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3.1. Introduction 

Photonuclear reactions are becoming more important for the fusion reactors and 

accelerator driven sub-critical system (ADS), where high-energy photons will be 

generated and subsequently interact with the materials. The study of (γ, n) reactions is 

important for a variety of current and emerging fields, such as radiation shielding 

design, radiation transport, absorbed dose calculations for medical, physics, 

technology of fusion-fission reactors, nuclear transmutation and waste management 

applications [1,2]. In a fusion reactor, during the plasma shot, de-confined runaway 

electrons can interact with the first wall of the reactor and can produce high energy 

photons [3]. As a photon is a massless particle and its interaction is different than the 

neutron, and the mechanism is energy dependent. The high energetic photon can open 

reaction channels like (γ, n), (γ, p), (γ, 2n), (γ, 3n), etc. The most prominent reaction is 

(γ, n), as it has the lowest threshold than multi-neutron emission, whereas for charged 

particle emission the Coulomb barrier needs to be considered. Exact information 

about the cross section of such nuclear reaction is needed in order to perform accurate 

nuclear transport calculations. Tungsten (W) and beryllium (Be) are selected as first 

wall materials for the fusion reactor- International Thermonuclear Experimental 

Reactor (ITER) [4]. Among tungsten isotopes, only 182W (26.5 %), 184W (30.64%) 

and 186W (28.43%) have experimental cross section data for (γ, n) reaction. It is 

necessary to have the cross section of (γ, n) reaction for 180W (0.12%) and 183W 

(14.31%) along with all the remaining long-lived unstable isotopes, as they will 

interact with high-energy photons during the confined runaways and disruption phase 

[5]. Gamma induced nuclear reaction are also important for the nuclear transmutation 

(e.g. 234U(γ, n)233U), which is useful for the nuclear safety and incineration. The 

importance of the gamma incineration technique has been studied in the case of many 

isotopes for nuclear waste management [6-8]. 

In ADSs, the high energy proton beam will interact with high Z elements such as W, 

Pb-Bi, Th, and U, which will produce neutrons through spallation reactions [9]. This 

spallation process will produce high energy photons, which will subsequently interact 

with the materials. It is necessary to have a complete nuclear dataset of photonuclear 

reactions for all isotopes of these elements. The experimental measurements of the 

nuclear reaction cross-section are one of the important methods to complete the 

nuclear dataset. However, there are always limitations in the experimental 
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measurements due to non-availability of all the energies of incident particles and 

preparation of target which may be unstable. For complete nuclear data for several 

isotopes, nuclear modular codes such as TALYS – 1.6 and EMPIRE – 3.2.2 are 

available. Using these codes one can predict the cross sections for different nuclear 

reaction channels. These codes basically use some nuclear models, and on the basis of 

the nuclear reaction theory, evaluation of the nuclear reaction data is done. The theory 

involved in photonuclear reaction cross section evaluation is discussed in the next 

section of this chapter. Apart from this, the nuclear systematics and empirical formula 

provide alternative method for such isotopes, as it can efficiently predict the nuclear 

properties. Many authors have used this theoretical approach. Several systematics and 

empirical studies have already been made for the photonuclear reactions [10]. These 

empirical formulae reduce experimental efforts, as they are basically dependent on 

well-known nuclear properties. In the present work, a new empirical formula has been 

developed and tested with nuclear modular codes and experimental data for Z ≥ 60. 

With the help of the present empirical formula, one can predict the cross section 

datasets for those isotopes where there is a complete lack of the experimental data. 

