List of Figures

1.1	Historic nuclear chart with color indications of year of discovery.	
	Note that many nuclei discovered since 1978.)4
1.2	Distant, grazing and close collisions in the classical picture of heavy	
	Ion collisions, from [5])5
1.3	Schematic classification of heavy-ion reactions, from [6].)6
1.4	The illustration of the forces that form a Coulomb barrier between	
	the participating nuclei in a nuclear reaction	0
1.5	Schematic representations of the fusion and breakup processes	
	that can take place in the collision of a weakly bound projectile.	
	For the sake of simplicity it is assumed that the breakup	
	produces two fragments 1	3
1.6	Best-fit real and imaginary potentials, at the strong absorption	
	radius, for the elastic scattering of $^{7}Li + ^{208}Pb$ (left) and	
	⁶ Li + ²⁰⁸ Pb (right) [19] 1	6
1.7	Best-fit real and imaginary central (left) and transition (right)	
	terms of the nuclear potential, at the strong absorption radius,	
	for the elastic scattering of polarized ⁷ Li on ²⁰⁸ Pb [24] 1	7
1.8	Best-fit real and imaginary potentials, at the strong absorption radius,	
	for the elastic scattering of ${}^{6}\text{Li} + {}^{138}\text{Ba}$. The solid lines are calculations	
	using the dispersion relation for the optical potential [25]	8
1.9	Best-fit real and imaginary potentials, at the strong absorption radius,	
	for the elastic scattering of $^{7}\text{Li} + ^{138}\text{Ba}$. The open points correspond to	
	optical model calculations and the solid lines are results using the	
	dispersion relation for the optical potential. The crosses correspond to	
	CC calculations including the ⁷ Li first excited state, and the dashed	
	curves are results using the dispersion relation and CC calculations [26] 1	9
1.10	Reaction cross sections for the 6,7 Li + 138 Ba systems [25]	21
1.11	Energy dependence of the normalization factors $N_{\rm R}$ and $N_{\rm I}$	

	of the São Paulo potential which best fit the data, for
	the elastic scattering of ${}^{6}\text{Li} + {}^{138}\text{Ba}$. The solid lines are
	compatible with the dispersion relation [27,28]
1.12	Energy dependence of the normalization factors $N_{\rm R}$ and $N_{\rm I}$
	of the São Paulo potential which best fit the data, for
	the elastic scattering of 7 Li + 138 Ba. The solid lines are
	compatible with the dispersion relation [27,28]
2.1	The arrangement of four alpha particle clusters in the nucleus 16 O [2] 33
3.1	Schematic diagram of the Pelletron accelerator facility, Mumbai.
	The left panel of the figure shows the 5 beam lines
3.2	Photograph of the experimental area at TIFR where
	the all five beam lines are located
3.3	(a) Three solid state silicon surface barrier detectors placed
	on the one arm (movable) of the scattering chamber. The target
	mounted in a target ladder is also shown in the picture
3.3	(b) Two monitor detectors for absolute normalization were
	kept hanging (fixed) in the scattering chamber at $\pm 20^{\circ}$
3.4	A typical bi-parametric E- Δ E spectrum for the ⁶ Li + ¹¹⁶ Sn
	system at $E_{lab} = 35$ MeV and $\theta = 35^{\circ}$. The Projection of
	the ⁶ Li elastic peak of the bi-parametric E - ΔE spectrum
	is shown in the inset
3.5	The electronics set up for the ΔE -E telescopes used
	for the data collection
3.6	Several potentials which produce similar fits of the data,
	for 35 MeV. The crossing points are the derived real
	(a) and imaginary (b) sensitivity radii
3.7	Experimental elastic scattering cross sections normalized
	to the Rutherford cross sections for the ${}^{6}Li + {}^{116}Sn$ system
	and their best fits from optical model calculations.
	The curves correspond to best fits were obtained using
	the Woods-Saxon potential (WSP)

