
 

 

 

 Chapter 1  

 

Introduction, Preliminaries and Summary 

 

 

1.1. Introduction 

 

There is a plethora of examples of phenomena concerning nature, life and human 

activities where the real data do not conform to the standard distributions. In such 

cases, we either use mixtures of standard distributions of similar types or non-standard 

mixtures of degenerate distribution and a standard distribution which may be again a 

discrete or continuous one. Pearson (1894) was possibly the first to study formally the 

case of a mixture of two normal distributions. The literature contains many papers that 

deal with mixtures of distributions of similar types, such as the mixture of normal 

distributions, the mixture of chi-square distributions, the mixture of exponential 

distributions, and the mixture of binomial distributions and so on (Robbins and Pitman, 

1949). However, the literature contains very few papers that provide and deal with 

special “nonstandard” mixture that mix discrete (degenerate, even) and continuous 

distributions as emphasized in this thesis. In general, the word mixture refers to a 

convex combination of distributions or random variables. We consider a case of a two-

component univariate complete mixture model where one component’s distribution 

function (DF) is 𝐹1 and the other component’s DF is 𝐹2 while the mixing proportion 𝑝 

unknown. Such a model can be defined in its most general form as 

 

𝐺 = (1 − 𝑝)𝐹1 + 𝑝 𝐹2, 0 ≤ 𝑝 ≤ 1.     (1.1.1) 
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The model in (1.1.1) is called a mixture of distribution functions 𝐹1 and 𝐹2. In 

terms of random variables, one may say that 𝐺 models an observation 𝑍 that are 

obtained as follows: With probability (1 − 𝑝) observe 𝑋 having distribution 𝐹1 and 

with probability 𝑝 observe 𝑌 having distribution 𝐹2. Such a mixture may then be 

viewed as a model for data that may be interpreted as the outcomes of a two-stage 

experiment. In the first stage, a population is randomly chosen and then in the second 

stage, an observation is made from the chosen population. It is not necessary to limit 

oneself to mixtures of just two or even a finite number of distributions. It should also 

be emphasized that there is considerable ambiguity associated with the mixture in 

infinitely many ways. Nevertheless, when mixture models are formulated reasonably, 

they can provide useful tools for statistical analysis. There is by now a large literature 

pertaining to statistical analysis of mixtures of distributions (Titterington, et al., 1985). 

Problems and applications of mixtures also appear in the literature associated with the 

term heterogeneity (Keyfitz, 1984). 

 

Non-standard mixture of distributions generally contains inliers and outliers. 

Inlier is an observation (or a group of observations) sufficiently small relative to the 

rest of the observations, which appears to be inconsistent with the remaining dataset. 

Kale and Muralidharan (2000) have introduced the term inliers in connection with the 

estimation of (𝑝, 𝜃) of early failure model with modified failure time distribution 

(FTD) as an exponential with mean 𝜃 assuming 𝑝 known. Inliers are either the result 

of the instantaneous failures or the early failures or both, experienced in life testing 

experiments, clinical trials, weather predictions, geographic information systems, 

athlete performance analysis, and many other such applications. The test items that 

fail at time 0 are called the instantaneous failures and the test items that fail 

prematurely are called the early failures. These occurrences may be due to the inferior 

quality of a product or service, or faulty construction or alignment of events/objects, 

or due to no response to the treatments. Such failures usually discard the assumption 

of a single mode distribution and hence the usual method of modeling and inference 

procedures may not be accurate in practice. These situations need special attention, as 

the modified model is a nonstandard mixture distribution. That is a model in which, 
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with probability (1 − 𝑝), a specified constant is observed whereas, with probability 𝑝, 

one observes a random measurement whose distribution has a density function. That 

is, it is a mixture of degenerate distribution and an absolutely continuous one. 

 

The problem of outliers is well-known in statistics: an outlier is a value that is 

far from the general distribution of the other observed values, and can often perturb 

the results of a statistical analysis. Various procedures exist for identifying and 

studying outliers (Barnett and Lewis, 1994). An inlier, by contrast, is an observation 

lying within the general distribution of other observed values, generally does not 

perturb the results but is nevertheless non-conforming and unusual. For single 

variables, an inlier is practically impossible to identify, but in the multivariate case, 

thanks to interrelationships between variables, values can be identified that are 

observed to be more central in a distribution but would be expected, based on the other 

information in the data matrix, to be more outlying. In that sense, the lower outlier 

may be treated as inliers. 

 

Upon a thorough literature survey, we have found some vague definitions of 

inliers. Some authors have defined inliers as those observations which are not outliers. 

While outliers are erroneous observations located farther away from the sample mean, 

inliers are erroneous observations located closer to the mean, (Akkaya and Tiku, 

2005). According to UN publication (UNECE, 2000), an inlier is a data observation 

that lies in the interior of a dataset and is unusual or an error. Because inliers are 

difficult to distinguish from the other data values, they are sometimes difficult to find 

and – if they are in error – to correct.  

 

Aitchison (1955) was the first to discuss the inference problem of 

instantaneous failures in life testing. The author has provided the efficient estimation 

of parametric functions under various probability models. Some earlier studies on 

these type of models are treated by Kleyle and Dahiya (1975), Jayade and Prasad 

(1990), Vannman (1991, 1995), Kale (1998), and Shinde and Shanubhougue (2000), 

Dixit (2003). The inferences on inliers was studied in detail by Kale and Muralidharan 
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(2000, 2008), Muralidharan and Lathika (2004, 2006), Muralidharan (2010), 

Muralidharan and Arti (2008, 2013), Bavagosai and Muralidharan (2016, 2018) and 

Muralidharan and Bavagosai (2016a,b, 2017, 2018). 

 

 

1.2. Examples of inliers 

 

There are many practical contexts, where inliers can be natural occurrences of the 

specific situations involved and degeneracy can happen at one or more discrete points 

and a positive distribution for the remaining lifetimes. Some of the situations are as 

follows: 

 

1. In an audit sample, we have two pieces of information, namely, the booking 

amount (recorded) and the audited amount (correct). The difference between 

the two is called the error amount. Here some population elements contain no 

error, whereas other population elements contain error of varying amounts. The 

distribution of errors can, therefore, be viewed as two distinguishable 

distributions, one with a discrete probability mass at ‘zero’ (no error) and the 

other a continuous distribution of non-zero positive and/or negative error 

amounts. The data here can be modeled using a nonstandard mixture. 

2. In the mass production of technological components of hardware, intended to 

function over a period of time, the failure rate is initially relatively high, and 

then actually decreases with increasing age.  The high failure rate either results 

in zero life time or marginally small life times, otherwise, the life time will be 

any positive number. Thus, the overall distribution of lifetimes may be 

represented by a nonstandard mixture. 

3. Time until remission is of interest in studies of drug effectiveness for treatment 

of certain diseases. Some patients respond and some do not respond to the 

treatment. This is an example of a distribution having a mixture of the mass 

point at 0 which corresponds to instantaneous remission and a nontrivial 

continuous distribution having positive remission times. 
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4. In a study of tooth decay, the numbers of surfaces in a mouth which are filled, 

missing or decayed are scored to produce a decay index. Healthy teeth are 

scored 0 for no evidence of decay. Thus, the distribution is a mixture of a mass 

point at 0 and a nontrivial continuous distribution of decay score. The problem 

could be further complicated if the decay score is expressed as a percentage of 

damage to measured teeth. The distribution should then be a mixture of a 

discrete random variable (0-for healthy teeth, 1-for all teeth missing) with a 

nonzero probability of both outcomes and a continuous random variable 

(amount of decay in the (0, 1) interval). 

5. In the studies of genetic birth defects, children can be characterized by two 

variables, a discrete variable to indicate if one is affected and born dead and a 

continuous variable measuring the survival time of affected children born 

alive. We may consider here a mixture of the mass point at 0 and a nontrivial 

continuous distribution of survival time of affected children. 

6. In studies of methods for removing certain behaviors (e.g., predatory, behavior 

or salt consumption), the amount of the behavior which is exhibited at a certain 

point in time may be measured. In this context, the complete absence of the 

target behavior may represent a different result than would a reduction from a 

baseline level of the behavior. Thus, one would model the distribution of 

activity levels as a mixture of a discrete value of zero and a continuous random 

level. 

7. The number of plants per plot affected by a disease may be represented by 

Poisson family but the observation at ‘zero’ i.e. unaffected plants may be due 

to the Poisson probability at ‘zero’ and (1 − 𝑝)% of the plants were resistant 

to the disease due to other causes. This is a nonstandard indistinguishable 

mixture. 

8. The first response time of patients during a medical operation: Consider 

measurements of physical performance scores of patients with a debilitating 

disease such as multiple sclerosis. There will be frequent zero measurements 

from those giving no performance and many observations with graded positive 

performance. 
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9. In measuring precipitation amounts for a specified time period, one must deal 

with the problem that a proportion of these amounts will be zero (i.e. measured 

as zero). The remaining proportion is characterized by some positive random 

variable. The distribution of this positive random variable usually looks 

reasonable smooth, but in fact is itself a complex mixture arising from many 

different types of events. 

10. In studying the human smoking behavior, two variables of interest are smoking 

status- ‘ever smoked’ and ‘never smoked’ and a score on a ‘pharmacological 

scale’ of people who have smoked. Here the data is modeled with two discrete 

value points, namely 0 (for never smoked), 1 (for ever smoked) and a 

“pharmacological score” in continuous measurement. A nontrivial conditional 

distribution of the second variate can be defined only in association with the 

first outcome of the first variate.  

11. In the Study of tumor characteristics, two variates may be recorded. The first 

is the absence (0) or presence (1) of a tumor and the second is tumor size 

measured on a continuous scale. In this problem, it is sometimes of interest to 

consider a marginal tumor measurement that is 0 with nonzero probability and 

therefore leading to a case of mixture of unrelated distributions. 

12. Machines and software’s are tested for its correctness and perfectness or 

reliability. Bugs in such situation are important to assess the durability and 

credibility of machines and programs. Zero defects or zero bugs are considered 

to be good in such situations. If there are bugs, then it can be measured in terms 

of some discrete measurements. 

13.  In a community, a particular service, such as a specific medical care, may not 

be utilized by all families in the community. There may be a substantial portion 

of non-takers of such a service. Those families who subscribe to it do so in 

varying amounts. Thus, the distribution of consumption of service may be 

represented by a mixture of zeros and positive values. Thus, the overall 

distribution of consumption of service may be represented by a nonstandard 

distinguishable mixture. 
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14. In a quite different context, important problems exist in time series analysis in 

which there are mixed spectra containing both discrete and continuous 

components. 

 

As it is obvious that, there are many such practical situations, where data can 

evolve with a mix of discrete and continuous measurements. Hence, probability 

modeling in such situations may require special attention and treatment. One may also 

see ‘Statistical models and analysis in Auditing: Panel on nonstandard mixtures of 

distributions’, appeared in Statistical science (1989) journal for similar such examples 

and the details. This thesis addresses the inference procedures for models of 

nonstandard distributions, based on some of the above examples.  