 

3.2. Theory of Photo Neutron Production 

 The known photon interactions are photoelectric effect, Compton scattering, and pair 

production. These interactions are the result of the interaction of a photon with atomic 

electrons. As the photon energy increases above 6 – 7 MeV, the interaction occurs 

with the nucleus. The interaction of high energy photon with the nucleus can cause 

ejection of nucleon/s. This reaction is referred as a photonuclear reaction. Photon 

should have sufficient energy above the binding energy of the nucleus for nucleon 

emission. As the nuclear binding energies are above 6 MeV for most of the isotopes, 

the photon should have such threshold energy [11]. Depending on the energy of the 

photon, three basic mechanisms are observed for the photonuclear reactions [12]:  

(a) Giant dipole resonance (GDR)  

(b) Quasi-deuteron (QD)  

(c) Intra-nuclear cascade 

 If a gamma photon is having energy below 30 MeV, then it follows GDR 

mechanism. In this process, the photon energy is transferred to the nucleus by the 

oscillating electrical field of the photon, which induces oscillations inside nucleus 
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among nucleons. The photoneutron production is more probable since proton ejection 

needs to overcome a large Coulomb barrier. For different isotopes at a particular 

energy, there is a peak of photoneutron production for (γ, n) reaction. This energy is 

called GDR peak energy. For isotopes above Z = 60, the peak energies are between 

10-18 MeV. Above 30 MeV, the photoneutron production is mainly due to the QD 

effect [12]. In this mechanism, a photon interacts with the dipole moment of a pair of 

proton-neutron in place of the nucleus as a whole [12]. Above 140 MeV, 

photoneutron production results from photo-pion production [12]. Further, the study 

of thermal fluctuation on GDR parameters is also of interest and studies are ongoing 

[13-16]. 

According to the semiclassical theory of the interaction of photons with nuclei, the 

shape of the fundamental resonance of the photoabsorption cross section follows a 

Lorentz curve [12, 17]. 

σ(E) = σ i

1 +[
(Eγ2− Em2 )

2

Eγ2γ2 ]

                                        3.1 

Where, σ i, Eγ and γ are the Lorentz parameters: peak cross section, resonance energy 

and full width at half maximum respectively [18]. 

In a more general way, in nuclear modular codes, such as TALYS – 1.6 and EMPIRE 

– 3.2.2, the photoabsorption cross section is calculated as the sum of two components 

[18-20], 

Σabs(Eγ) =  σGDR(Eγ) +  σQD(Eγ)                           3.2 

The component σGDR(Eγ) represents the giant dipole resonance (GDR), in Lorentzian 

form. It is given by eq. 3.1 by as shown below, 

σ(E) = ∑ σ i·(Eγ·Гi)2

(Eγ
2− Ei

2)
2

 +(Eγ·Гi)2
                                        i 3.3 

Where σ i, Ei and Гi are: peak cross section, resonance energy and full width at half 

maximum respectively. The summation is limited to i=1 for spherical nuclei, while 

for deformed nuclei the resonance is split and one uses i = 1, 2. The component 

σQD(Eγ) , represents the Levinger form given by Chadwick et al. [19–22]. It is 

basically from the quasi-deuteron model. In the energy range from photonuclear 

threshold to 30 MeV, the GDR mechanism is dominant, while in the range 30 – 140 
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MeV QD mechanism is dominant. Above 140 MeV the threshold energy for pion 

production is achieved [21]. 

The above theory has been used in the TALYS – 1.6 and EMPIRE – 3.2.2 nuclear 

modular codes [23, 24]. Further details of these codes are given in literature [18–19]. 

Using these codes, (γ, n) nuclear reaction cross section for different isotopes (Z ≥ 60) 

were calculated and are presented in the present thesis work. Until now, the 

photonuclear reaction cross sections have been evaluated using the Lorentz 

parameters. These parameters for several isotopes were calculated by fitting the 

experimental data or by systematics [25], but these parameters are not available for all 

the unstable isotopes. 

 

3.3.  Development of the Empirical Formula 
3.3.1 Introduction 

The present empirical formula has been developed using a few terms required to 

reproduce the cross section as a function of the incident photon energy. Initial 

derivation of the formula was done by using the earlier empirical formula used to 

explain neutron induced nuclear reaction cross section [26]. The present formula has 

three basic terms; 1. The fundamental term, 2. Isotopic resonance term and 3. Energy 

dependency term. These terms are discussed below. 