3.8	Experimental elastic scattering cross sections normalized
	to the Rutherford cross sections for the ${}^{6}Li + {}^{112}Sn$ system
	and their best fits from optical model calculations.
	The curves correspond to best fits were obtained using
	the Woods-Saxon potential (WSP)
3.9	Energy dependence of the real and imaginary parts of the
	optical potential obtained for the ⁶ Li+ ¹¹⁶ Sn system at an
	average radius $R_S = 9.40$ fm. The energy V_b of the Coulomb
	barrier is 22.07 MeV in the centre of mass frame calculated
	using the Bass formula
3.10	Best fits for N_R and N_I as a function of the bombarding energy
	obtained from fits with the São Paulo potential for the
	⁶ Li+ ¹¹⁶ Sn system. The energy V_b of the Coulomb barrier is
	22.07 MeV in the centre of mass frame calculated
	using the Bass formula
3.11	Reduced reaction cross section versus reduced projectile energy
	for the ${}^{6}Li + {}^{116,112}Sn$ reactions using the prescription given in
	Ref. [64] compared to other systems of similar masses:
	(a) from Ref. [66], (b) from Ref. [18], (c) from Ref. [67],
	(d) from Ref. [71]. The reaction cross sections were obtained
	from optical model fits of the experimental
	angular distributions
3.12	Reduced reaction cross section versus reduced projectile energy
	for the ${}^{6}Li + {}^{116,112}Sn$ reactions using the prescription given in
	Ref. [65] compared to other systems of similar masses:
	(a) from Ref. [66], (b) from Ref. [18], (c) from Ref. [67],
	(d) from Ref [71]. The reaction cross sections were obtained

	Ref. [65] compared to other systems of similar masses:
	(a) from Ref. [66], (b) from Ref. [18], (c) from Ref. [67],
	(d) from Ref. [71]. The reaction cross sections were obtained
	from optical model fits of the experimental
	angular distributions.
3.13	Angular distributions predicted by CDCC calculations.
3.14	Effects of Coulomb and nuclear breakup on the elastic
	angular distributions.
3.15	Exclusive breakup cross section measured at various energies.

... 75 ... 78

... 79

	Full circles represent experimental data and the two different	
	lines shows CDCC calculations (see text for details).	80
4.1	Collaborators along with the author doing experimental setup	91
4.2	A typical bi-parametric E- Δ E spectrum for the ⁷ Li + ¹¹⁶ Sn	
	system at $E_{lab} = 35$ MeV and $\theta = 40^{\circ}$. The Projection of the	
	⁷ Li elastic peak of the bi-parametric E- ΔE spectrum is shown	
	in the inset.	92
4.3	Different families of potential parameters that produce similar	
	fits of the data, at 23 MeV. The real and imaginary	
	sensitivity radii are the values where they intersect each other,	
	respectively in Fig. (a) and (b).	95
4.4	(a) Experimental elastic scattering cross sections normalized	
	to the Rutherford cross sections for the $^{7}Li + {}^{116}Sn$ system	
	at energies $E_{lab} = 18 - 20$ MeV and their best fits from optical	
	model calculations. The curves correspond to best fits were	
	obtained using the Woods – Saxon potential (WSP).	96
4.4	(b) Same as Fig. 4.4 (a) but for energies $E_{lab} = 21 - 23$ MeV	97
4.4	(c) Same as Fig. 4.4 (a) but for energies $E_{lab} = 24 - 35$ MeV	98
4.5	Energy dependence of the real and imaginary parts of the	
	optical potential obtained for the $^{7}Li + {}^{116}Sn$ system at an	
	average radius $R_s = 9.685$ fm. The energy V_b of the	
	Coulomb barrier is shown by the arrow.	100
4.6	Experimental elastic scattering cross sections normalized	
	to Rutherford cross sections for the $^{7}Li + {}^{116}Sn$ system and	
	their best fits from optical model calculations. The curves	
	correspond to best fits were obtained using the	
	Sao Paulo potential (SPP).	103
4.7	Best fits for N_R and N_I as a function of the bombarding energy	
	obtained from fits with the São Paulo potential for the $^{7}Li + {}^{116}Sn$	
	system. The energy V_b of the Coulomb barrier is around 21.2 MeV	
	in the centre of mass frame calculated using the Bass formula.	
	The solid line is just a trend line to show the dependence of	