 

 

1.3. Inlier prone models  

 

From the above examples, it is seen that the values including zeros and close to zeros 

are important as well as significant in most cases. For instance, zero errors in an audit 

report, zero tooth decay, and zero bugs in a computer program or electronic machine 

are all good to judge the prevailing situation, and hence they are significant. Similarly, 

zero lifetime, zero rainfall (dry day) etc., are all situationally bad but again significant 

as per the conditions prevailing. Thus inliers are more natural than outliers, where most 

of the time inliers are retained after the detection and considered for future analysis. 

As a consequence, the modeling of inliers distribution is more important than its 

detection for statistical decision making. Below, we introduce various inliers prone 

models, and then delve into the theoretical treatment of these inliers models in various 

chapters. Many practical problems discussed above are modeled, studied and applied 

by suggesting fit of distributions, estimation of parameters and testing of hypothesis 

etc. 
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1.3.1. Instantaneous failure model 

 

Since instantaneous failures are a natural occurrence and such failures usually discard 

the assumption of a unimodal distribution and hence traditional way of modeling and 

inference procedures may not be accurate in practice. To tackle these situations the 

model is represented as 

 

𝐺(𝑥; 𝑝, 𝜃) = {
1 − 𝑝,                        𝑥 = 0

1 − 𝑝 + 𝑝 𝐹(𝑥; 𝜃), 𝑥 > 0
    (1.3.1) 

 

with respect to a measure 𝜇 which is the sum of Lebesgue measure on (0,∞) and a 

singular unit measure at the origin; and 0 < 𝑝 < 1. Here the model ℱ =

{𝐹(𝑥; 𝜃), 𝑥 ≥ 0, 𝜃 ∈ Θ} where 𝐹(𝑥; 𝜃) is a continuous failure time distribution 

function with 𝐹(0) = 0 is to be suitably modified as a non-standard mixture of 

distribution by mixing a singular distribution at zero to accommodate instantaneous 

failures. After Aitchison (1955), the other authors who have studied this model are 

Kleyle and Dahiya (1975), Jayade and Prasad (1990), Vannman (1991, 1995), Kale 

(1998, 2003), Muralidharan (1999), Muralidharan and Kale (2002), Muralidharan and 

Lathika (2005, 2006), Kale and Muralidharan (2006, 2007, 2008), Adlouni et al. 

(2011) and so on. In this thesis, authors have considered other commonly used 

parametric models such as Gompertz, Weibull, Pareto, Lindley distributions.  

 

 

1.3.2. Early failure model-1 

 

If it is assumed that 𝜆(𝑥) = 𝜆 =
1

𝜃
 for all x from an exponential distribution, then the 

assumption of an exponential density is equivalent to the assumption of a constant 

failure rate. Under this setup, Miller (1960), proposes the early failure model as 

 

𝜆(𝑥) = {
𝜆1,    0 ≤ 𝑥 < 𝑇0
𝜆2,    𝑇0 ≤ 𝑥

      (1.3.2) 



Introduction, Preliminaries and Summary  9 

 

 

 

 

where 𝜆1 > 𝜆2. The probability density correspond to this failure rate is  

 

𝑓𝑋(𝑥; 𝜆1, 𝜆2) = {
𝜆1𝑒

−𝜆1𝑥,                   0 ≤ 𝑥 < 𝑇0
𝜆2𝑒

−𝜆1𝑇0−𝜆2(𝑥−𝑇0),  𝑇0 ≤ 𝑥
   (1.3.3) 

 

The justification follows from the fact that when a component is put on the test, 

it is not known whether it is an ‘early failure’ or a ‘standard’ item. Since some will be 

early failures, the failure rate on the average will be high at the start, but if an item has 

survived for a certain period of time 𝑇0, then it cannot be an ‘early failure’ so its failure 

rate will be lower for the succeeding time period. The above model can also be viewed 

as a model for a shift in the hazard function of exponential distribution. Further 

analysis of this models are presented in Chapter 2. 

 

 

1.3.3. Early failure model-2 

 

To accommodate early failures, the family ℱ is modified to 𝒢1 = {𝐺(𝑥; 𝑝, 𝜃), 𝑥 ≥

0, 𝜃 ∈ Θ, 0 < 𝑝 < 1}, where the cumulative distribution function (CDF) 

corresponding to 𝑔1 ∈ 𝒢1 is given by 

 

𝐺1(𝑥; 𝑝, 𝜃) = (1 − 𝑝) 𝐻(𝑥) + 𝑝 𝐹(𝑥; 𝜃).     (1.3.4) 

 

Here 𝐻(𝑥) is a CDF with 𝐻(𝛿) = 1 for 𝛿 sufficiently small, assumed known 

and specified in advance. Then the modified family 𝒢1 has a probability density 

function (pdf) with respect to measure 𝜇, which is the sum of Lebesgue measure on 

(𝛿,∞) and a singular measure at 𝛿 as 

 

𝑔1(𝑥; 𝑝, 𝜃) = {

0,                                  𝑥 < 𝛿
1 − 𝑝 + 𝑝 𝐹(𝛿; 𝜃),   𝑥 = 𝛿

𝑝 𝑓(𝑥; 𝜃),                    𝑥 > 𝛿
    (1.3.5) 
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Some of the references which treats early failure analysis with exponential 

distributions are Kale and Muralidharan (2000, 2007, 2008), Kale (2003), 

Muralidharan and Lathika (2006), Muralidharan and Arti (2008, 2013), Muralidharan 

(2010), Muralidharan and Bavagosai (2016a) and the references contained therein. 

These authors treated early failures as inliers using the sample configurations from 

other parametric models including Weibull, Pareto, Normal and Gompertz 

distributions. The models in (1.3.1) and (1.3.4) can be combined to form the CDF as 

 

𝐺(𝑥; 𝑝, 𝜃) = {
0,                                    𝑥 < 𝑑
(1 − 𝑝) + 𝑝𝐹(𝑥; 𝜃), 𝑥 ≥ 𝑑

    (1.3.6) 

 

with the corresponding probability density function (pdf) as: 

 

𝑔(𝑥; 𝑝, 𝜃) = {

0,                                 𝑥 < 𝑑
1 − 𝑝 + 𝑝𝐹(𝑑; 𝜃),   𝑥 = 𝑑

𝑝𝑓(𝑥; 𝜃),                    𝑥 > 𝑑
    (1.3.7) 

 

If  𝑑 = 0 the model reduces to the instantaneous failures case and if 𝑑 > 0, it 

reduces to the case of early failures. In fact, the models given in (1.3.5) and (1.3.7) are 

same. One may also see Lai et al. (2007) for a complete mixture model, where they 

have treated the instantaneous part based on Dirac delta function and a probability 

distribution for the positive observations.  

 

 

1.3.4. Model with inliers at zero and one 

 

In some of the examples discussed above (e.g. 4, 5, 10, 11), the observations 0 and 1 

become a natural occurrence with other positive observations. If these observations 

are treated as inliers, then, the distribution function of such models can be written as 
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𝐻(𝑥; 𝑝1, 𝑝2, 𝜃) =

{
 
 

 
 
0,                                                                      𝑥 < 0
𝑝1,                                                                    0 ≤ 𝑥 < 1
𝑝1 + 𝑝2,                                                          𝑥 = 1 

𝑝1 + 𝑝2 + (1 − 𝑝1−𝑝2)
𝐹(𝑥;𝜃 ) − 𝐹(1; 𝜃)

1 − 𝐹(1; 𝜃)
,   𝑥 ≥ 1 

 

          (1.3.8) 

 

where 𝑝1 and 𝑝2 are the proportion of 0 and 1 observations. This model was first 

studied by Muralidharan and Bavagosai (2017, 2018), Bavagosai and Muralidharan 

(2018) with 𝐹(𝑥; 𝜃) as exponential, Weibull and Pareto. One can also use other 

probability models for 𝐹(𝑥; 𝜃). In various chapters of this thesis we study these 

models. In Chapter 8, we discuss a generalization of the above model. 

 

 

1.4. Preliminaries  

 

To set the flow of the thesis, we need to use some existing literatures on statistical 

terms and theorems. They are mostly based on the book by Lehman and Casella 

(1986), and are presented below: 

 

Distinguishable mixture: The mixtures are distinguishable in the sense that one can 

tell from which population an observation has come, otherwise the mixtures are called 

indistinguishable. 

 

Unbiased estimator: An estimator 𝛿(𝑥) of 𝑔(𝜃) is unbiased if  

 

𝐸𝜃[𝛿(𝑥)] = 𝑔(𝜃) for all 𝜃 ∈ Ω. 

 

Exponential family: A family {𝑃𝜃} of distributions is said to form an 𝑠-dimensional 

exponential family if the distributions 𝑃𝜃 have densities of the form 

 

𝑝𝜃(𝑥) = 𝑒𝑥𝑝[∑ 𝜂𝑖(𝜃)𝑇𝑖(𝑥) − 𝐵(𝜃)
𝑠
𝑖=1 ]ℎ(𝑥)    (1.4.1)  
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with respect to some common measure 𝜇. Here, the 𝜂𝑖 and 𝐵 are real-valued functions 

of the parameters, ℎ ≥ 0 and the  𝑇𝑖 are real-valued statistics, and 𝑥 is a point in the 

sample space 𝔵, the support of the density. 

 

Sufficient statistics: A statistics 𝑇 is said to be sufficient for 𝑋, or for the family 𝒫 =

{𝑃𝜃, 𝜃 ∈ Ω} of the possible distribution of 𝑋, or for 𝜃, if the conditional distribution 

of 𝑋, given 𝑇 = 𝑡 is independent of 𝜃 for all 𝑡 . 

 

Theorem 1.4.1. (Factorization criterion). A necessary and sufficient condition for a 

statistic  𝑇 to be sufficient for a family 𝒫 = {𝑃𝜃 ∈ 𝛺} of distributions of 𝑋 dominated 

by a 𝜎–finite measure 𝜇 is that there exist non-negative functions 𝑔𝜃 and ℎ such that 

the densities 𝑝𝜃 of 𝑃𝜃 satisfy  

 

𝑃𝜃(𝑥) = 𝑔𝜃[𝑇(𝑥)]ℎ(𝑥) (a. e. µ). 

 

Complete family: (V. K. Rohatgi, 1976). Let {𝑓𝜃(𝑥), 𝜃 ∈ Ω} be a family of pdf’s (or 

pmf’s). We say that this family is complete if  

 

𝐸𝜃[𝑔(𝑥)] = 0 for all 𝜃 ∈ Ω implies 𝑃𝜃[𝑔(𝑥) = 0] = 1 for all 𝜃 ∈ Ω. 

 

Complete statistic: A statistic distributions of 𝑇(𝑥) is said to be complete if the family 

of distributions of 𝑇 is complete. 

 

Theorem 1.4.2. If X is distributed according to the exponential family (1.4.1) and the 

family is of full rank, then 𝑇 = [𝑇1(𝑥)],… , [𝑇𝑠(𝑥)] is complete. 