 

3.3.2 Fundamental Term 

In contrast to the Lorentzian parameters, the basic properties of nuclei A, N and Z 

were used to estimate the photonuclear cross section. Levovskii had given empirical 

formulae for (n, p) and (n, 2n) reaction cross section at 14.0 MeV [26],   

σ(n, p) ∝ σp ∙ e−33∙(N−Z)
A                                              3.4 

σ(n, 2n) ∝ σα ∙ e−33∙(N−Z)
A                                                   3.5 

where σp = πr0
2(A1/3 + 1)2 and σα = 0.4 · πr0

2(A1/3 + 1)2 

 r0 = 1.2 u 10-13 cm 
These empirical formulae are based on A, N, and Z of a nucleus, and at fixed energy 

14.0 MeV. These were modified to obtain an empirical formula for photo induced (γ, 



   
 

42 
 

n) nuclear reaction, which may be applied near to GDR peak energy. This 

modification is as given below. 

σ(γ, n) ∝ σm ∙ e−33.5∙(N−Z)
A                                          3.6 

 σm = πr0
2 · (A2/3 + 1)2 · (N − Z) · A

−4
3                3.7 

where r0 is the average nuclear radius. This is taken as the fundamental term of the 

present empirical formula. 

 

3.3.3 Isotopic Resonance Term 

The experimental data shows the resonance nature of the reaction cross section, which 

depends on the isotope, i.e., the GDR peak energy is different for the different 

isotopic number. Thus for a given GDR peak, the cross section decrement is 

distributed on the either sides of GDR peak energy. Hence a term representing such 

phenomena must be included. 

The modified formula is given below, 

σ(γ, n) ∝ σm ∙ e−33.5∙(N−Z)
A ∙ e

(−(
(Ei−𝑆𝑗·𝑅𝑝)

2 )2)
               3.8 

Where Ei and Rp are the incident photon energy and resonance parameter 

respectively. 

In this modification, two parameters are specifically used, Rp and Sj. 

The parameter Sj can be calculated by, 

𝑆𝑗 =  A2

2(N−Z)2                                              3.9 

The parameter Rp is estimated for an isotope, by fitting the (γ, n) nuclear reaction 

cross section using the above formula for different isotopes of the same element. It 

was observed that this parameter Rp is following a linear relationship against the 

atomic mass of the different isotopes of the same element, which can be written in the 

form of the following equation, 

Rp = m·A + C                                3.10 

Where A is the atomic mass of the isotope, and m and C are the slope and intercept 

respectively, More details of this parameter (Rp) for different elements is given in 

subsection 3.3.5. 
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This term e−[{
(Ei−𝑆𝑗·𝑅𝑝)

2 }2]  depends on the energy of the incident photon and the 

isotopic nature of the target nucleus. When a photon is incident on the nucleus, the 

response depends on the photon energy. If the incident photon is below the threshold 

energy for photo fission, it cannot eject a nucleon from the nucleus. If energy of the 

photon is above the threshold energy of the (γ, n) reaction, the reaction cross section 

increases until the resonance peak energy is reached. After this energy, again the cross 

section decreases. This is incorporated using this exponential term. The subtraction of 

Sj·Rp from the incident photon energy shows the isotopic dependence of the 

resonance peak energy of the reaction. It was observed in the experimental data that 

as the isotopic number increases, the GDR peak shifts towards the lower energy side. 

This back shift effect can be calculated with the exponential term considered here. 

The value of Sj·Rp increases with addition of neutrons to the isotope nucleus. This 

means that when a photon is incident on the target isotope, it interacts with the last 

shell neutron in the nucleus. The binding energy of the last added neutron will be 

least. Hence the photon may require smaller energy to initiate the resonance isotope 

number. 

This phenomenon can be observed in FIGS 3.1 and 3.2, showing the isotopic effect 

for the resonance peak energy back shifting in Nd and Pt isotopes using the above 

exponential term. 

