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2.1 Introduction

For years, scientist has suspected that the atomic nucleus need not be lightly bound,

compact or appear as a spherical object. The exact nature and dynamics of this remains an open

question. The idea of the nucleus having cluster structures dates back to 1931 when the theory of

α-decay was proposed by Gamow [1]. In fact, the existing nuclear models at the time assumed

that the nuclei were composed of α-particles and/or alpha particles plus protons and electrons.

For example, nuclei such as 8Be, 12C, 16O, considered as nα-nuclei where n is the number

of  alpha  particles,  are  thought  to  be  formed from alpha  clusters.  So  one  would  say  that 16O is

composed of four (4) α clusters (see Fig. 2.1). However, despite the satisfactory explanation of

the alpha decay phenomena and a possible explanation of nuclear character, it was not until the

discovery of neutrons in 1932 that it was possible to give a realistic description of the nuclei. In

light of this development, several realistic models have been used for describing the nuclei, over

the years with varying degrees of success. Given that no nuclear model gives a complete

description of a nucleus, the cluster model has also been used to give a simultaneous description

of nuclei, and has thus been improved to a level that it can give comparable predictions with so-

called realistic models [1].

Figure 2.1 The arrangement of four alpha particle clusters in the nucleus 16O [2].

Understanding  the  structure  of  a  nucleus  as  a  system  of  particles  has  been  a  major

research area since the nucleus was discovered. Several methods have been proposed to describe
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some of the experimentally observed properties of the nucleus. Since it was understood that the

nucleus consists of nucleons, a model predicts that these nucleus were always moving

independently of each other under a binding force. The nucleons were later found to be protons

and neutrons. Although some of the suggested models were found to be successful in

reproducing some of the properties of the nucleus, others such as the shell model were not able to

reproduce all of the experimentally observed characteristics of all the possible nuclei.

As time evolved, more models were put forward until the cluster models were proposed,

at the time of the α-decay from a nucleus. The cluster model describes the nucleus as a binary

system where the correlated nucleons could be pictured as a cluster of a few nucleons orbiting a

core containing the remaining nucleons. This model was used by several scientists to predict not

just the structure, but other properties of some light nuclei, e.g. 6Li and 16O. Some of these nuclei

were described as consisting of α-particle clusters. Since it was quite successful in describing a

large number of light nuclei, scientists decided to investigate their ability to reproduce properties

of heavy nuclei. Hence, to date, the model is still being used to investigate properties of heavy

nuclei such as 212Po, etc. [3].

2.2 Nuclear models

A nucleus is a system of a number of protons and neutrons interacting with strong nuclear

forces. Because of the complexity of the nuclear force, the nucleus is usually described using a

number of models. These are the nuclear shell model, the collective model, interacting Boson

model and the cluster model etc., most of these are phenomenological. Apart from these models

there are many microscopic models, like: Hartree-Fock, Hartree-Fock Bogolyubov, Tamm-

Dankov, Random phase approximation, etc. But these kinds of models are very difficult to

include in Coupled Channel (CC) calculations due to their complexity.

The  shell  model  is  considered  as  a  microscopic  model  because,  in  its  simplest  form,  it

considers a nucleus as a system of nucleons moving independently in an average effective self-

consistent potential. However, it proves difficult to extrapolate to the heavier nuclei. An

alternative approach is to use the cluster model which provides a simple method for describing

the properties of heavy nuclei. The cluster model seeks to describe the nucleus in term of a

strong correlated group of nucleons moving collectively in an average potential with respect to
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the remaining nucleons. This group of nucleons is generally referred to as the cluster, and the

remaining nucleons form the core nucleons [3].

A good example of heavy nuclei which can be described in terms of a stable core and

cluster system is the 212Po.  The  shell  model  has  successfully  been  used  to  describe  the  known

excited state of 212Po. It, however, fails to describe the alpha decay widths, the ground state

decay widths can only be described by assuming that both the shell model and cluster model

exist in this nucleus [4].

2.3 Optical Model
The existence of giant resonance is usually explained on the basis of optical model. This

model of the nucleus is capable of explaining the behaviour of reaction cross sections at both low

(in  the  resonance  region  this  is  not  true,  this  is  part  of  the  low energy  region)  as  well  as  high

energies. At low energies the optical model deals with the energy average of the reaction cross

section. If the incident neutron energy is not sharply defined, a number of resonances may be

covered in the energy spread. One can then average the cross section and look for its energy and

mass number dependence. For such purposes, we often invoke the analogy of an optical wave

through a “cloudy” crystal ball.

In a nuclear reaction, the scattered wave may be divided into two categories: (i) elastic

scattering in which only the direction of wave propagation is changed and (ii) inelastic scattering

in which the particle is scattered into an exit channel different from the incident one. The former

corresponds to a refraction of the optical  waves and the latter corresponds to absorption due to

the fact that the crystal ball is cloudy [5].

In this model, the interaction between the incident particle and the target nucleus is

treated  in  analogy  to  the  transmission  of  light  through  a  partially  absorbing  medium.  The  real

part of such a potential gives rise to scattering, while the imaginary part is responsible for the

absorption, producing reactions.