 

Remark: Suppose 𝑋 = (𝑋1, … , 𝑋𝑛) has a distribution 𝒫 = {𝑃𝜃 ∈ 𝛺}, belonging to the 

one parameter exponential family. Then the statistic 𝑇(𝑥) is called the natural 

sufficient statistic for the family {𝑃𝜃}. 
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Minimal sufficient statistics: A sufficient statistic 𝑇 is said to be minimal if of all 

sufficient statistics it provides the greatest possible reduction of the data, that is, if for 

any sufficient statistic 𝑈 there exists a function H such that 𝑇 = 𝐻(𝑈) (a.e. 𝑃). 

 

Corollary 1.4.1. (Minimal sufficient statistics for exponential families). Let 𝑋 be 

distributed with density (1.4.1), then 𝑇 = (𝑇1, … , 𝑇𝑠) is minimal sufficient provided 

the family (1.4.1) satisfies one of the following conditions: 

(i) It is of full rank. 

(ii) The parameter space contains 𝑠 + 1 points 𝜂(𝑗)(𝑗 = 0,… , 𝑠), which span 

𝐸𝑠 in the sense that they do not belong to a proper affine subspace of 𝐸𝑠. 

 

Note: Since complete sufficient statistics are particularly effective in reducing the data, 

it is not surprising that a complete sufficient statistic is always minimal. Proofs are 

given in Lehmann and Scheff´e (1950), Bahadur (1957), and Schervish (1995). 

 

Uniformly Minimum Variance Unbiased Estimator: An unbiased estimator 𝛿(𝑥) 

of 𝑔(𝜃) is the uniformly minimum variance unbiased estimator (UMVUE) of 𝑔(𝜃) if 

𝑉𝑎𝑟𝜃 𝛿(𝑥) ≤ 𝑉𝑎𝑟𝜃 𝛿
′(𝑥) for all 𝜃 ∈ Ω where 𝛿′(𝑥) is any other unbiased estimator of 

𝑔(𝜃). 

 

The existence, uniqueness, and characterization of UMVUEs have been 

investigated by Barankin (1949) and Stein (1950).The relationship of unbiased 

estimators of 𝑔(𝜃) with unbiased estimators of zero can be helpful in characterizing 

and determining UMVUEs when they exist. 

 

Theorem 1.4.3. Let 𝑋 have distribution 𝑃𝜃, 𝜃 ∈ 𝛺, let 𝛿 be an estimator in 𝛥, and let 

𝒰 denote the set of all unbiased estimators of zero which are in 𝛥. Then, a necessary 

and sufficient condition for 𝛿 to be a UMVUE of its expectation 𝑔(𝜃) is that 

 

𝐸𝜃(𝛿𝑈) = 0 ∀ 𝑈 ∈ 𝒰  and 𝜃 ∈ 𝛺. 
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Likelihood function: For a sample point 𝑋 = (𝑋1, 𝑋2 , … , 𝑋𝑛) from a density 𝑓(𝒙; 𝜃), 

the likelihood function 𝐿(𝜃|𝑥) = 𝑓(𝒙; 𝜃) is the sample density considered as a 

function of 𝜃 for fixed 𝒙. In the case of iid observations, the likelihood is 𝐿(𝜃|𝑥) =

∏ 𝑓(𝑥𝑖; 𝜃)
𝑛
𝑖=1 . It is then often easier to work with the logarithm of the likelihood 

function, 𝑙(𝜃|𝑥) = ∑ 𝑙𝑜𝑔 𝑓(𝑥𝑖; 𝜃)
𝑛
𝑖=1 . 

 

Information matrix: Suppose  𝑋1, 𝑋2, … , 𝑋𝑛 are an iid random sample of size 𝑛 with 

pdf 𝑓(𝑥;  𝜃). Then the quantity 𝐸𝜃 {[
𝜕 log𝑓(𝑥; 𝜃)

𝜕𝜃 
]
2

} is called the information number or 

Fisher information of the sample. This terminology reflects the fact that the 

information number gives a bound on the variance of the best-unbiased estimator of 

𝜃. As the information number gets bigger and we have more information about 𝜃, we 

have a smaller bound on the variance of the best-unbiased estimator. The information 

matrix contains the variance and covariance of the elements of the score vector. Thus 

the generic element of the information matrix, in the (𝑖, 𝑗)𝑡ℎ position, is 

𝐸 [−
𝜕2 log 𝐿(𝜃|𝑥)

𝜕𝜃𝑖 𝜕𝜃𝑗
] = 𝐸 [

𝜕 log𝐿(𝜃)

𝜕𝜃𝑖 
 
𝜕 log𝐿(𝜃|𝑥)

𝜕𝜃𝑗 
]. 

 

Type II censored scheme: (Lawless, 2003). A Type II censored sample is one for 

which only the r smallest observations in a sample of size 𝑛 are observed, 1 ≤ 𝑟 ≤ 𝑛 

where r is determined before the data are collected. Let 𝑛 lifetimes of the sample be 

𝑋1, 𝑋2, … , 𝑋𝑛. Their order statistics are 𝑋(1), 𝑋(2), … , 𝑋(𝑛). In Type II censoring we 

know only the values 𝑋(1), 𝑋(2), … , 𝑋(𝑟). Let f(𝑥) be the pdf of the lifetimes, f(𝑥) 𝑑𝑥 = 

probability of end-of-life 𝑋 ∈ [𝑥, 𝑥 + 𝑑𝑥], then the joint pdf of 𝑋(1), 𝑋(2), … , 𝑋(𝑟) is 

 

𝑓𝑛(𝑋(1), 𝑋(2), … , 𝑋(𝑟)) =
𝑛!

(𝑛−𝑟)!
𝑓(𝑋(1))𝑓(𝑋(2))…𝑓(𝑋(𝑟))[𝑆(𝑋(𝑟))]

𝑛−𝑟
 

          (1.4.2) 

 

where, 𝑆(𝑥) = 𝑃(𝑋 ≥ 𝑥) = ∫ 𝑓(𝑢)𝑑𝑢
∞

𝑥
 is the survival function. 
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Masking effect: (Barnett and Lewis, 1994). For 𝑘 actual inliers, and 𝑟 hypothesized 

inliers, with 𝑟 < 𝑘, a first inlier mask a second if the second inlier is only identified as 

an inlier when the first is not present. That is, considering 𝑟 < 𝑘 inlier, 𝑘 − 𝑟 inliers 

have been left in the sample and may skew the statistics enough so that the 𝑟 

hypothesized inliers do not appear very extreme. The larger the 𝑘 − 𝑟 inliers remaining 

in the sample, worse the masking. 

 

Swamping effect: (Barnett and Lewis, 1994). For 𝑘 actual inliers, and 𝑟 hypothesized 

inliers, with 𝑟 > 𝑘, an inlier swamps a non-inlier when the non-inlier is only identified 

as an inlier when considered in presence of the inlier. That is, when 𝑟 − 𝑘 non-inliers 

are grouped with 𝑘 inliers within a test statistic, the test may still reject the null 

hypothesis, especially if the inliers are small. 

 

The model selection criteria: There are various statistics of fit to indicate how well 

the estimated model fits the data. The statistics belong to two categories: likelihood 

based statistics and the empirical distribution function (EDF) based statistics. The 

statistics: Akaike information criterion (AIC), and Bayesian information criterion 

(BIC) are likelihood based statistics and statistics Kolmogorov-Smirnov (K-S), 

Cramer-von Mises (CVM), and Anderson-Darling (AD) are EDF based statistics 

widely used in model selection criteria.  

 

AIC: The Akaike information criterion is named after the statistician Hirotugu Akaike, 

who formulated it in (1973). When a statistical model is used to represent the process 

that generated the data, the model will almost never be exact; so some information will 

be lost by using the model to represent the process. AIC estimates the relative 

information lost by a given model: the less information a model loses, the higher the 

quality of that model. Suppose that we have a statistical model of some data. Let 𝑘 be 

the number of estimated parameters in the model. Let 𝐿̂ be the maximum value of the 

likelihood function for the model. Then the AIC value of the model is 𝐴𝐼𝐶 = 2𝑘 −

https://en.wikipedia.org/wiki/Hirotugu_Akaike
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Likelihood_function
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2𝑙𝑛(𝐿̂). Given a set of candidate models for the data, the preferred model is the one 

with the minimum AIC value. 

 

BIC: The Bayesian information criterion is proposed by Gideon E. Schwarz (1978) 

and hence also referred to as the Schwarz information criterion. and Schwarz Bayesian 

information criterion, is another model selection criterion based on information theory 

but set within a Bayesian context. The difference between the BIC and the AIC is the 

greater penalty imposed for the number of parameters by the former than the latter. 

The BIC is computed as 𝐵𝐼𝐶 = 𝑘 𝑙𝑛(𝑛) − 2𝑙𝑛(𝐿̂), where n is the number of recorded 

measurements, k is the number of estimated parameters, and 𝐿̂ be the maximum value 

of the likelihood function for the mode. Given a set of candidate models, the best 

model is the one that provides the minimum BIC. 

 

K-S test: (Kolmogorov–Smirnov, 1933). Let 𝑋(1), 𝑋(2), … , 𝑋(𝑛) be an ordered random 

sample and the distribution of 𝑋  is 𝐹(𝑥). The EDF 𝐹𝑛(𝑥)is defined as the fraction 

of 𝑋𝑖’s that are less than or equal to 𝑥 for each 𝑥. That is 𝐹𝑛(𝑥) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ≤𝑥

𝑛
, −∞ < 𝑥 < ∞. The KS statistic belongs to the supremum 

class of EDF statistics and this class of statistics is based on the largest vertical 

difference between the hypothesized and empirical distribution. This test requires that 

the null distribution 𝐹∗(𝑥) be completely specified with known parameters. In KS test 

of normality, 𝐹∗(𝑥) is taken to be a normal distribution with known mean 𝜇 and 

standard deviation 𝜎. The test statistics is defined differently for the following three 

different set of hypotheses. For a right-tailed test 𝐻0: 𝐹(𝑥) = 𝐹
∗(𝑥) versus 

𝐻1: 𝐹(𝑥) > 𝐹∗(𝑥), the test statistic 𝐾𝑆+ = 𝑠𝑢𝑝[𝐹∗(𝑥) − 𝐹𝑛(𝑥)] is the greatest vertical 

distance. Likewise, for the left-tailed test 𝐻0: 𝐹(𝑥) = 𝐹
∗(𝑥) versus 𝐻1: 𝐹(𝑥) < 𝐹∗(𝑥), 

the test statistic 𝐾𝑆− = 𝑠𝑢𝑝[𝐹𝑛(𝑥) − 𝐹
∗(𝑥)] is the greatest vertical distance. The 

Kolmogorov–Statistic for a two-sided test, 𝐻0: 𝐹(𝑥) = 𝐹∗(𝑥) versus𝐻0: 𝐹(𝑥) ≠

𝐹∗(𝑥), is taken to be 𝐾𝑆 = max (𝐾𝑆−, 𝐾𝑆+). 