 
FIG 3.1 Backshift of Resonance Peak Energy in Nd isotopes which is result from the 

term 𝑒(−((𝐸𝑖−𝑆𝑗∙𝑅𝑝)
2 )2) 
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FIG 3.2 Backshift of Resonance Peak Energy in Pt isotopes which is result from the 

term 𝑒(−((𝐸𝑖−𝑆𝑗∙𝑅𝑝)
2 )2) 

 

3.3.4 Energy Dependency Term 

There is a need to introduce an energy related term to make the formula to predict the 

cross section more accurately. If the photon energy increases, then it can transfer 

more energy to the nucleus.  In the mechanism of GDR, the oscillating electrical field 

transfers its energy to the nucleus by inducing an oscillation in the nucleus, which 

leads to the relative displacement of tightly bound neutrons and protons inside the 

nucleus [12]. When the energy of the photon is low (near to the threshold), the 

oscillating electric field of the photon interacts with the collective nuclear field 

produced by the sum effect of all the nucleons. However, as the energy of the photon 

increases, the oscillating electrical field interacts with a pair of neutron and proton 

rather than the whole nucleus. This can be accounted by the term e
√1+E

2
3, where E is 

the energy of the incident photon. This term shows that photon can have more energy 

to transfer to the nucleons as the incident photon energy increases. It also indicates 

that as the energy of the photon increases, it can have less interaction time with 

nucleons. In this way, the emission of neutrons by pre-equilibrium or direct reaction 

mechanism can also be explained. 

Hence, by the addition of an energy dependent term, the modified formula becomes, 
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σ(γ, n) ∝ σm ∙ e−33.5∙(N−Z)
A ∙ e

(−(
(Ei−𝑆𝑗·𝑅𝑝)

2 )2)
· e

√1+E
2
3                    3.11 

An additional factor Sf which depends on isospin has been introduced to complete the 

formula. This factor was plotted and fitted for different isotopes of the same element. 

It was observed that factor follows some exponential relation, which is described in 

subsection 3.3.6. This empirical formula gives the cross section to the order of milli-

barn. 

The final modified formula is now given below, 

σ(γ, n) = σm ∙ e−33.5∙(N−Z)
A ∙ e(−((Ei−Sj∙Rp)

2 )
2

) · e
√1+E

2
3 ∙ Sf         3.12 

 
3.3.5 Rp Parameter 

As discussed in section 3.3.3, the parameter Rp is used to show the isotope 

dependency of the reaction cross section. In the empirical formula the term 

e−[{
(Ei−Sj·Rp)

2 }2], contains the Sj and Rp parameters. The parameter Rp is responsible for 

the change in the cross section due to atomic number, where the product of Sj and Rp 

accounts for the isotopic back shift effect, as shown in FIGS. 3.1 and 3.2. The 

parameter Rp for different isotopes can be calculated using a linear relation given by 

eq. 3.10 with the atomic mass number of isotopes for an element. Therefore, the plots 

of Rp against A for different elements should be parallel lines with different intercepts 

on Rp axis as shown in FIG 3.2. It is a property of parallel lines that they have same 

slope but different intercepts. Hence, the mean slope of the different element has been 

taken as the standard slope for all elements (Z ≥ 60). This value of the slope (m) 

mentioned in eq. (10) is ~ 0.03164 ± 0.00409. The intercept C for different elements 

are plotted against the atomic number of an element, and fitted with mathematical 

software MATLAB, using 3rd degree polynomial as shown in FIG 3.3. The intercept 

C for a different element can be determined from the following equation. 

C(Z) = p1·Z3 + p2·Z2 + p3·Z + p4                                     3.13 

with p1 = – 4.155 u 10-5, p2 = 0.008971, p3 = – 0.7156, and p4 = 15.78, Z = Atomic 

number 

  (SSE: 0.00147; R-square: 0.9998: Adjusted R-square: 0.9996; RMSE: 0.01917) 
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Hence, the intercept for any element can be evaluated using the above eq. 3.13, which 

is fixed for different isotopes of the same element. Using this intercept and the slope 

0.03164 ± 0.00409 one can calculate the parameter Rp from eq. 3.10. The model 

values of the parameter Rp for different elements are compared with the previous 

manually selected values as shown in FIG 3.2. 

