List of Figures

1.1	Types of reaction processes distinguished on the basis of the impact	
	parameter at which these reactions occur.	3
1.2	Decomposition of the total reaction cross-section into different compo-	
	nents as a function of the orbital angular momentum parameters at	
	which they occur	6
1.3	Example of Threshold anomaly for $^{16}{\rm O}$ + $^{208}{\rm Pb}$ [1]	10
1.4	Example of Threshold anomaly for $^{11}B + ^{209}Bi$ [2]	11
1.5	Example of breakup threshold anomaly for $^6{\rm Li}$ + $^{208}{\rm Pb}$ [3]	12
1.6	Example of breakup threshold anomaly for $^6{\rm Li}$ + $^{64}{\rm Zn}$ [4]	14
1.7	Example of the real and imaginary potentials, at the strong absorption	
	radius, for the elastic scattering of 6,7 Li + 80 Se [5]	16
2.1	Schematic drawing of the Mumbai Pelletron accelerator facility. The left	
	panel of the figure shows the 5 beam lines	23
2.2	Schematic diagram of the 6 MV Folded Tandem Ion Accelerator	26
2.3	The different regions of operation of a pulse mode gas detector. The	
	pulse amplitude is plotted for two different energies of the radiation	28
2.4	Typical energy levels diagram of an organic scintillator	31
2.5	Schematic (a) and real (b) views of typical silicon surface barrier detector.	33

2.6	Schematic diagram showing ΔE -E telescope setup. ΔE is generally thin	
	solid state detector or gas detector so as to pass the incident particle	
	and E detector is thick solid state detector chosen to stop the remaining	
	energy of incident particle	36
2.7	Schematic block diagram of the experimental setup for the elastic scat-	
	tering, quasi elastic and transfer angular distribution measurements	39
2.8	Four silicon surface barrier detectors telescopes placed on the one mov-	
	able arm of the scattering chamber and target ladder and gas detector	
	also shown in the figure	40
2.9	Scattering chamber of elastic scattering angular distribution experiment.	42
2.10	Schematic block diagram of the complete electronic set up corresponding	
	to a typical experimental set up as shown in Fig (2.7)	45
2.11	Woods and Saxon potential graph shown in eq.(2.12)	50
2.12	The linear schematic model for W (E), consisting of three straight line	
	segments (19)	56
3.1	A 2D spectrum (Δ E vs E _{res}) for the ⁷ Li + ²³² Th system at E _{lab} = 44	
	MeV and $\theta_{\text{lab}} = 60^{\circ}$	61
3.2	The projection of the $^7{\rm Li}$ elastic peak of the bi-parametric $\Delta {\rm E}$ vs ${\rm E}_{res}$	
	spectrum (from above two dimensional fig.(3.1))	62
3.3	Experimental elastic scattering cross section (σ_{El}) normalized to the	
	Rutherford cross section (σ_{Ruth}) as a function of $\theta_{c.m.}$ for the $^6\mathrm{Li}$ +	
	$^{232}\mathrm{Th}$ system (solid circles) (suitably scaled up for each energy) and	
	their best fits from optical model calculations (solid lines). The curves	
	corresponding to the best fits by ECIS code	65
3.4	Figure of sensitivity of radius for 44 MeV for $^6{\rm Li}$ + $^{232}{\rm Th}$ systems, (a)	
	real and (b) imaginary parts	66

3.5	Experimental elastic scattering cross section (σ_{El}) normalized to the	
	Rutherford cross section (σ_{Ruth}) as a function of $\theta_{c.m.}$ for the ⁷ Li +	
	232 Th system (solid circles) (suitably scaled up for each energy) and	
	their best fits from optical model calculations (solid lines). The curves	
	corresponding to the best fits by ECIS code	68
3.6	Sensitivity radius for $^7\mathrm{Li}$ + $^{232}\mathrm{Th}$ systems, (a) real and (b) imaginary	
	parts at 44 MeV	69
3.7	Elastic scattering angular distributions at different energies for the ⁶ Li	
	$+$ 232 Th system and their best fits from optical model calculations. The	
	curves correspond to best fits were obtained using the Sao Paulo poten-	
	tial (SPP)	71
3.8	Elastic scattering angular distributions at different energies for the ⁷ Li	
	$+$ 232 Th system and their best fits from optical model calculations. The	
	curves correspond to best fits were obtained using the Sao Paulo poten-	
	tial (SPP)	73
3.9	Energy dependence of the real and imaginary potentials at $R_s = 12.14$ fm	
	and 11.27 fm for $^6\mathrm{Li} + ^{232}\mathrm{Th}$ and $^7\mathrm{Li} + ^{232}\mathrm{Th}$ systems, respectively. The	
	straight line segments represent various fits of imaginary potential $W(E)$	
	and the corresponding curves for real potential V(E) were obtained from	
	these by using the dispersion relation. Figs. (a) and (b) correspond to	
	the real and imaginary potential curves for $^7\mathrm{Li} + ^{232}\mathrm{Th}$ system, whereas	
	(c) and (d) represent the $^6\mathrm{Li}$ + $^{232}\mathrm{Th}$ system	75