 

https://en.wikipedia.org/wiki/Likelihood_function
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CVM test: (Cramer–von Mises, 1928). The CVM test judges the goodness of fit of a 

hypothesized distribution 𝐹∗(𝑥) compared with the EDF 𝐹(𝑛)(𝑥) based on the statistic 

defined as 

 

𝑛𝑤2 = 𝑛∫ [𝐹(𝑛)(𝑥) − 𝐹
∗(𝑥)]

2
𝑑𝐹(𝑥)

∞

−∞

 

 

which, like the KS statistic, is distribution-free, i.e. its distribution does not depend on 

the hypothesized distribution, 𝐹∗(𝑥). The CVM test is an alternative to the KS test. 

 

AD test: (Anderson–Darling, 1954). The AD test is actually a modification of the 

CVM test. It differs from the CVM test in such a way that it gives more weight to the 

tails of the distribution than does the CVM test. Unlike the CVM test which is 

distribution-free, the AD test makes use of the specific hypothesized distribution when 

calculating its critical values. Therefore, this test is more sensitive in comparison with 

the CVM test. A drawback of this test is that the critical values have to be calculated 

for each specified distribution. The AD test statistic 

 

𝐴𝐷 = 𝑛 ∫
[𝐹(𝑛)(𝑥)−𝐹

∗(𝑥)]
2

𝐹(𝑛)(𝑥)−𝐹
∗(𝑥)

𝑑𝐹(𝑥)
∞

−∞
. 

 

 

1.5. Estimation procedures 

 

Below, we discuss those estimation procedures used in this thesis. 

 

 

1.5.1. Maximum Likelihood Estimation 

 

The method of maximum likelihood is, by far, the most popular technique for 

computing estimators. The principle of maximum likelihood is relatively 
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straightforward. The principle of maximum likelihood yields a choice of the estimator 

𝜃 as the value for the parameter that makes the observed data most probable. If 

𝑋1, 𝑋2, … , 𝑋𝑛 are 𝑛 an iid sample from a population with pdf (or pmf) 𝑓(𝑥; 𝜃), where 

𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑠) then the likelihood function is  

 

𝐿(𝜃|𝑥) =∏𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

 

 

The maximum likelihood estimator (MLE) of the parameters 𝜃 =

(𝜃1, 𝜃2, … , 𝜃𝑠) is 𝜃𝑀𝐿𝐸 = (𝜃1𝑀𝐿𝐸 , 𝜃2𝑀𝐿𝐸 , … , 𝜃𝑠𝑀𝐿𝐸), say, obtained by maximizing 

𝐿(𝜃|𝑥). That is, 𝜃𝑀𝐿𝐸  is obtained by solving  

 

𝜕𝐿(𝜃|𝑥)

𝜕𝜃𝑖
= 0, 𝑖 = 1,2, … , 𝑠.      (1.5.1) 

 

It is then often easier to work with the logarithm of the likelihood function, and 

𝜃𝑀𝐿𝐸  obtained by solving 

 

𝜕 log𝐿(𝜃|𝑥)

𝜕𝜃𝑖
= 0, 𝑖 = 1,2, … , 𝑠.      (1.5.2) 

 

 

1.5.2. Least Squares and Weighted Least Squares Estimation  

 

They are regression-based estimators of the unknown parameters, which were 

originally suggested by Swain et al. (1988) to estimate the parameters of Beta 

distributions. The method can be described as follows: Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a 

random sample of size 𝑛 from a distribution function 𝐹(𝑥; 𝜃) and 𝑋(1), 𝑋(2), … , 𝑋(𝑛) 

denotes the order statistics of the observed sample. It is well known that  
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 𝐸[𝐹(𝑋(𝑖); 𝜃)] =
𝑖

𝑛+1
  and 𝑉[𝐹(𝑋(𝑖); 𝜃)] =

𝑖(𝑛−𝑖+1)

(𝑛+1)2(𝑛+2)
 

 

See, Johnson et al. (1995) for details and properties. Using the expectations, 

two variants of the least square methods can be proposed as follows: 

 

Least Squares Estimators: The least squares estimator (LSE) of the parameters 𝜃 =

(𝜃1, 𝜃2, … , 𝜃𝑠) is 𝜃𝐿𝑆𝐸 = (𝜃1𝐿𝑆𝐸 , 𝜃2𝐿𝑆𝐸 , … , 𝜃𝑠𝐿𝑆𝐸), say, can be obtained by minimizing 

 

∑ [𝐹(𝑋(𝑖); 𝜃) −
𝑖

𝑛+1
]
2

𝑛
𝑖=1       (1.5.3) 

 

with respect to the unknown parameters 𝜃𝑖 , 𝑖 = 1,2, … , 𝑠.  

 

Weighted Least Squares Estimators: The weighted least squares estimator (WLSE) 

of the parameters 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑠) is 𝜃𝑊𝐿𝑆𝐸 = (𝜃1𝑊𝐿𝑆𝐸 , 𝜃2𝑊𝐿𝑆𝐸 , … , 𝜃𝑠𝑊𝐿𝑆𝐸) can be 

obtained by minimizing  

 

∑ 𝑤𝑖 [𝐹(𝑋(𝑖); 𝜃) −
𝑖

𝑛+1
]
2

𝑛
𝑖=1       (1.5.4) 

 

with respect to the unknown parameters 𝜃𝑖 , 𝑖 = 1,2, … , 𝑠,  

 

where 𝑤𝑖 =
1

𝑣(𝐹(𝑋(𝑖);𝜃))
= 

(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
.  

 

 

1.5.3. Percentile Estimation  

 

This method was originally explored by Kao (1958, 1959). If the data comes from a 

distribution function which has a closed form, then it is quite natural to estimate the 

unknown parameters by fitting a straight line to the theoretical points obtained from 
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the distribution function and the sample percentile points. Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a 

random sample of size 𝑛 from a distribution function 𝐹(𝑥; 𝜃) and 𝑋(1), 𝑋(2), … , 𝑋(𝑛) 

denotes the order statistics of the observed sample. If 𝑃𝑖 denotes some estimate of 

𝐹(𝑥; 𝜃), then the percentile estimator (PE) of the parameter 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑠) is 

𝜃𝑃𝐸 = (𝜃1𝑃𝐸 , 𝜃2𝑃𝐸 , … , 𝜃𝑠𝑃𝐸), say, can be obtained by minimizing  

 

∑ [log 𝑃𝑖 − log 𝐹(𝑥(𝑖); 𝜃)]
2𝑛

𝑖=1       (1.5.5)  

 

with respect to 𝜃𝑖 , 𝑖 = 1,2, … , 𝑠. Several estimators of 𝑃𝑖 can be used here (see, Murthy 

et al., 2004). In this thesis, we mainly consider 𝑃𝑖 =
𝑖

𝑛+1
, which is the expected value 

of 𝐹(𝑋(𝑖); 𝜃). 

 

 

1.5.4. Maximum Product Spacings Estimation  

 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample of size 𝑛 from a univariate distribution 

function 𝐹(𝑥; 𝜃) with corresponding pdf 𝑓(𝑥; 𝜃) and it is required to estimate 𝜃 =

(𝜃1, 𝜃2, … , 𝜃𝑠). The density is assumed to be strictly positive in an interval (𝑎, 𝑏) and 

zero elsewhere, 𝑎 = −∞ and 𝑏 = +∞ may also be taken. Let 𝑋(1), 𝑋(2), … , 𝑋(𝑛) denote 

the 𝑖𝑡ℎ order statistics. The maximum product spacings method choose that value of 

parameter 𝜃 which provides the maximum for product spacings 

 

𝑆 = ∏ 𝐷𝑖
𝑛+1
𝑖=1         (1.5.6) 

 

or the average spacing,  

 

𝐺 = 𝑆1/(𝑛+1)        (1.5.7)  
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where the spacing’s of the sample is 𝐷𝑖 = 𝐹(𝑥(𝑖); 𝜃) − 𝐹(𝑥(𝑖−1); 𝜃), 𝑖 = 2,3, … , 𝑛, 

∑𝐷𝑖 = 1, 𝐹(𝑥(0); 𝜃) = 0 and 𝐹(𝑥(𝑛+1); 𝜃) = 1.  

 

If there are ties in the data, anticipated difficulty may arise in drawing 

inferences based on the product of spacings. To get rid of the problem of ties, the 

method suggested by Shao and Nahan (1999) may be followed: Suppose that among 

𝑛 observations 𝑋(1), 𝑋(2), … , 𝑋(𝑛) there are 𝑚 distinct values expressed in ascending 

order of their magnitudes as 𝑦(𝑗); 𝑗 = 1,2, …𝑚. Here, 𝐹(𝑦(0); 𝜃) = 0 and 

𝐹(𝑦(𝑚+1); 𝜃) = 1. Let 𝐼𝑗 denote the number of observations in (𝑦(𝑗−1), 𝑦(𝑗) ]. 

Naturally, ∑ 𝐼𝑗
𝑚
𝑗=1 = 𝑛. In light of the above, and assuming 𝐼𝑚+1 = 1, the product 

spacings in presence of ties, is to choose that value of parameter 𝜃 which provides the 

maximum for 𝑆, where 

 

𝑆 = ∏ [
𝐹(𝑦(𝑗); 𝜃)−𝐹(𝑦(𝑗−1); 𝜃)

𝐼𝑗
]
𝐼𝑗

𝑚+1
𝑗=1       (1.5.8) 

 

The other way to tackle the tie problem is to consider that all the equal 

observations are in fact unequal but differ by the amount smaller than the least count 

of measurement and hence noted as equal. Suppose two observations 𝑥 and 𝑦 are equal 

then we may consider that actually, the observations as 𝑥 and 𝑥 + 𝑑𝑥. Hence such tied 

observation should contribute to product of spacings equal to lim
𝑑𝑥→0

[𝐹(𝑥 + 𝑑𝑥) −

𝐹(𝑥)] which can be approximated by 𝑓(𝑥), where 𝑓(. ) denotes the density function 

corresponding to 𝐹. Thus the modified product spacings to be maximized can be 

written as 

 

𝑆 = ∏ [𝐹(𝑦(𝑗);  𝜃) − 𝐹(𝑦(𝑗−1);  𝜃)][𝑓(𝑦(𝑗);  𝜃)]
(𝐼𝑗−1)𝑚+1

𝑗=1 . 
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1.5.5. UMVU Estimation  

 

The uniformly minimum unbiased estimation facilitates the estimation of parameters 

and parametric functions including probability density function and survival function 

of a given probability model. The method also facilitates the computation of variances 

of the estimators in models given in (1.3.6) and (1.3.8). The problem of UMVU 

estimation can be addressed through two approaches: the traditional approach is by 

considering the conditional expectation of an unbiased estimator given complete 

sufficient statistic. For the proposed model studied in this thesis, obtaining conditional 

distribution given the sufficient statistics is bit difficult. For exponential distribution 

case, it is possible to obtain the conditional distribution and hence UMVU estimation 

of some parametric functions is possible (See Chapter 2, Section 2.2 for details).The 

other approach is by using the method given by Roy and Mitra (1957), where the 

model is suitably expressed in the form of an exponential family, and thereby use the 

sufficient statistics and its properties to obtain the UMV estimators. See also Khatri 

(1959), Patil (1963a,c), Joshi and Park (1974), Charalambides (1974), Jani (1977), 

Gupta (1977), Patel (1978), Jani and Dave (1990), Jani (1993), Muralidharan (2000), 

and Singh (2007). 