 
F IG 3.3 Rp parameter fitted for different elements using eq. 3.10 

3.3.6 Sf Parameter 

This parameter includes the isospin effect, as discussed by J. S. Wang et al., [27]. In 

order to include this effect in the empirical formula, an additional factor called Sf has 

been added. This factor was initially added and then, in order to generalize it is fitted 

with different combinations of N, Z and A. Thus it follows a complex exponential 

relation with exp((N – Z)/N) of an isotope. This parameter Sf is also considered as a 

result of the asymmetry of the nucleus. As there is a difference in neutron and proton 

number, the fraction (N – Z)/N is the available neutron fraction for a photon to eject. 

As this fraction value increases, the value of Sf also increases, which directly shows 

increment in the photoabsorption cross section of that isotope. 
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 This isotopic factor Sf for different isotopes is plotted with respect to exp((N – Z)/N,) 

and fitted with MATLAB software as shown in FIG 3.4. The generalized expression 

to determine Sf parameter for an isotope is as given below. 

Sf = aebx + cedx                                             3.14 

where, x = (N – Z)/N, a = 1.21 u 10-22, b = 34.21, c = 7.71 u 10-11, d = 14.52 

( SSE: 0.006977; R-square: 0.9781; Adjusted R-square: 0.9759; RMSE: 0.01551)  

Looking at FIG 3.5 carefully, when e
(N−Z)

N  is between 1.40 to 1.42, then Sf factor has 

almost same values. These Sf values are for Z = 82 and N = 124, 125, 126, which is 

either a magic number or near to the magic number. Sf is purely dependent on (N – 

Z)/N, which is a shell dependent term. The anomalous behavior of the Sf factor values 

for these isotopes is due to the magic shell effect. 

 

 
FIG 3.4 Intercept C for eq. 3.10 for different elements fitted with eq. 3.11 
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FIG 3.5 Sf parameter for different (N-Z)/N fitted with eq. 3.14 

3.4. Results and discussion 

The (γ, n) reaction cross section for different isotopes with Z ≥ 60 was calculated 

using the newly developed empirical formula. In addition, the nuclear modular codes 

TALYS – 1.6 and EMPIRE – 3.2.2 were also used to predict the same cross section in 

order to compare the predictability of present empirical formula and Lorentz curve 

based model. All the results are compared with the available EXFOR data [28] and 

are shown in FIGS. 3.6 – 3.10. The cross sections are calculated for the energy range 

near to GDR peak. The results obtained by modular codes and empirical formulae are 

in agreement with the experimental data as shown in FIGS. 3.6 – 3.10. However, the 

empirical formula is giving more appropriate cross section results and predicts the 

nuclei behavior near to the GDR peak energy region.  This empirical formula is good 

for those isotopes which have a single GDR peak.  In most of the cases studied here, 

that have a single GDR peak, the empirical formula gives good agreement near to the 

GDR peak energy as compared to the model based on Lorentz curve fitting.  

In the case of the isotopes with Z from 63 to 75, it was found that collective model 

predicts large nuclear quadrupole moment. The quadrupole moment exists because of 

the asymmetry of the nucleus. The nuclei are found in the middle of the 1d, 2s shells 

in the range of 145 < A <185. The energy difference between the ground state and the 

first excited state is of the order of hundreds of keV. In the deformed nucleus, the 

incident photon can interact either with the ground state or with the excited state 
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nucleons and hence can produce a resonance at two different nearby energies. This is 

observed in the above isotopes. For such cases, the Lorentz curve based model, viz. 

TALYS – 1.6 and EMPIRE – 3.2.2, works reliably for these isotopes, as shown in 

FIG 3.11. For some cases, however, the TALYS – 1.6 and EMPIRE – 3.2.2 model 

does not work well, e.g. FIG 3.11(e – f). In order to apply the empirical formula for 

such isotopes, it is assumed that there may be two peaks due to unresolved resonances 

occurring near the energies of ground and excited nuclei, which are due to the 

quadrupole moment. This suggests parameters Rp and Sf can have two different values 

for these isotopes. It indicates that the energy dependence cross section curve is made 

of two curves with two different Rp (Rp1 and Rp2) and Sf values (Sf1 and Sf2) of 

parameters Rp and Sf respectively. These values can be estimated by multiplying the 

following factors to the Rp and Sf values calculated from Sections 3.3.5 and 3.3.6. 

