TABLE OF CONTENTS

	LIST OF TABLES	vi
	LIST OF FIGURES	viii
Cha	apter 1 Introduction	
1.1	Background- Tungstate	1
1.2	Objective and scope	2
1.3	Cadmium Tungstate (CdWO ₄)	3
1.4	Literature Review	5
1.5	Crystal Structure	8
1.6	Different Synthesis methods	9
1.7	Electronic Structure of CdWO ₄	11
1.8	Self Trapped Exciton (STE)	13
1.9	Dopant	15
Refe	References	

Chapter 2 Experimental Method

2.1	Nanoscience and Nanotechnology	19
2.2	Hydrothermal Synthesis	24
	2.2.1 Introduction	24
	2.2.2 History	25
	2.2.3 Definition	26

	2.2.4 A reactant – Water	
	2.2.5 Advantages and disadvantages of hydrothermal method	32
2.3	Autoclave	35
2.4	Liners	37
2.5	Effect of hydrogen	38
2.6	Reagents and solvents	39
2.7	Procedure	40
2.8	Summary of prepared samples	42
Refe	References	

Chapter 3 Characterization

3.1	Introduction	49
3.2	X-ray Diffraction (XRD)	50
	3.2.1 Fundamentals of X-ray	50
	3.2.2 X-ray diffractometer	52
	3.2.3 Analysis of X-ray pattern	55
	3.2.4 Recording of X-ray spectra	57
	3.2.5 Analysis of XRD data	59
3.3	Photoluminescence Spectroscopy	61
	3.3.1 Introduction	61
	3.3.2 Basics of PL Instrument	62
	3.3.3 Excitation and Emission Spectra	65
	3.3.4 Spectrofluorophotometre	65

3.4	Fourier Transform Infrared Spectroscopy (FTIR)	70
3.5	Transmission Electron Microscopy (TEM)	76
References		80

Chapter 4 Effect of dopants on Cadmium Tungstate

4.1	Introduction	82
4.2	Rare Earth Elements	84
	4.2.1 Crystalline field theory of rare earth ions	85
	4.2.2 Weak crystalline field	86
	4.2.3 Cerium	87
	4.2.4 Europium	88
4.3	Experimental Details	90
4.4	Characterization	92
4.5	X-Ray Diffraction (XRD) – Structural Study	93
4.6	Photoluminescence (PL) Studies	97
4.6.1 PL Spectra of undoped and Ce doped CdWO4		98
	4.6.2 PL Spectra of undoped and lanthanide (Ce, Er, Nd and Eu)	
	doped CdWO ₄	104
	4.6.3 PL study of CdWO ₄ doped with different concentrations of Ce	114
4.7	FTIR Studies	114
4.8	Transmission Electron Microscopy (TEM)	116
Refe	References	

Chapter 5 Study of Cerium doped Cadmium Tungstate at different pH

5.1	Introduction	123
5.2	Sample Preparation	125
5.3	X-Ray Diffraction (XRD) – Structural Study	126
5.4	Photoluminescence (PL) Studies	128
5.5	FTIR Studies	137
5.6	Transmission Electron Microscopy (TEM)	138
Refe	References	

Chapter 6 Study of Europium doped Cadmium Tungstate at

different pH

6.1	Introduction	148
6.2	Sample Preparation	150
6.3	Characterization	152
6.4	X-Ray Diffraction (XRD) – Structural Study	153
6.5	Photoluminescence (PL) Studies	156
6.6	CIE chromaticity coordinates of CdWO4:Eu ³⁺ phosphor	161
References		164

173

LIST OF TABLES

Table 1.1	General properties of Cadmium tungstate	4
Table 2.1	List of Samples prepared by Hydrothermal Synthesis	42
Table 4.1	Structural and electronic properties (from Beaudry and Gschneidner	
	1978)	85
Table 4.2	Lattice parameters and average crystallite size	93
Table 4.3	XRD analysis of undoped and RE-doped CdWO ₄ (RE: Ce, Nd, Eu	
	and Er)	96
Table 4.4	Emission spectra analysis of CdWO ₄ and CdWO ₄ : Ce	102
Table 4.5	Emission spectra analysis of CdWO4 and CdWO4: RE (RE: Ce, Er,	
	Nd and Eu)	108
Table 4.6	Position of Gaussian peaks of undoped and RE-doped CdWO ₄ (RE:	
	Ce, Er, Nd and Eu)	113
Table 4.7	PL analysis of CdWO ₄ doped with different concentrations of Ce	114
Table 5.1	Lattice parameters and average crystallite size	128
Table 5.2	Emission spectra analysis of Cerium doped CdWO ₄ synthesized at	
	pH (4, 6, 8)	130
Table 5.3	Position of Gaussian peak of PL spectra of Cerium doped CdWO ₄	
	with different pH	133
Table 6.1	XRD analysis of Europium doped CdWO ₄ synthesized at pH (4, 6, 8,	
	10)	154
	10)	154

Table 6.2	Emission spectra analysis of Europium doped CdWO ₄ synthesized at	
	pH (4, 6, 8, 10)	159
Table 6.3	Eu peak (593nm) analysis of Europium doped CdWO ₄ synthesized at	
	pH (4, 6, 8, 10).	159
Table 6.4	Eu peak (615nm) analysis of Europium doped CdWO ₄ synthesized at	
	pH (4, 6, 8, 10).	160
Table 6.5	X and Y coordinates for Europium doped $CdWO_4$ synthesized at	
	different pH (4, 6, 8,10) recorded with 295 nm excitation wavelength.	162