 

Consider the models incorporating inliers as given in (1.3.6). If 𝐹(𝑥; 𝜃) 

belongs to the class of one-parameter exponential family of distributions, then the form 

of probability density function can be written as 𝑓(𝑥; 𝜃) = 𝑎(𝑥)
[ℎ(𝜃)]𝑑(𝑥)

𝑔(𝜃)
, 𝑥 > 𝑑, 𝜃 ∈

Θ where 𝑎(𝑥) > 0, 𝑑(𝑥) is a monotone increasing function of 𝑥, 𝑔(𝜃) and ℎ(𝜃) are 

differentiable functions of 𝜃 and 𝑔(𝜃) = ∫ 𝑎(𝑥)[ℎ(𝜃)]𝑑(𝑥) 𝑑𝑥
𝑥>𝑑

. Then, the 

probability function of the mixture family (1.3.7) is obtained as 

 

𝑔𝑋(𝑥;  𝑝, 𝜃) = (1 − 𝑝)
𝐼(𝑥)𝑝[1−𝐼(𝑥)] [

𝑎(𝑥)[ℎ(𝜃)]𝑑(𝑥)

𝑔(𝜃)
]

[1−𝐼(𝑥)]
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=
[𝑎(𝑥)][1−𝐼(𝑥)][ℎ(𝜃)][1−𝐼(𝑥)]𝑑(𝑥)[

𝑔(𝜃)(1−𝑝)

𝑝
]
[1−𝐼(𝑥)]

𝑔(𝜃)

𝑝

  (1.5.9) 

 

where 𝐼(𝑥) is an indicator function such that  

 

𝐼(𝑥) = {
1,        𝑖𝑓 𝑥 = 𝑑
0,        𝑜. 𝑤.

      (1.5.10) 

 

The mixture density (1.5.9) so obtained, is a well-known form of a two-

parameter exponential family with natural parameters (𝜂1, 𝜂2) =

(log (𝑔(𝜃) 
(1−𝑃)

𝑝
) ,  log(ℎ(𝜃))) generated by underlying indexing parameters (𝑝, 𝜃). 

Hence (𝐼(𝑥), (1 − 𝐼(𝑥))𝑑(𝑥)) is jointly minimal sufficient for (𝑝, 𝜃), as 𝐼(𝑥) and 

 (1 − 𝐼(𝑥))𝑑(𝑥) do not satisfy any linear restriction (See Kale and Muralidharan, 

2015). The 𝜂′𝑠 too do not satisfy any linear constraint and hence the natural parameter 

space is convex set in 𝐸2 containing a two-dimensional rectangle making (1.5.9) a full 

rank family. The statistic (𝐼(𝑥), (1 − 𝐼(𝑥))𝑑(𝑥)) is thus complete. 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from (1.5.9). Then the joint pdf of the 

sample is given by 

 

𝑔𝑋(𝑥; 𝑝, 𝜃) = (𝑛
𝑟
)𝑝𝑟(1 − 𝑝)𝑛−𝑟

1

(𝑛𝑟)
∏ 𝑎(𝑥𝑗)𝑥𝑗>𝑑

[ℎ(𝜃)]𝑧

[𝑔(𝜃)]𝑟
  (1.5.11) 

 

                      = ∏ 𝑎(𝑥𝑗)𝑥𝑗>𝑑

[ℎ(𝜃)]𝑧[
(1−𝑝)𝑔(𝜃)

𝑝
]
𝑛−𝑟

[
𝑔(𝜃)

𝑝
]
𝑛    (1.5.12) 

 

where 𝑧 = ∑ [1 − 𝐼(𝑥𝑗)]𝑑(𝑥𝑗)
𝑛
𝑗=1 , 𝑛 − 𝑟 = ∑ 𝐼(𝑥𝑗)

𝑛
𝑗=1 , 𝑟 is the number of 

observations greater than 𝑑 and 𝑑(𝑥) = 𝑑 for 𝑥 = 𝑑. By Neyman factorization 

theorem, (𝑛 − 𝑅, 𝑍) is sufficient for (𝑝, 𝜃). The joint density of the sample is the 

product of the distribution of 𝑅 and the conditional distribution of the sample given 
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𝑅 = 𝑟 assumes the form of the well-known exponential family. Hence (𝑍|𝑟) or 

(𝑍|𝑛 − 𝑟) is complete sufficient for 𝜃. 

 

It is known that under random sampling the exponential structure is preserved 

by the distribution of the sufficient statistics (refer Lehmann and Casella, 1998). 

Hence, without loss of generality, the conditional pdf of (𝑍|𝑛 − 𝑟) can be written as 

  

𝑔(𝑧;  𝜃|𝑛 − 𝑟) = {

𝐵(𝑍|𝑛 − 𝑟)[ℎ(𝜃)]𝑧

[𝑔(𝜃)]𝑟
, 𝑧 > 𝑑;  0 ≤ 𝑛 − 𝑟 < 𝑛

1,                                   𝑧 = 𝑑;  𝑟 = 0

 

 

 which depends only on 𝜃 and is a complete family of distributions. Here 𝐵(𝑍|𝑛 − 𝑟) 

is a function of 𝑍 and 𝑟, and can be identified suitably for a given model. The 

distribution of 𝑛 − 𝑅 is binomial which is the same as that of 𝑅 and its probability 

mass function (pmf) is given by 

 

𝑃(𝑅 = 𝑟) = (
𝑛
𝑟
) 𝑝𝑟(1 − 𝑝)𝑛−𝑟 , 𝑟 = 0,1, … , 𝑛. 

 

This also is a complete family. Jayade (1993) has shown that the joint distribution of 

a random variable (𝑋1, 𝑋2) containing two parameters 𝜃1 and 𝜃2 is complete if the 

marginal distribution of 𝑋1 is discrete which depends only on 𝜃1 and belongs to a 

complete family whereas the conditional distribution of 𝑋2 given 𝑋1 depends only on 

𝜃2 and belongs to a complete family of distributions. Hence (𝑛 − 𝑅, 𝑍) is complete 

sufficient for (𝑝, 𝜃). The joint distribution of (𝑛 − 𝑅, 𝑍) therefore was given by  

 

𝑔𝑍(𝑛 − 𝑟, 𝑧; 𝑝, 𝜃) = 𝑃(𝑛 − 𝑅 = 𝑛 − 𝑟)𝑔(𝑧; 𝜃|𝑛 − 𝑟) = 𝑃(𝑅 = 𝑟)𝑔(𝑧; 𝜃|𝑟). 

 

That is, 

𝑔𝑍(𝑧, 𝑟; 𝜃, 𝑝) = {

𝐵(𝑧,𝑟,𝑛)[ℎ(𝜃)]𝑧[
(1−𝑝)𝑔(𝜃)

𝑝
]
𝑛−𝑟

[
𝑔(𝜃)

𝑝
]
𝑛 , 𝑧 > 𝑑;  𝑟 = 1,2, … , 𝑛

(1 − 𝑝)𝑛,                             𝑧 = 𝑑;  𝑟 = 0

 (1.5.13) 
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where 

𝐵(𝑧, 𝑟, 𝑛) = {
(
𝑛
𝑟
)𝐵(𝑧|𝑟), 𝑧 > 𝑑;  𝑟 = 1,2, … , 𝑛

1,                     𝑧 = 𝑑;  𝑟 = 0
   (1.5.14) 

 

is such that  

 

(1 − 𝑝)𝑛 + ∑ ∫ 𝐵(𝑧, 𝑟, 𝑛)
𝑧>𝑑

𝑛
𝑟=1

[ℎ(𝜃)]𝑧[
(1−𝑝)𝑔(𝜃)

𝑝
]
𝑛−𝑟

[
𝑔(𝜃)

𝑝
]
𝑛 𝑑𝑧 = 1. 

 

Let 𝜙(𝑝, 𝜃) be a function of the parameter 𝑝 and 𝜃 in 𝑔𝑋(𝑥; 𝑝, 𝜃) in (1.5.9). 

Then for the construction of UMVUE of 𝜙(𝑝, 𝜃) on the basis of a random sample from 

(1.5.9), it is sufficient to find out an unbiased estimator of 𝜙(𝑝, 𝜃) which is a function 

of the complete sufficient statistics (𝑛 − 𝑅, 𝑍). We now use Roy and Mitra (1957) 

technique, on the line similar to that of Jani and Singh (1995), to find such an unbiased 

estimator. The following lemma provides the necessary and sufficient condition for 

the existence of UMVUE of 𝜙(𝑝, 𝜃). 

 

Lemma 1.5.1. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from (1.5.9). Then there exists 

UMVUE of 𝜙(𝑝, 𝜃) if and only if 𝜙(𝑝, 𝜃) can be expressed in the form 

 

𝜙(𝑝, 𝜃) = 𝛼(𝑑, 0, 𝑛)(1 − 𝑝)𝑛 +∑∫
𝛼(𝑧, 𝑟, 𝑛)[ℎ(𝜃)]𝑧 [

(1 − 𝑝)𝑔(𝜃)
𝑝 ]

𝑛−𝑟

[
𝑔(𝜃)
𝑝 ]

𝑛
𝑧>𝑑

𝑛

𝑟=1

𝑑𝑧 

 

Proof: To prove the sufficient part, let  

 

𝜓(𝑍, 𝑅, 𝑛) =
 𝛼(𝑍,𝑅,𝑛)

𝐵(𝑍,𝑅,𝑛)
, 𝐵(𝑍, 𝑅, 𝑛) ≠ 0. 

 

Then, 
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𝐸[𝜓(𝑍, 𝑅, 𝑛)] =  𝛼(𝑑, 0, 𝑛)(1 − 𝑝)𝑛

+∑∫
𝛼(𝑧, 𝑟, 𝑛)[ℎ(𝜃)]𝑧 [

(1 − 𝑝)𝑔(𝜃)
𝑝 ]

𝑛−𝑟

[
𝑔(𝜃)
𝑝 ]

𝑛
𝑧>𝑑

𝑛

𝑟=1

𝑑𝑧 

 

   =  𝜙(𝑝, 𝜃). 

 

Since 𝜓(𝑍, 𝑅, 𝑛) is a function of complete sufficient statistic (  𝑛 − 𝑅, 𝑍), it is the 

UMVUE of 𝜙(𝑝, 𝜃). 

 

The necessary part can be proved as follows: Suppose 𝜓(𝑍, 𝑅, 𝑛) is an 

unbiased estimator of 𝜙(𝑝, 𝜃). Then  

 

𝜓(𝑑, 0, 𝑛)(1 − 𝑝)𝑛 + ∑ ∫
𝜓(𝑧,𝑟,𝑛)𝐵(𝑧,𝑟,𝑛)[ℎ(𝜃)]𝑧[

(1−𝑝)𝑔(𝜃)

𝑝
]
𝑛−𝑟

[
𝑔(𝜃)

𝑝
]
𝑛𝑧>𝑑

𝑛
𝑟=1 𝑑𝑧 = 𝜙(𝑝, 𝜃). 