Rp1 = 0.95 x Rp                                                3.15 

  Rp2 = 1.20 x Rp1                                   3.16 

Sf1= 1.39 x Sf                                                     3.17 

Sf2 = 0.28 x Sf1                                                  3.18 

The two curves are intersecting at a deep point, where both curves should have the 

same value of cross section. This intersection point energy can be calculated by 

comparing the right side of the eq. 3.12 for above values. 

σm ∙ e−33.5∙(N−Z)
A ∙ e

(−(
(Ei−𝑆𝑗·𝑅𝑝1)

2 )
2

)

· e
√1+E

2
3 ∙ Sf1 =  σm ∙ e−33.5∙(N−Z)

A ∙ e
(−(

(Ei−𝑆𝑗·𝑅𝑝2)
2 )

2

)

· e
√1+E

2
3 ∙ Sf2 
3.19 

Solving this eq. we get,  

Edeep =  1
2

Sj · (Rp1 + Rp2) +  
2 ln(

Sf2
Sf1

)

Sj (Rp1−Rp2)
                        3.20 

This energy Edeep is near to the threshold energy of the (γ, 2n) reaction. With this 

consideration, the results are plotted in FIG 3.11(a – f). 
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FIG 3.6 Comparison of Evaluated data using TALYS-1.6, EMPIRE-3.2.2, and 

Empirical Formula with Experimental data from EXFOR comparison for 144-

146,148,150Nd, and 148Sm 
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FIG 3.7 Comparison of Evaluated data using TALYS-1.6, EMPIRE-3.2.2, and 

Empirical Formula with Experimental data from EXFOR comparison for 150,152,154Sm, 
186W, 186Os, and 188Os 
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FIG 3.8 Comparison of Evaluated data using TALYS-1.6, EMPIRE-3.2.2, and 

Empirical Formula with Experimental data from EXFOR comparison for 189-190,192Os, 
191,193Ir, and 194Pt 
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FIG 3.9 Comparison of Evaluated data using TALYS-1.6, EMPIRE-3.2.2, and 

Empirical Formula with Experimental data from EXFOR comparison for 195-196,198Pt, 
197Au, 206Pb, and 207Pb 
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FIG 3.10 Comparison of Evaluated data using TALYS-1.6, EMPIRE-3.2.2, and 

Empirical Formula with Experimental data from EXFOR comparison for 208Pb, 233-

236U, and 238U 
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FIG 3.11 Effect of deformed nuclei in (γ, n) nuclear reaction, data comparisons for 

TALYS – 1.6, EMPIRE – 3.2.2 and Present Empirical formula  
 

3.5.  Applications of the Present Empirical Formula 

The present empirical formula can be used to predict cross section for (γ, n) reaction 

for the isotopes with Z ≥ 60. Here cross section of some selected (γ, n) reaction for 

some selected reactions was calculated and presented. The (γ, n) cross section for 

several isotopes of W, Pb, Pa, U and Pu, which have no available experimental data, 

were calculated using present empirical formula and compared with TALYS – 1.6, 

EMPIRE – 3.2.2 evaluated data.. Further, the predicted data of the isotopes were 

compared with different standard evaluated data libraries, wherever available.   

Tungsten is a prime candidate for the plasma facing component in a fusion reactor. It 

is selected for the diverter material in the ITER fusion reactor [4]. Tungsten isotopes 
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182W, 184W and 186W have experimental data for the (γ, n) reaction cross section [28]. 

The (γ, n) cross section for remaining isotopes 180W(0.12%) and 183W(14.31%) were 

calculated and compared with the evaluated data available in ENDF/B-VII.1. No 

other standard data library has photonuclear data for these tungsten isotopes [19]. 