LIST OF FIGURES

Figure 1.1	Crystal Structure of CdWO ₄ (from Morell <i>et al</i> .).	8
Figure 1.2	The energy level diagram of CdWO ₄	12
Figure 2.1	Phase diagram of water	28
Figure 2.2	Variation of dielectric constant of water with	30
	temperature and pressure	
Figure 2.3	Teflon fitted stainless steel autoclave	36
Figure 2.4	Flow chart of Hydrothermal Synthesis	41
Figure 3.1	Characteristic X-ray productions	52
Figure 3.2	Schematic representation of x-ray diffraction pattern	53
Figure 3.3	Goniometer circle	54
Figure 3.4	XRD instrument at UGC-CSR, Indore Centre	58
Figure 3.5	XRD instrument at ERDA, Vadodara	59
Figure 3.6	Constitution of RF-5301 PC	68
Figure 3.7a	Spectrofluorophotometer	69
Figure 3.7b	RF-5301 PC with Powder Sample Holder	69
Figure 3.8	FTIR Instrument Jasco-4100	74
Figure 3.9	Layout of optical components in a basic TEM	76
Figure 3.10	TEM instrument at UGC-CSR, Indore Centre	79
Figure 4.1	Electronic energy levels of Eu ³⁺ ions	88
Figure 4.2	Flow chart of the synthesis process of CdWO ₄ using the	

	hydrothermal method	91
Figure 4.3	XRD patterns of undoped and RE-doped CdWO ₄ (RE:	
	Ce, Er, Nd and Eu)	94
Figure 4.4	Comparison of the (-1 1 1) and (1 11) diffraction	
	between of undoped and RE-doped CdWO ₄ (RE: Ce, Er,	94
	Nd and Eu)	
Figure 4.5	Excitation spectra of CdWO ₄ andCdWO ₄ : Ce	98
Figure 4.6	Emission spectra of CdWO ₄ , CdWO4: Ce (Excitation	
	wavelength: 263 nm)	99
Figure 4.7	Emission spectra of CdWO ₄ , CdWO4: Ce (Excitation	
	wavelength: 600 nm)	100
Figure 4.8	Excitation spectra of $CdWO_4$ and $CdWO4$: RE (RE :	
	Ce,Er,Nd and Eu)	104
Figure 4.9	Emission spectra of CdWO ₄ and CdWO ₄ : RE (RE: Ce,	
	Er, Nd and Eu)	106
Figure 4.10a	Gaussian peaks of CdWO ₄	109
Figure 4.10b	Gaussian peaks of CdWO ₄ : Ce	109
Figure 4.10c	Gaussian peaks of CdWO ₄ : Er	110
Figure 4.10d	Gaussian peaks of CdWO ₄ : Nd	110
Figure 4.10e	Gaussian peaks of CdWO ₄ : Eu	111
Figure 4.11	PL study of CdWO ₄ doped with different concentrations	
	of Ce	113

Figure 4.12	Room temperature FTIR spectra of CdWO ₄ and CdWO ₄ :	
	Ce	115
Figure 4.13a	TEM images of undoped CdWO ₄	116
Figure 4.13b	TEM images of Cerium doped CdWO ₄	116
Figure 5.1	XRD patterns of Cerium doped CdWO ₄ synthesized at	
	pH (4, 6, 8)	126
Figure 5.1a	Shift of reflection peak of Cerium doped CdWO ₄	
	synthesized at pH (4, 6, 8)	127
Figure 5.2	Excitation spectra of Cerium doped CdWO ₄ synthesized	
	at pH (4, 6, 8)	129
Figure 5.3	Emission spectra of Cerium doped CdWO ₄ synthesized	
	at pH (4, 6, 8)	130
Figure 5.4a	Gaussian peaks of Cerium doped CdWO ₄ with 4 pH	132
Figure 5.4b	Gaussian peaks of Cerium doped CdWO ₄ with 6 pH	132
Figure 5.4c	Gaussian peaks of Cerium doped $CdWO_4$ with 8 pH	133
Figure 5.5	Room temperature FTIR spectra of Cerium doped	
	$CdWO_4$ synthesized at pH(4, 6, 8)	137
Figure 5.6	TEM images of Cerium doped CdWO ₄ synthesized at	
	pH(4, 6, 8)	140
Figure 5.7	Approach A for formation of hollow nano tube	142
Figure 6.1	Flow chart of Europium doped CdWO ₄ synthesized at	
	pH (4, 6, 8, 10)	151

Figure 6.2	XRD patterns of Europium doped CdWO ₄ synthesized at	
	pH (4, 6, 8, 10)	153
Figure 6.3	Shift of reflection peak of Europium doped CdWO ₄	
	synthesized at pH (4, 6, 8, 10)	155
Figure 6.4	Excitation spectra of Europium doped CdWO ₄	
	synthesized at pH(4, 6, 8,10)	156
Figure 6.5	Emission spectra of Europium doped CdWO ₄	
	synthesized at pH (4, 6, 8, 10)	157
Figure 6.6	CIE chromaticity diagram with points indicating	
	coordinates for Europium doped CdWO ₄ synthesized at	
	pH (4, 6, 8,10) recorded with 295 nm excitation	
	wavelength	161