 

That is, 

 

𝛼(𝑑, 0, 𝑛)(1 − 𝑝)𝑛 +∑∫
𝛼(𝑧, 𝑟, 𝑛)[ℎ(𝜃)]𝑧 [

(1 − 𝑝)𝑔(𝜃)
𝑝 ]

𝑛−𝑟

[
𝑔(𝜃)
𝑝 ]

𝑛
𝑧>𝑑

𝑛

𝑟=1

𝑑𝑧 = 𝜙(𝑝, 𝜃) 

 

where 

 

𝛼(𝑍, 𝑅, 𝑛) = 𝜓(𝑍, 𝑅, 𝑛)𝐵(𝑍, 𝑅, 𝑛). 

 

This completes the proof. ∎ 

 

Thus, the UMVUE of a function 𝜙(𝑝, 𝜃) of 𝜃 and 𝑝 in 𝑔𝑋(𝑥; 𝑝, 𝜃) is given by  
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𝜓(𝑍, 𝑅, 𝑛) =
 𝛼(𝑍,𝑅,𝑛)

𝐵(𝑍,𝑅,𝑛)
, 𝐵(𝑍, 𝑅, 𝑛) ≠ 0,    (1.5.15) 

 

as a direct consequence of the above lemma. 

 

Lemma 1.5.2. The UMVUE of a function of 𝜃 alone does not exists. 

 

Proof: Let 𝜙(𝑝, 𝜃) = 𝜑(𝜃), say, a function of 𝜃 only and 𝜓(𝑍, 𝑅, 𝑛) be its unbiased 

estimator based on the complete sufficient statistic ( 𝑛 − 𝑅, 𝑍). Hence  

 

𝐸(𝜓(𝑍, 𝑅, 𝑛)) =  𝜓(𝑑, 0, 𝑛)(1 − 𝑝)𝑛

+∑∫ 𝜓(𝑧, 𝑟, 𝑛)
𝐵(𝑧, 𝑟, 𝑛)[ℎ(𝜃)]𝑧 [

(1 − 𝑝)𝑔(𝜃)
𝑝 ]

𝑛−𝑟

[
𝑔(𝜃)
𝑝 ]

𝑛
𝑧>𝑑

𝑛

𝑟=1

𝑑𝑧 =  𝜑(𝜃). 

 

That is, 

 

𝛼(𝑑, 0, 𝑛)(1 − 𝑝)𝑛 +∑∫
𝛼(𝑧, 𝑟, 𝑛)[ℎ(𝜃)]𝑧 [

(1 − 𝑝)𝑔(𝜃)
𝑝 ]

𝑛−𝑟

[
𝑔(𝜃)
𝑝 ]

𝑛
𝑧>𝑑

𝑛

𝑟=1

𝑑𝑧 =  𝜑(𝜃). 

 

That is,  

 

𝛼(𝑑, 0, 𝑛) + ∑ (
𝑝

1−𝑝
)
𝑟

∫
𝛼(𝑧,𝑟,𝑛)[ℎ(𝜃)]𝑧

[𝑔(𝜃)]𝑟𝑧>𝑑
𝑛
𝑟=1 𝑑𝑧 =  𝜑(𝜃)(1 − 𝑝)−𝑛. 

 

Substituting 𝜏(𝑝) =
𝑝

1−𝑝
 in the above we get 

 

𝛼(𝑑, 0, 𝑛) +∑𝜏𝑟(𝑝)∫
𝛼(𝑧, 𝑟, 𝑛)[ℎ(𝜃)]𝑧

[𝑔(𝜃)]𝑟𝑧>𝑑

𝑛

𝑟=1

𝑑𝑧 =  𝜑(𝜃)(1 + 𝜏(𝑝))
𝑛
. 
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That is, 

 

𝛼(𝑑, 0, 𝑛) + ∑ 𝜏𝑟(𝑝) ∫
𝛼(𝑧,𝑟,𝑛)[ℎ(𝜃)]𝑧

[𝑔(𝜃)]𝑟𝑧>0
𝑛
𝑟=1 𝑑𝑧 =  𝜑(𝜃) (1 + ∑ (

𝑛
𝑟
)𝑛

𝑟=1 𝜏𝑟(𝑝)). 

 

By comparing the coefficient of 𝜏𝑟(𝑝) on both the sides, we get 

 

𝛼(𝑑, 0, 𝑛) = 𝜑(𝜃), 

 

which is contradicting in nature. Hence a parametric function of 𝜃 alone is not U-

estimable. ∎ 

 

Although, the parametric function of 𝜃 alone is not U-estimable but with the 

help of Lemma 1.5.1, we can still estimate other parametric functions like (1 − 𝑝), the 

probability density function, survival function etc. in the following result. The proof 

of results for 𝑑 = 0 is given in Singh (2007). 

 

Result 1.5.1. Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from (1.5.9). Then, for 𝑚 ≤

𝑛, the UMVUE of (1 − 𝑝)𝑚 ( the 𝑚𝑡ℎ power of the probability of 𝑥 = 𝑑) is given by 

 

𝐺𝑚(𝑧, 𝑟, 𝑛) =
𝐵(𝑧,𝑟,𝑛−𝑚)

𝐵(𝑧,𝑟,𝑛)
= {

(
𝑛−𝑚
𝑟

)

(
𝑛
𝑟
)
, 𝑟 = 0,1, … , 𝑛 − 𝑚

0,          𝑜. 𝑤.

  (1.5.16) 

 

Result 1.5.2. The UMVUE of the variance of 𝐺𝑚(𝑍, 𝑅, 𝑛) for 𝑚 ≤
𝑛

2
 is given by 

 

𝑣𝑎𝑟 ̂[𝐺𝑚(𝑧, 𝑟, 𝑛)] = {
𝐺𝑚
2 (𝑧, 𝑟, 𝑛) − 𝐺2𝑚(𝑧, 𝑟, 𝑛), 𝑟 = 1,2, … , (𝑛 − 2𝑚)

𝐺𝑚
2 (𝑧, 𝑟, 𝑛),                             𝑟 = (𝑛 − 2𝑚 + 1),… , (𝑛 − 𝑚)

0,                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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=

{
 
 
 

 
 
 
[
(
𝑛 − 𝑚
𝑟

)

(
𝑛
𝑟
)

]

2

−
(
𝑛 − 2𝑚
𝑟

)

(
𝑛
𝑟
)

, 𝑟 = 1,2, … , (𝑛 − 2𝑚)

[
(
𝑛 − 𝑚
𝑟

)

(
𝑛
𝑟
)

]

2

,                         𝑟 = (𝑛 − 2𝑚 + 1),… , (𝑛 − 𝑚)

0,                                              𝑜. 𝑤.

 

(1.5.17) 

 

Result 1.5.3. Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from (1.5.9). Then, for 𝑘 > 0, 

 

𝐻𝑘(𝑧, 𝑟, 𝑛) =
𝐵(𝑧,   𝑟−[1−𝐼(𝑧)]𝑘,   𝑛−𝑘)

𝐵(𝑧,   𝑟,   𝑛)
      (1.5.18) 

 

is the UMVUE of the (1 − 𝑝)𝑛 + [
𝑝

𝑔(𝜃)
]
𝑘
[1 − (1 − 𝑝)𝑛−𝑘]. 

 

Result 1.5.4. The UMVUE of the variance of 𝐻𝑘(𝑍, 𝑅, 𝑛) is given by 

 

𝑣𝑎𝑟 ̂[𝐻𝑘(𝑧, 𝑟, 𝑛)] = 𝐻𝑘
2(𝑧, 𝑟, 𝑛) − 𝐻2𝑘(𝑧, 𝑟, 𝑛).   (1.5.19) 

 

Result 1.5.5. Let 𝑋1, 𝑋2, … , 𝑋𝑛, 𝑛 > 1 be a random sample from (1.5.9). Then for fixed 

𝑥, 

 

𝜙𝑥(𝑧, 𝑟, 𝑛) =

{
 

 𝑎(𝑥)
𝐵(𝑧−𝑑(𝑥),𝑟−1,𝑛−1)

𝐵(𝑧,𝑟,𝑛)
, 𝑥 > 𝑑; 𝑧 > 𝑑(𝑥); 𝑟 = 1,2, … , 𝑛

𝐵(𝑧,𝑟,𝑛−1)

𝐵(𝑧,𝑟,𝑛)
,                        𝑥 = 𝑑;  𝑟 = 0,1, … , 𝑛 − 1

0,                                      𝑜. 𝑤.

 

          (1.5.20) 

 

is the UMVUE of the pdf 𝑔𝑋(𝑥; 𝑝, 𝜃). 

 

Result 1.5.6. The UMVUE of the variance of 𝜙𝑥(𝑍, 𝑅 , 𝑛) is given by 
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𝑣𝑎𝑟̂[𝜙𝑥(𝑧, 𝑟, 𝑛)] 

=

{
 
 

 
 
𝜙𝑥
2(𝑧, 𝑟, 𝑛) − 𝜙𝑥(𝑧, 𝑟, 𝑛)𝜙𝑥(𝑧 − 𝑑(𝑥), 𝑟 − 1, 𝑛 − 1),             

                                                                           𝑥 > 𝑑;  𝑧 > 2𝑥;  𝑟 = 2,3, … , 𝑛

𝜙𝑥
2(𝑧, 𝑟, 𝑛),                                                       𝑥 > 𝑑; 𝑥 < 𝑧 < 2𝑥

𝜙𝑥
2(𝑧, 𝑟, 𝑛) − 𝜙𝑥(𝑧, 𝑟, 𝑛)𝜙𝑥(𝑧, 𝑟, 𝑛 − 1), 𝑥 = 𝑑;  𝑟 = 0,1, … , 𝑛 − 1     

0,                                                                         𝑜. 𝑤.

 

          (1.5.21) 

 

Corollary 1.5.1. For a fixed 𝑧 and 𝑟, the UMVUE of the Survival function 𝑆(𝑡) =

𝑃(𝑋 > 𝑡), 𝑡 ≥ 0, is then given by 

 

𝑆̂(𝑡) = ∫ 𝜙𝑥(𝑧, 𝑟, 𝑛)𝑥>𝑡
𝑑𝑥.      (1.5.22) 

 

Result 1.5.7. For fixed 𝑧 and 𝑟, the UMVUE of the 𝑣𝑎𝑟[𝑆̂(𝑡)] is given by 

 

𝑣𝑎𝑟̂[𝑆̂(𝑡)] 

 

=

{
 
 

 
 
𝑆̂2(𝑡) − 2∫ ∫

𝑎(𝑥)𝑎(𝑦)
𝐵(𝑧 − 𝑑(𝑥) − 𝑑(𝑦), 𝑟 − 2, 𝑛 − 2)

𝐵(𝑧, 𝑟, 𝑛)
𝑑𝑥 𝑑𝑦,

                 𝑧 > 2𝑑(𝑡);  𝑟 = 3,4, … , 𝑛 𝑦>𝑡𝑥>𝑡

𝑆̂2(𝑡),                                                         𝑑(𝑡) < 𝑧 ≤ 2𝑑(𝑡);  𝑟 = 2,3, … , 𝑛
0,                                                                 𝑜. 𝑤.