The assumption of a single particle potential is in consonance with similar assumption in

the nuclear shell model. In the latter model, which uses a real potential not only the ground state

properties, but also those of the excited bound states, can be derived, based on certain additional

assumptions. When the energy rises above the separation energy of the particle, an additional
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effect becomes important. The entering nucleon may initiate a nuclear reaction, so that the

description of the particle in a potential as a simple state is not adequate and the absorption of the

latter has to be taken into account by introducing a complex part in the potential.

Further examining the optical analogy, light interacts with the atoms or molecules in a

semi-transparent medium, which results in the absorption of a part of the incident wave and final

re-emission  of  the  partially  attenuated  wave  with  a  phase  change.  The  process  is  usually

described by introducing a complex refractive index. For the nucleons there is a change in the de

Broglie wavelength due to the potential inside the nucleus. This is analogous to the fact that a

part of the incident light energy may also be re-emitted with changed frequency. Thus the

parallelism between the motion of the nucleon in the complex potential and that of the light wave

in a semi-transparent medium becomes evident. The complex potential actually provides a

complex refractive index for the nuclear matter [6].

The  aim of  the  optical  model  is  to  find  a  potential  to  describe  smooth  variations  of  the

scattering cross section as a function of energy E and target nucleon number A. The general

situation of a scattering may be quite complex; however, great simplification may be obtained if

we are interested only in the average properties, away from resonances and states strongly

excited by direct reactions.

In the optical model elastic scattering is described by solving the Schrödinger equation

with an average potential resulting from the interaction of the nucleons of the projectile and

target. This potential has a real part responsible for the attractive refraction, i.e., the gap

sustained by the projectile as it passes through the target, and an imaginary part which describes

the absorption, i.e., a decrease in the incident flow and which simulates the existence of other

channels reaction than the elastic scattering e.g., such as fusion, transfer and inelastic scattering.

The term optical is obvious analogy with the passage of a ray of light by a glass ball with a given

opacity. The average nuclear potential resulting from the

interactions between nucleons forming the target and the projectile is:

( ) ( )rVrVV IRN += (2.1)
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Now the two most commonly used potentials which we have used in our work has been

described below.

2.3.1 Wood – Saxon potential

The shape factor of the optical potential commonly used is the Wood-Saxon [7]:
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where:

VR and VI represent the depths of the real and imaginary parts, respectively;

ar and ai are the real and imaginary diffusivities.

RR and RI are the rays real and imaginary, which obey the relation:
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where:

AA and Aa represent the mass of the target and the projectile, respectively.

The Coulomb potential is usually represented by the potential of the uniform charged sphere:
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where:

ZA and Za are the atomic numbers of projectile and target;

Rc Coulomb radius is given by: Rc = rcAA
1/3+ rcAa

1/3
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With the full potential we can write the radial Schrödinger equation:
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where:

r is the distance between the nuclei;

l is the orbital angular momentum;

E is the incident energy;

( )rf l  is the radial wave function.

In the case of spinless particles the total wave function is:

( ) ( ) ( )
r
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r ll
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q
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, = (2.6)

The radial wave function ( )rf l  is obtained by integrating eq. 2.5 to a limiting value called

matching radius (Rm), from which the effect of the nuclear potential is negligible. The radial

wave function ( )rf l  is from this point to be treated as a superposition of Coulomb incident and

scattered waves.

( ) ( ) ( ) ( ) ( )[ ]riGrFSriGrFrf llllll -++= (2.7)

where:

( )rFl  and ( )rGl  are the Coulomb wave functions;

lS is the scattering matrix, which is a very important quantity in, that is, it contains all
information about the effect that produces the target wave function spread (and thus the
observable). So one can write all the scattering observables in terms of the S-matrix elements.
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The scattering amplitude is given by:

( ) ( ) ( )( ) ( )qqq s cos112
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where:

( )qCf  is the Coulomb scattering amplitude;

ls  is the Coulomb gap.

And the elastic differential cross section is obtained from:

( ) 2q
s f

d
d
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W

(2.9)

In the optical model calculations, the potential parameters used are varied systematically to

obtain a good fit for the experimental elastic differential cross section.

2.3.2 São – Paulo potential

The São Paulo potential (SPP), which is a kind of  folding model potential that takes into

account the Pauli principle due to exchange of nucleons between the projectile and target, is

another theoretical model for the heavy-ion nuclear interaction [8]. In principle, the bare (or

nuclear) potential between two heavy ions can be associated with the fundamental nucleon-

nucleon interaction folded into a product of the nucleon densities of the nuclei [9].

The São Paulo potential has been successful in describing the elastic scattering and

peripheral reaction channels for a large number of heavy-ion systems in a very wide energy

region, from sub-Coulomb to 200 MeV/nucleon [10–24]. It has also described the total reaction

and fusion cross sections for hundreds of systems [25–27]. Within this model, the nuclear

interaction is connected with the folding potential through [28]:
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(2.10)

where c is the speed of light, V is the local relative velocity between the two nuclei,

   (2.11)

and VC is the Coulomb potential.