3.10	Energy dependence of the normalization factors N_R and N_I , for the	
	real and imaginary potentials, corresponding to the Sao Paulo potential	
	(SPP) with two free parameters, for the $^6\mathrm{Li}$ + $^{232}\mathrm{Th}$ and $^7\mathrm{Li}$ + $^{232}\mathrm{Th}$	
	systems. The lines represent possible behaviours of N_R and N_I that	
	are compatible with the dispersion relation [7,14]. Figs. (a) and (b)	
	correspond to the real and imaginary potential curves for $^7\mathrm{Li}$ + $^{232}\mathrm{Th}$	
	system, whereas (c) and (d) represent the $^6{\rm Li}$ + $^{232}{\rm Th}$ system	76
3.11	The total fusion cross sections (σ_{fus}) calculated by CCFULL and total	
	reaction cross sections (σ_R) for the $^{6,7}{\rm Li}$ + $^{232}{\rm Th}$ systems obtained by	
	using ECIS code and SPP calculation shown in 7 ((a,b)) respectively	
	plotted as a function of the bombarding energy. The total fission cross	
	sections (σ_{fis}) [60] and the total fusion cross sections for the $^{6,7}{\rm Li}$ +	
	232 Th systems are plotted in 7 (c)	78
3.12	Reduced total reaction cross section vs reduced projectile energy for the	
	6,7 Li + 232 Th reactions using the prescription given in Ref [67]	79
4.1	A typical two dimensional plot of ΔE versus E_{res} (residual energy) for	
	the $^{11}\mathrm{B} + ^{232}\mathrm{Th}$ system at $\mathrm{E_{lab}} = 61$ MeV and $\theta_{lab} = 90^{\circ}$. The bounded	
	region (dashed line) on $Z=5$ events shows quasi-elastic events	83
4.2	One dimension spectrum from above two dimensional figure (4.1) of the	
	bounded region (dashed line) on $Z=5$ events	84
4.3	Quasi-elastic scattering angular distributions normalizes with Ruther-	
	for d cross section for $^{10}{\rm B}$ + $^{232}{\rm Th}$ system at various energies after suit-	
	ably scaling. Solid line represents Woods-Saxon fitting procedure	86
4.4	Quasi-elastic scattering angular distributions normalizes with Ruther-	
	for d cross section for $^{11}{\rm B}$ + $^{232}{\rm Th}$ system at various energies after suit-	
	ably scaling. Solid line represents Woods-Saxon fitting procedure	87

4.5	Sensitivity radii based on the crossing of the real (a) and imaginary (b)	
	parts of the WSP potential at $E_{\rm lab} = 65~{\rm MeV}$ for different diffuseness	
	parameter values (a $_{v}$ and a $_{w}). \ \ .$	89
4.6	Sensitivity radii based on the crossing of the real (a) and imaginary (b)	
	parts of the WSP potential at $E_{\rm lab} = 65~{\rm MeV}$ for different diffuseness	
	parameter values (a $_{\rm v}$ and a $_{\rm w}$)	90
4.7	Energy dependence of the real and imaginary potentials at sensitivity	
	radii $R_s=12.39~{\rm fm}$ for $^{10}{\rm B}+^{232}{\rm Th}$ system in Panels (a), (b) and at R_s	
	= 12.45 fm for $^{11}\mathrm{B}$ + $^{232}\mathrm{Th}$ in panels (c), (d). Solid (red) and dashed	
	(blue) lines are two different sets of line-segment fits. Arrows in the	
	panels (b) and (d) indicate the positions of Coulomb barriers (V_b) for	
	$^{11}\mathrm{B}$ + $^{232}\mathrm{Th}$ and $^{10}\mathrm{B}$ + $^{232}\mathrm{Th}$, respectively	92
4.8	Transfer angular distributions for 12,13 C, 9,10 Be and 6,7 Li at various bom-	
	barding energies for $^{10,11}\mathrm{B}$ + $^{232}\mathrm{Th}$ systems	94
4.9	Total reaction cross sections for $^{10}\mathrm{B}$ + $^{232}\mathrm{Th}$ system (solid square) and	
	$^{11}\mathrm{B}$ + $^{232}\mathrm{Th}$ system (open square) derived from fit to the quasi-elastic	
	scattering angular distribution using the ECIS code. The transfer cross	
	section (only sum of $^{12,13}\mathrm{C}$ $^{9,10}\mathrm{Be}$ and $^{6,7}\mathrm{Li})$ are plotted for $^{10}\mathrm{B}$ + $^{232}\mathrm{Th}$	
	(solid circles) and for $^{11}\mathrm{B}$ + $^{232}\mathrm{Th}$ (open circles). Dashed and dash-	
	dotted lines are guide to eye	95
4.10	The fraction of the transfer cross section $(\sigma_{\rm tr})$ to the total reaction cross	
	sections $(\sigma_{\rm R})$ as a function of the beam energies for the both $^{11,10}{\rm B}$ +	
	232 Th systems. The dashed curves are guide to eye	96
4.11	Reduced total reaction cross section for the $^{10,11}\mathrm{B}$ + $^{232}\mathrm{Th}$ systems com-	
	pared with 6,7 Li + 232 Th systems [26] using the two reduction procedures	
	(first taken from reff $[26,67,78]$ and second taken from $[78]$ as mention	
	in the text)	98