 

          (1.5.23) 

 

The Minimum Variance Unbiased Estimation in a multi-parameter exponential 

family of distributions also exploits the concepts of complete sufficient statistics. 

Consider the 𝑟-parameter exponential family of distributions defined by the pdf 

 

𝑓(𝑥;  𝜃) = 𝑎(𝑥)𝑏( 𝜃)𝑒∑ 𝜂𝑗( 𝜃)𝐶𝑗(𝑥)
𝑟
𝑗=1 , 

 

𝑥 ∈ 𝑇 ⊆ ℝ,  𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑟) ∈ Ω. The above density can also be written as  
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𝑓(𝑥; 𝜃) =  𝑎(𝑥)∏
[ℎ𝑗(𝜃)]

𝐶𝑗(𝑥)

𝑔(𝜃)

𝑟
𝑗=1      (1.5.24) 

 

where 𝑎(𝑥) > 0, 𝐶𝑗(𝑋), 𝑗 = 1,… , 𝑟 are nontrivial real-valued statistics, 𝑔(𝜃) and 

ℎ𝑗(𝜃) are at least twice differentiable functions of 𝜃𝑗, 𝑗 = 1,… , 𝑟 and 𝑔(𝜃) =

∫𝑎(𝑥)∏ [ℎ𝑗(𝜃)]
𝐶𝑗(𝑥)𝑟

𝑗=1 𝑑𝑥. Here 𝑋 may be 𝑟-vector, in which case 𝑋 ∈ 𝑇(𝑟) ⊆ ℝ𝑟. 

It can be seen that 𝐶(𝑋) = (𝐶1(𝑋), 𝐶2(𝑋),… , 𝐶𝑟(𝑋)) is jointly complete sufficient and 

the distribution of 𝐶(𝑋) is also the 𝑟-parameter exponential family. Let us study the 

distributional properties of 𝐶(𝑋) first. 

 

 

Distributional properties of 𝑪(𝑿) 

 

Since the moments of 𝐶(𝑋) are functions of 𝜃, they are MVUE’s of these functions. 

Hence, in the following, we shall find the moments of 𝐶(𝑋) first. Differentiating 𝑔(𝜃) 

partially with respect to 𝜃1, 𝜃2, … , 𝜃𝑟 under the regularity conditions, we get 

 

𝜕 𝑙𝑜𝑔 𝑔

𝜕𝜃1
= 𝐸(𝐶1(𝑋))

𝜕 𝑙𝑜𝑔 ℎ1
𝜕𝜃1

+ 𝐸(𝐶2(𝑋))
𝜕 𝑙𝑜𝑔 ℎ2
𝜕𝜃1

+⋯+ 𝐸(𝐶𝑟(𝑋))
𝜕 𝑙𝑜𝑔 ℎ𝑟
𝜕𝜃1

 

 

𝜕 𝑙𝑜𝑔 𝑔

𝜕𝜃2
= 𝐸(𝐶1(𝑋))

𝜕 𝑙𝑜𝑔 ℎ1
𝜕𝜃2

+ 𝐸(𝐶2(𝑋))
𝜕 𝑙𝑜𝑔 ℎ2
𝜕𝜃2

+⋯+ 𝐸(𝐶𝑟(𝑋))
𝜕 𝑙𝑜𝑔 ℎ𝑟
𝜕𝜃2

 

 ⋮ 

𝜕 𝑙𝑜𝑔 𝑔

𝜕𝜃𝑟
= 𝐸(𝐶1(𝑋))

𝜕 𝑙𝑜𝑔 ℎ1
𝜕𝜃𝑟

+ 𝐸(𝐶2(𝑋))
𝜕 𝑙𝑜𝑔 ℎ2
𝜕𝜃𝑟

+⋯+ 𝐸(𝐶𝑟(𝑋))
𝜕 𝑙𝑜𝑔 ℎ𝑟
𝜕𝜃𝑟

 

(1.5.25) 

 

which can be rewritten as  

 

𝐺 = 𝐴 𝜇, |𝐴| ≠ 0       (1.5.26) 
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where 

 

𝐺 = [
𝜕 log 𝑔(𝜃)

𝜕𝜃𝑖
]
𝑟×1

, 𝑖 = 1,2, … , 𝑟 

 

𝜇 = [𝐸(𝐶𝑖(𝑋))]𝑟×1, 𝑖 = 1,2, … , 𝑟 

 

𝐴 = [
𝜕 𝑙𝑜𝑔 ℎ𝑖
𝜕𝜃𝑖

]
𝑟×𝑟

, 𝑖 = 1,2, … , 𝑟 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑟. 

 

According to Cramer’s rule, the solution to (1.5.26) is  

 

𝐸(𝐶𝑖(𝑋)) =
|𝐴𝑖|

|𝐴|
 , 𝑖 = 1, 2, … , 𝑟 

 

where 𝐴𝑖 is obtained by replacing the ith column of 𝐴 by the elements of 𝐺. The joint 

moments of 𝐶1
𝑘1(𝑋), 𝐶2

𝑘2(𝑋),… , 𝐶𝑟
𝑘𝑟(𝑋) are given as 

 

𝐸 (𝐶1
𝑘1(𝑋)  𝐶2

𝑘2(𝑋)… 𝐶𝑟
𝑘𝑟(𝑋))

= ∫ 𝐶1
𝑘1(𝑥)  𝐶2

𝑘2(𝑥)… 𝐶𝑟
𝑘𝑟(𝑥) 𝑎(𝑥)∏

[ℎ𝑗(𝜃)]
𝐶𝑗(𝑥)

𝑔(𝜃)

𝑟

𝑗=1

𝑑𝑥

𝑥∈𝑇

 

 

which on differentiating with respect to 𝜃1, 𝜃2, … , 𝜃𝑟 and using (1.5.26), give a system 

of 𝑟 linear non-homogeneous equations 

 

  𝐺1 = 𝐴 Σ, |𝐴| ≠ 0       (1.5.27) 

 

where 
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𝐺1 =

[
 
 
 
 
 
𝜕

𝜕𝜃1
𝐸 (𝐶1

𝑘1(𝑋) ,   … ,   𝐶𝑟
𝑘𝑟(𝑋))

𝜕

𝜕𝜃2
𝐸 (𝐶1

𝑘1(𝑋) ,   … ,   𝐶𝑟
𝑘𝑟(𝑋))

⋮
𝜕

𝜕𝜃𝑟
𝐸 (𝐶1

𝑘1(𝑋) ,   … ,   𝐶𝑟
𝑘𝑟(𝑋))]

 
 
 
 
 

  

  

𝛴 = [𝐸 (𝐶1
𝑘1(𝑋) , … , 𝐶𝑖

𝑘𝑖+1(𝑋),… , 𝐶𝑟
𝑘𝑟(𝑥)) −

𝐸(𝐶𝑖(𝑋))𝐸 (𝐶1
𝑘1(𝑋) , … , 𝐶𝑖

𝑘𝑖(𝑋),… , 𝐶𝑟
𝑘𝑟(𝑋))]

𝑟×𝑟
= [𝜎𝑖(1,2,… ,𝑟)]𝑟×𝑟, (say). 

 

Using Cramer’s rule for the solution of a system of linear equations (1.5.27) gives 

 

𝜎𝑖(1,2,… ,𝑟) = 
|𝐴𝑖|

|𝐴|
 , 𝑖 = 1,2, … , 𝑟      (1.5.28) 

 

where 𝐴𝑖 is obtained by replacing the ith column of 𝐴 by the column vector 𝐺1. For 

𝑘𝑖 = 1 and 𝑘𝑗 = 0 ∀ 𝑖 ≠ 𝑗 = 1,2, … , 𝑟, we get covariance between 𝐶𝑖(𝑋) and 

 𝐶𝑗(𝑋) as 

 

𝜎𝑖𝑗 = 
|𝐴𝑖 |(𝑘𝑖=1;𝑘𝑗=0),𝑖≠𝑗

|𝐴|
       (1.5.29) 

 

Thus, we have the variance-covariance matrix Σ as 

 

𝛴 = [𝜎𝑖𝑗]𝑟×𝑟 =
(|𝐴𝑖 |(𝑘𝑖=1;𝑘𝑗=0),𝑖≠𝑗)

|𝐴|
      (1.5.30) 

 

If 𝐴𝑖𝑗 is the cofactor of the element 𝑎𝑖𝑗 of 𝐴, then  

 

|𝐴𝑖 |(𝑘𝑖=1;𝑘𝑗=0),𝑖≠𝑗=1,2,… ,𝑟 = ∑𝐴𝑗𝑖
𝜕

𝜕𝜃𝑗
𝐸(𝐶𝑖(𝑋))

𝑟

𝑗=1
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and hence, 

 

𝛴 =
1

|𝐴|

[
 
 
 
 
 
 
 
 
 ∑𝐴𝑗1

𝜕

𝜕𝜃𝑗
𝐸(𝐶1(𝑋))

𝑟

𝑗=1

∑𝐴𝑗1
𝜕

𝜕𝜃𝑗
𝐸(𝐶2(𝑋))

𝑟

𝑗=1

⋯ ∑𝐴𝑗1
𝜕

𝜕𝜃𝑗
𝐸(𝐶𝑟(𝑋))

𝑟

𝑗=1

∑𝐴𝑗2
𝜕

𝜕𝜃𝑗
𝐸(𝐶1(𝑋))

𝑟

𝑗=1

∑𝐴𝑗2
𝜕

𝜕𝜃𝑗
𝐸(𝐶2(𝑋))

𝑟

𝑗=1

⋯ ∑𝐴𝑗2
𝜕

𝜕𝜃𝑗
𝐸(𝐶𝑟(𝑋))

𝑟

𝑗=1

⋮ ⋮ ⋱ ⋮

∑𝐴𝑗𝑟
𝜕

𝜕𝜃𝑗
𝐸(𝐶1(𝑋))

𝑟

𝑗=1

∑𝐴𝑗𝑟
𝜕

𝜕𝜃𝑗
𝐸(𝐶2(𝑋))

𝑟

𝑗=1

⋯ ∑𝐴𝑗𝑟
𝜕

𝜕𝜃𝑗
𝐸(𝐶𝑟(𝑋))

𝑟

𝑗=1 ]
 
 
 
 
 
 
 
 
 

 

       (1.5.31) 

 

Now, we study the UMVU Estimation in 𝑟-parameter exponential family of 

distributions: Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from (1.5.24). It can be easily 

verified that for exponential family of distributions given by (1.5.24), 𝑍 =

(𝑍1, 𝑍2, … , 𝑍𝑟), where 𝑍𝑖 = ∑ 𝐶𝑖(𝑋𝑗)
𝑛
𝑗=1 , 𝑖 = 1,2, … , 𝑟 are jointly complete sufficient. 