	interacting potential on energy
4.8	Total reaction cross sections for the 6,7 Li + 116 Sn systems.
	On the upper panel (a) the reduction method is proposed in
	Ref. [34] and on the lower panel (b), the reduction method is
	proposed in ref [35 – 37]
4.9	Reduced reaction cross section vs reduced projectile energy
	for the $^{7}Li + {}^{116}Sn$ reaction using the prescription given in
	Ref. [34]. The reaction cross sections were obtained from
	optical model fits of the experimental angular distributions
4.10	Reduced reaction cross section vs reduced projectile energy
	for the $^{7}Li + {}^{116}Sn$ reaction using the prescription given in
	Ref. $[35 - 37]$. The reaction cross sections were obtained from
	optical model fits of the experimental angular distributions
4.11	Values of the imaginary and real parts of the optical
	potential at the average sensitive radius, equal to 9.40 fm,
	for the system ${}^{6}Li + {}^{116}Sn$. The solid line corresponds to
	the dispersion relation calculations
4.12	Values of the imaginary and real parts of the optical
	potential at the average sensitive radius, equal to 9.685 fm,
	for the system $^{7}Li + {}^{116}Sn$. The solid line corresponds to
	the dispersion relation calculations 112
5.1	Overview of the Pelletron Laboratory of the Institute of Physics
	of the University of São Paulo, Brazil, RIBRAS system
5.2	Schematic diagram of the sputtering process
5.3	RIBRAS solenoid and target system for the production
	of radioactive ion beams
5.4	Electronics used in data acquisition
5.5	A typical 2D particle identification spectrum of
	the elastic scattering angular distribution obtained for
	the ${}^{8}Li + {}^{9}Be$ system at 19.6 MeV
5.6	(a) Elastic scattering angular distribution for the ${}^{8}Li + {}^{9}Be$ system
	at 19.6 MeV, and (b) Elastic scattering angular distribution for

	the ${}^{8}Li + {}^{51}V$ system at 18.5 MeV, measured in the present
	work. The solid line corresponds to best fit using the Sao Paulo
	potential (SPP) and the dashed line using the Woods - Saxon
	potential (WSP) form factors. See text for details 130
5.7	Total reaction cross-sections for systems with different
	projectiles and the same ⁹ Be target, reduced by the two
	different reduction methods described in the text. The
	curve in (b) is the universal fusion function
5.8	Total reaction cross-sections for systems with different
	projectiles and targets from $A = 51$ to 64, reduced by
	the two different reduction methods described in the text.
	The curve in (b) is the universal fusion function

List of Tables

3.1	Parameters used with Wood-Saxon potential
	calculations for ${}^{6}\text{Li} + {}^{116}\text{Sn}$ System and the
	derived total reaction cross sections
3.2	Parameters used with Wood-Saxon potential
	calculations for ${}^{6}\text{Li} + {}^{112}\text{Sn}$ System and the
	derived total reaction cross sections
3.3	Parameters used with the Sao Paulo potential
	calculations for ${}^{6}\text{Li} + {}^{116}\text{Sn}$ System and the
	derived total reaction cross sections
3.4	Parameters used with the Sao Paulo potential
	calculations for ${}^{6}\text{Li} + {}^{112}\text{Sn}$ System and the
	derived total reaction cross sections
4.1	Parameters used with Woods – Saxon potential
	calculations for $^{7}Li + {}^{116}Sn$ System and the
	derived total reaction cross sections
4.2	Parameters used with the Sao Paulo potential
	calculations for $^{7}Li + {}^{116}Sn$ System and the
	derived total reaction cross sections
5.1	Possible radioactive ion beams obtained from the system RIBRAS 124
5.2	Barrier parameters obtained from the Sao Paulo potential
	(SPP) and derived total reaction cross-sections for the
	systems investigated in the present work.
	The cross-sections obtained from data measured
	in the present work are in bold 133
5.3	Barrier parameters obtained from the Sao Paulo potential
	(SPP) and derived total reaction cross-sections for the