The velocity-dependence of the potential arises from the effects of the Pauli non-locality

[10,29]. The SP potential is obtained numerically by solving Eqs. (2.10) and (2.11) by an

iterative process. The folding potential depends on the matter densities of the nuclei involved in

the collision:

(2.12)

For VC a double sharp-cutoff Coulomb potential was used. To obtain a global parameter-

free description of the nuclear interaction, a systematization of nuclear densities was developed.

This systematic was based on an extensive study involving charge distributions extracted from

electron scattering data and theoretical densities calculated through the Dirac-Hartree-

Bogoliubov model and adopt the two parameter Fermi (2pF) distribution to describe the nuclear

densities. Within the derived systematization, the radii of the 2pF distributions of a nucleus with

A nucleons are well described by

R0 = (1.31A1/3 – 0.84) fm (2.13)

and the nuclear matter densities have an average diffuseness of a = 0.56 fm. The imaginary part

of the interaction is assumed to have the same shape of the real part [Eq. (2.10)], with one single

adjustable parameter NI related to its strength, such as
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W (R, E) = NI VN (R, E) (2.14)

For  more  than  40  systems,  all  the  elastic  scattering  angular  distributions,  over  wide

energy ranges, were simultaneously well fitted with only one free parameter, the average value

of NI , which was derived to be NI = 0.78, for energies above the Coulomb barrier.

We have used the code ECIS [30] for our optical model calculations. The name “ECIS” is

made of the first letters of “Equations Couplées en Itérations Séquentielles", by reference to the

method of solution used in the codes, although the usual method of solution is also present and

has been written with as much care. The ECIS method is designed to solve sets of coupled

differential equations when the coupling terms are not too strong. The iteration technique

searches for the one required solution among the many which are mathematically possible.

The method supposes some ordering of the channels: first the ground state, then the state

most strongly coupled to it. All channels must be coupled to some preceding one. The result of

each iteration depends on this chosen order. If there is more than one equation related to the

ground state the whole calculation must be repeated. The efficiency of the method is proportional

to the ratio of the total  number of equations to the number of those related to the ground state.

The usual methods can also be used, but the iteration method is compulsory for spin-orbit

deformation and Dirac formalism.

There are many ECIS codes starting from ECIS68 to the recent ECIS06. The code which

we have  used  for  our  calculations  is  ECIS95.  ECIS-95  is  a  generalization  of  ECIS-79:  for  the

rotational model vibrational bands are included. An option for solving the Dirac equation has

been added. It also contains the statistical model including width fluctuation corrections as

formulated by Peter Moldauer. Besides the use of Bessel expansion for form factors, the use of

deformation lengths and the use of 'symmetrized' Woods-Saxon potentials, it includes (i) two

bound state transitions for particle-mode excitations with the possibility of the particle in the

continuum (ii) expression of cross sections in terms of Legendre polynomials (iii) possibility of

angular distribution for uncoupled states without

giving explicitly all the reduced nuclear matrix elements (iv) for Coulomb excitation, use of the

magnetic multipole.
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2.4 Continuum Discretized Coupled Channel (CDCC) formalism

The method of Continuum Discretized Coupled Channel, abbreviated as CDCC, is a

method of analyzing direct nuclear reactions which involve break-up of loosely bound particles,

such as deuteron, 6,7Li, 9Be etc. The process of nuclear breakdown may occur in a collision

between two nuclei depending on the collision energy and binding energy of the nucleus. In the

case of stable nuclei with high binding energies, this process is unlikely at low energies and

starts to be important from 10 MeV / u. In the case of exotic light nuclei binding energies are

much smaller. Due to the low binding energies of exotic nuclei and due to the halo nucleons, it is

expected that the probability of nuclear breakdown is greatly increased for these nuclei even at

low collision energies. The fact that binding energies are small means that effects due to

coupling with the continuum may be important in collision with exotic nuclei. These effects are

usually not considered when it comes to stable nuclei and only the bound states are coupled. In

the case of exotic nuclei close to the continuum has an important effect and consequences on

other channels such as elastic scattering.

In CDCC calculation, the breakdown process (break-up) describes an inelastic scattering

of the projectile excited states to the continuum of the projectile. Thus the wave functions

represent the excited states of the projectile in the continuum. One needs a model to describe

these functions. In  the  case  of 6He three bodies are involved because it breaks into an alpha

particle and two neutrons that are not linked. Therefore the wave functions of three bodies would

be more appropriate. However this makes calculating the CDCC extremely bulky and few groups

in the world are able to achieve these calculations currently [31].

The phenomenological optical model essentially provides a highly adaptable technique

for describing elastic scattering and it has been used for complex particles as well as for

nucleons. The model gives no detail about the inelastic processes. The optical model potential is

the potential acting on an unbound nucleon and is partly absorptive. The absorption represents

the fact that such a nucleon has enough energy to collide with a nucleon in the nucleus, and thus

be absorbed from the incident beam. The optical model is essentially a generalization of the shell

model which applies to nucleons of any energy-not just to nucleons of energy such that they are

bound in a nucleus.
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