There is an agreement between present evaluated data and ENDF/B-VII.1 as can be 

seen in FIG 3.12 (a – b), where there is not good agreement in FIG 3.13 (c – d). Lead 

is a prime element for the Pb-Li blanket module of the fusion reactors, as well as, it is 

also a candidate for the ADS target material [29]. Experimental data are available for 

lead isotopes 206Pb, 207Pb and 208Pb. The (γ, n) cross section for remaining isotopes of 

lead 202Pb (5.25 × 104 y, [30]), 203Pb (51.92 h, [30]), 204Pb (1.4 × 1017 y, [30]) and 
205Pb (1.73 × 107 y, [30]) were calculated and presented. These isotopes of lead have a 

large half-life and they are facing high energetic photons during the runaway electron 

generation and the disruption phase in plasma [5]. There are some isotopes of Pa and 

U: 231Pa(3.27 × 104 y, [30]), 232U(68.9 y, [30]) and 237U(6.75 d, [30]) having no 

evaluated cross section data in various standard data libraries, such as ENDF/B-VII.1, 

JENDL-4.0, JEFF-3.1, ROSFOND and CENDL-3.1 [31,32]. The cross sections for 

these isotopes were also calculated and presented. The evaluated data for 239Pu (2.41 

× 104 y, [30]) and available data in ENDFB/VII.1 are presented in FIG 3.13 (d). 

Though in the present context, cross sections are evaluated for limited isotopes, it can 

be applied to calculate (γ, n) reaction cross section for actinides using the nuclear 

modular codes and present empirical formula. While the TALYS – 1.6 and EMPIRE 

– 3.2.2 codes can be used to calculate the (γ, n) reaction cross section for the isotopes, 

which have available GDR parameters, whereas the present empirical formula can be 

used to calculate cross section for any isotope with Z ≥ 60. 

Another important application is, to use the nuclear modular codes and the present 

formula to calculate the incident gamma energy for which, the cross section will have 

maximum value i.e. at the GDR peak energy. It can be used to calculate the incident 

charge particle (e.g. electron) beam energy for the bremsstrahlung production, which 

is required to design a photoneutron source. There are some theoretical transport 

codes available to transport the electrons and photons such as MCNP [12, 33-34], 

FLUKA [35, 36], GEANT [37] etc. Using these codes, one can estimate the 

bremsstrahlung spectra from the electron beam.  
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FIG 3.12 Comparison of Evaluated data for 180,183W, 202-204Pb, and 205Pb using 

TALYS -1.6, EMPIRE-3.2.2, and empirical formula  
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FIG 3.13 Comparison of Evaluated data for 231Pa, 232,237U, and 239Pu using TALYS -

1.6, EMPIRE-3.2.2, and Empirical Formula 

 

3.6.  Summary and conclusions 

A new empirical formula has been developed to investigate the (γ, n) reaction cross 

section for isotopes with Z ≥ 60 in the GDR energy region. The results for the (γ, n) 

reaction cross section obtained by using the above empirical formula has been 

reproduced by using the nuclear modular codes: TALYS – 1.6 and EMPIRE – 3.2.2. 

It has been shown that TALYS – 1.6, EMPIRE – 3.2.2 and the empirical formula is in 

agreement with the experimental data. Further, a conclusion may be drawn that there 

may be no deformation in the GDR peak of a pure (γ, n) reaction cross section for the 

spherical nucleus. As a result of the quadrupole moment, which is due to the 

asymmetric shape of the nucleus, the present deformation has been observed. 

In addition to this, the evaluated data for 180-184W, 202-205Pb, 231Pa, 232-237U, and 239Pu 

using TALYS – 1.6, EMPIRE – 3.2.2 and our empirical formula have been presented. 

Among these only 180W, 183W and 239Pu have evaluated data in ENDF/B-VII.1 [29], 

which are compared with the present evaluated data. For 180-184W, the present 

evaluated data are in good agreement, but in the case of 239Pu, it is in disagreement. It 

is necessary to do experiments in the GDR energy range to validate the present 



   
 

59 
 

evaluated data for 239Pu. Further, though here only limited isotopes have been used for 

the (γ, n) reaction cross section evaluation, the empirical formula can be applicable to 

other isotopes provided Z ≥ 60. 
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