List of Figures

1.1	Schematic diagram of fission process	9
1.2	Potential energy diagram showing the double-humped fission barrier	10
1.3	Fission yield as a function of mass number for thermal and 14 MeV	
	neutron-induced fission of ²³⁵ U.	. 12
2.1	A schematic arrangement of the AHWR [1]	. 34
2.2	A Schematic diagram of ADS.	37
2.3	A Schematic diagram of ADS for transmutations.	38
3.1	The rolling mill at Target lab, BARC-TIFR Pelletron Facility, Mumbai	.46
3.2	A schematic diagram BARC-TIFR Pelletron Facility.	48
3.3	Yields of fission products (%) as a function of mass number in the neutron-induce	ed
	fission of ²³² Th at average energy of 5.42 MeV along with the literature data	55
3.4	Yields of fission products (%) as a function of mass number in the neutron-induce	ed
	fission of ²³² Th at average energy of 7.75 MeV along with the literature data	. 56
4.1	A Schamatic diagram of Th-U fuel cycle	61
4.2	Six meter Proton Beam Irradiation set-up at BARC-TIFR Pelletron, Mumbai	.65
4.3	Schematic diagram showing the arrangements used for neutron irradiation	. 68
4.4	High Purity Germanium (HPGe) Detector at RCD lab, TIFR, Mumbai	.69
4.5	Gamma ray spectrum of irradiated 232 Th showing the γ -ray energy of 233 Pa	. 71
4.6	Gamma ray spectrum of irradiated 232 Th showing the γ -ray energy of 231 Th	.72
4.7	Neutron spectrum from ⁷ Li(p,n) reaction irradiated with proton energy of 5.6 MeV	V

	calculated using EMPIRE computer code
4.8	Neutron spectrum from ⁷ Li(p,n) reaction irradiated with proton energy of 12 MeV
	calculated using EMPIRE computer code
4.9	Neutron spectrum from $^7\text{Li}(p,n)$ reaction at E_p =5.6 MeV calculated using the
	results of Meadows and Smith [55]
4.10	Extrapolated neutron spectrum in ⁷ Li(p,n) reaction at E _p =12 MeV obtained from
	neutron spectrum at Ep=10 MeV of C. H. Poppe et al. [60]
4.11	Neutron spectrum from 7 Li(p, n) reaction at E _p =7.8 MeV calculated using the
	results C. H. Poppe et al. [60]
4.12	Neutron spectrum from 7 Li(p, n) reaction at E _p =18 MeV calculated using the
	results of C. H. Poppe et al. [60]
4.13	Gamma ray spectrum of separated ²³³ Pa from neutron irradiated ²³² Th
4.14	Plot of experimental and evaluated 232 Th(n, γ) reaction cross-section as a function
	of neutron energy from 1 keV to 14 MeV. Experimental values from present work
	and from ref. [21-37] are in different symbols, whereas the evaluated and
	theoretical values from TALYS are in solid line of different colors
4.15	Plot of experimental and evaluated ²³² Th(n, 2n) reaction cross-section as a
	function of neutron energy from neutron energy 5 MeV to 20 MeV. Experimental
	values from present work and from refs. [38-46] are in different symbols, whereas
	the evaluated and theoretical values from TALYS are in solid lines with
	different colors
5.1	A schematic diagram of ²³³ U production from ²³² Th
5.2	Gamma-ray spectrum of radiochemically separated ²³³ Pa showing seven different

	γ- rays with their branching intensities with x-axis as Channel numbers112
5.3	Gamma-ray spectrum of radiochemically separated ²³³ Pa showing seven different
	γ- rays with their branching intensities with x-axis as Energy (keV)113
5.4	Radioactive decay of the ²³³ Pa as a function of time
5.5	Fission tracks of ca. 15 μ m size with elliptical shapes from 233 Pa(2n _{th} , f),
	recorded and developed on the Lexan detector with 500x magnification. Figs. 5a
	and 5b correspond to different areas of the same slide and the image
	was taken with different microscopes using the same magnification.
	The size of the magnified view of the track area of the lexan detector shown in
	(a) and (b) are 0.00159 cm ²
5.6	Plot of experimental and theoretically ²³⁴ Pa(n, f) cross-section. Theoretical fission
	sections above 1 keV were calculated using the TALYS computer code version 1.2.
	The fission cross-section below 1 keV up to thermal energy was extrapolated by a
	normalized fit of the 1/v formula as shown in the figure
5.7	Plot of experimental and theoretically ²⁴² Am(n, f) cross-section. Theoretical
	fission cross - sections above 1 keV were calculated using the TALYS computer
	code version 1.2. The fission cross-section below 1 keV up to thermal energy was
	extrapolated by a normalized fit of the 1/v formula as shown
	in the figure
6.1	Typical γ -ray spectrum of irradiated natural Zr metal at thermal neutron energy in
	APSARA reactor showing the γ -ray energy of 95 Zr and 97 Zr
6.2	Photograph of Purnima Neutron Generator (300 KV DC electrostatic accelerator) at
	Bhabha Atomic Research Centre (B.A.R.C.), Mumbai

6.3	Schematic diagram showing the arrangement used for neutron irradiation134
6.4	Plot of experimental and evaluated $^{94}{\rm Zr}(n,\gamma)^{95}{\rm Zr}$ reaction cross-section as a function
	of neutron energy 1 MeV to 15 MeV. Experimental values from the present work
	and from ref.29 are in different symbols and colors, whereas the evaluated values
	from TENDL 2010 is in black solid line
6.5	Plot of experimental and evaluated $^{90}\text{Zr}(n,\gamma)^{90}\text{Y}^{\text{m}}$ reaction cross-section as a
	function of neutron energy 2 MeV to 20 MeV. Experimental values from the
	present work and from ref. (30, 31) are in different symbols and colors,
	whereas the evaluated values from TENDL 2010 are in black solid line141
7.1	A schematic of regional IAEA-NDS nuclear data mirror site set-up in India147
7.2	Creation of EXFOR files using EXFOR-Editor
7.3	⁵⁶ Fe(n,p) cross-section experimental data with ENDF/B-VI evaluation153