232}\mathrm{Th}$ systems | 94 | | 4.9 | Total reaction cross sections for $^{10}\mathrm{B}$ + $^{232}\mathrm{Th}$ system (solid square) and | | | | $^{11}\mathrm{B}$ + $^{232}\mathrm{Th}$ system (open square) derived from fit to the quasi-elastic | | | | scattering angular distribution using the ECIS code. The transfer cross | | | | section (only sum of $^{12,13}\mathrm{C}$ $^{9,10}\mathrm{Be}$ and $^{6,7}\mathrm{Li})$ are plotted for $^{10}\mathrm{B}$ + $^{232}\mathrm{Th}$ | | | | (solid circles) and for $^{11}\mathrm{B}$ + $^{232}\mathrm{Th}$ (open circles). Dashed and dash- | | | | dotted lines are guide to eye | 95 | | 4.10 | The fraction of the transfer cross section $(\sigma_{\rm tr})$ to the total reaction cross | | | | sections $(\sigma_{\rm R})$ as a function of the beam energies for the both $^{11,10}{\rm B}$ + | | | | 232 Th systems. The dashed curves are guide to eye | 96 | | 4.11 | Reduced total reaction cross section for the $^{10,11}\mathrm{B}$ + $^{232}\mathrm{Th}$ systems com- | | | | pared with 6,7 Li + 232 Th systems [26] using the two reduction procedures | | | | (first taken from reff $[26,67,78]$ and second taken from $[78]$ as mention | | | | in the text) | 98 |