The joint pdf of 𝑍 is again exponential family and is given by 

 

𝑓𝑍(𝑧; 𝜃) = 𝐵(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛)
∏ [ℎ𝑖(𝜃)]

𝑧𝑖𝑟
𝑖=1

[𝑔(𝜃)]
𝑛     (1.5.32) 

 

𝑧𝑖 ∈ 𝑇(𝑛) ⊆ ℝ,  𝜃 ∈ Ω. Here 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛) and 𝐵(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛) is such that  

 

[𝑔(𝜃)]
𝑛
 

= ∫ ∫ ⋯
𝑧2∈𝑇(𝑛)𝑧1∈𝑇(𝑛)

∫ 𝐵(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛)∏[ℎ𝑖(𝜃)]
𝑧𝑖

𝑟

𝑖=1𝑧𝑟∈𝑇(𝑛)

𝑑𝑧1 𝑑𝑧2⋯𝑑𝑧𝑟 . 

 

Let 𝜙(𝜃) be a function of 𝜃 in 𝑓(𝑥; 𝜃) of (1.5.24). Then the following lemma 

provides a necessary and sufficient condition for the existence of UMVUE of 𝜙(𝜃). 
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Lemma 1.5.3. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from (1.5.24). Then there exists 

the UMVUE of 𝜙(𝜃) if and only if 𝜙(𝜃)[𝑔(𝜃)]
𝑛

 can be expressed in the form 

 

𝜙(𝜃)[𝑔(𝜃)]
𝑛
= ∫ ∫ ⋯

𝑧2𝑧1

∫ 𝛼(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛)∏[ℎ𝑖(𝜃)]
𝑧𝑖

𝑟

𝑖=1𝑧𝑟

𝑑𝑧1 𝑑𝑧2⋯𝑑𝑧𝑟 . 

 

Proof: Sufficient part: Let,  

 

 𝜓(𝑍1,  𝑍2, … , 𝑍𝑟 , 𝑛) =
𝛼(𝑍1, 𝑍2,… , 𝑍𝑟,𝑛)

𝐵(𝑍1, 𝑍2,… ,𝑍𝑟,𝑛)
, 𝐵(𝑍1,  𝑍2, … , 𝑍𝑟 , 𝑛) ≠ 0. 

 

Then, 

𝐸[𝜓(𝑍1,  𝑍2, … , 𝑍𝑟 , 𝑛)]

= ∫ ∫ ⋯
𝑧2𝑧1

∫
𝛼(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛)∏ [ℎ𝑖(𝜃)]

𝑧𝑖𝑟
𝑖=1

[𝑔(𝜃)]
𝑛

𝑧𝑟

𝑑𝑧1 𝑑𝑧2⋯𝑑𝑧𝑟 

 

           = 𝜙(𝜃). 

 

Since 𝜓(𝑍1,  𝑍2, … , 𝑍𝑟 , 𝑛) is a function of complete sufficient statistic 𝑍, it is the 

UMVUE of 𝜙(𝜃). 

 

Necessary part: Suppose 𝜓(𝑍1,  𝑍2, … , 𝑍𝑟 , 𝑛) is an unbiased estimator of 𝜙(𝜃). Then, 

 

∫ ∫ ⋯
𝑧2𝑧1

∫
𝜓(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛)𝐵(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛)∏ [ℎ𝑖(𝜃)]

𝑧𝑖𝑟
𝑖=1

[𝑔(𝜃)]
𝑛

𝑧𝑟

𝑑𝑧1 𝑑𝑧2⋯𝑑𝑧𝑟 

 

= 𝜙(𝜃). 

 

That is, 
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∫ ∫ ⋯
𝑧2𝑧1

∫ 𝛼(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛)∏[ℎ𝑖(𝜃)]
𝑧𝑖

𝑟

𝑖=1𝑧𝑟

𝑑𝑧1 𝑑𝑧2⋯𝑑𝑧𝑟 = 𝜙(𝜃)[𝑔(𝜃)]
𝑛

 

 

where  

 

𝛼(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛) = 𝜓(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛)𝐵(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛). 

 

This completes the proof. ∎ 

 

Thus the UMVUE of a function of 𝜙(𝜃) of 𝜃 is given by  

 

𝜓(𝑍1,  𝑍2, … , 𝑍𝑟 , 𝑛) =
𝛼(𝑍1, 𝑍2,… , 𝑍𝑟,𝑛)

𝐵(𝑍1, 𝑍2,… ,𝑍𝑟,𝑛)
, 𝐵(𝑍1,  𝑍2, … , 𝑍𝑟 , 𝑛) ≠ 0. (1.5.33)  

 

Using the above Lemma 1.5.3, we obtain the UMVUE of different functions 

of parametric vector 𝜃 in the following results: 

 

Result 1.5.8. Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from exponential family 

defined by (1.5.24). Then,  

 

𝐻𝑘1,𝑘2,…,𝑘𝑟(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛) =
𝐵(𝑧1−𝑘1, 𝑧2−𝑘2,…,𝑧𝑟−𝑘𝑟,𝑛)

𝐵(𝑧1,𝑧2,…,𝑧𝑟,𝑛)
   (1.5.34) 

 

is UMVUE of ∏ [ℎ𝑖(𝜃)]
𝑘𝑖𝑟

𝑖=1 . 

 

Result 1.5.9. The UMVUE of the variance of 𝐻𝑘1,𝑘2,…,𝑘𝑟(𝑍1,  𝑍2, … ,  𝑍𝑟 , 𝑛) is given by  

 

𝑣𝑎𝑟̂[𝐻𝑘1,𝑘2,…,𝑘𝑟(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛)] 

= 𝐻2𝑘1,𝑘2,…,𝑘𝑟(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛) − 𝐻2𝑘1,2𝑘2,…,2𝑘𝑟(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛) 

         (1.5.35) 
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Result 1.5.10. Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from exponential family 

defined by (1.5.24). Then,  

 

𝐺𝑘(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛) =
𝐵(𝑧1,𝑧2,…,𝑧𝑟,𝑛+𝑘)

𝐵(𝑧1,𝑧2,…,𝑧𝑟,𝑛)
      (1.5.36) 

 

is the UMVUE of [𝑔(𝜃)]
𝑘
. 

 

Result 1.5.11. The UMVUE of the variance of 𝐺𝑘(𝑍1, 𝑍2, … , 𝑍𝑟 , 𝑛) is given by  

 

𝑣𝑎𝑟̂[𝐺𝑘(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛)] = 𝐺𝑘
2(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛) − 𝐺2𝑘(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛). 

          (1.5.37) 

 

Result 1.5.12. Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from exponential family 

defined by (1.5.24). Then, 

 

𝜙𝑥(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛) = 𝑎(𝑥)
𝐵(𝑧1−𝐶1(𝑥), 𝑧2−𝐶2(𝑥),…, 𝑧𝑟−𝐶𝑟(𝑥),𝑛−1)

𝐵(𝑧1,𝑧2,…,𝑧𝑟,𝑛)
 (1.5.38) 

 

is the UMVUE of the density 𝑓𝑋(𝑥; 𝜃). 

 

Result 1.5.13. The UMVUE of the variance of 𝜙𝑥(𝑍1,  𝑍2, … ,  𝑍𝑟 , 𝑛), 𝑛 > 2 is given 

by 

𝑣𝑎𝑟̂[𝜙𝑥(𝑧1, 𝑧2, 𝑧3, 𝑛)] = 𝜙𝑥
2(𝑧1, 𝑧2, 𝑧3, 𝑛) 

−𝜙𝑥(𝑧1, 𝑧2, 𝑧3, 𝑛) 𝜙𝑥(𝑧1 − 𝐶1(𝑥),  𝑧2 − 𝐶2(𝑥),  𝑧3 − 𝐶3(𝑥), 𝑛 − 1) 

      (1.5.39) 

 

Corollary 1.5.2. For fixed 𝑧, the UMVUE of the survival function 𝑆(𝑡) =

 𝑃(𝑋 > 𝑡), 𝑡 ≥ 0 is given by  

 

𝑆̂(𝑡) = ∫ 𝜙𝑥(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛)𝑥>𝑡
𝑑𝑥.     (1.5.40) 
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Result 1.5.14. For fixed z, the UMVUE of the 𝑣𝑎𝑟[𝑆̂(𝑡)] is given by 

 

𝑣𝑎𝑟̂[𝑆̂(𝑡)] = 𝑆̂2(𝑡) −

2∫ ∫ 𝑎(𝑥)𝑎(𝑦)
𝐵(𝑧1−𝐶1(𝑥)−𝐶1(𝑦),…,𝑧𝑟−𝐶𝑟(𝑥)−𝐶𝑟(𝑦) 𝑛−2)

𝐵(𝑧1,…,𝑧𝑟,𝑛)
𝑑𝑥 𝑑𝑦

𝑦>𝑡𝑥>𝑡

.       (1.5.41) 

 

 

1.6.Testing of hypothesis for parameters 

 

Since p is the proportion of mixing, it is important to test its presence in the model or 

not. The hypothesis in this case is to test 𝐻0: 𝑝 = 1 against 𝐻1: 𝑝 < 1. If the hypothesis 

is accepted, then it is concluded that there is no mixing and all the observations have 

come from a failure time distribution stated clearly. In case the hypothesis is rejected, 

then it is concluded that there is presence of inliers in the model. The detection of 

number of inliers becomes warranted and this becomes the next stage of inference of 

such models. The other parameters in the models will be either scale or shape 

parameters depending upon the FTD, whose presence also are important to assess the 

overall goodness of the data underlying the mechanism it follows. With this objective, 

Muralidharan (1999, 2014) has proposed various tests for the model parameters. We 

briefly discuss a couple of those tests below, and then take up the issue of testing 

number of inliers. 

 

Consider the inlier prone model 𝑔(𝑥; 𝑝,𝜃), is given in (1.3.7). Using Neyman-

Pearson lemma, the most powerful (MP) test for testing 𝐻0: 𝑝 = 1 against 𝐻1: 𝑝 < 1 

of size 𝛼 is obtained as  

 

𝛷1(𝑟) = {
1,         𝑟 < 𝑛
𝛼,         𝑟 = 𝑛
0,         𝑟 > 𝑛

      (1.6.1) 
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The above test also uniformly most powerful similar test of size 𝛼′ with power 

function 𝛽(𝑝) = 1 − (1 − 𝛼)𝑝𝑛, and 𝛽(𝑝) can be computed numerically for any 

combination of 𝑛, 𝑝, and 𝛼. And, the locally most powerful (LMP) test of size 𝛼 for 

testing 𝐻0: 𝑝 = 1 against 𝐻1: 𝑝 < 1 for 𝜃 known based on 𝑛 iid observations from the 

density 𝑔(𝑥; 𝑝, 𝜃) is given by 

 

𝛷2(𝑥) =

{
 
 

 
 1,    

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝑝
< 𝑐𝛼

𝛾,    
𝜕 𝑙𝑜𝑔 𝐿

𝜕𝑝
= 𝑐𝛼

0,    
 𝜕 𝑙𝑜𝑔 𝐿

𝜕𝑝
> 𝑐𝛼

      (1.6.2) 

 

where 𝑐𝛼 and 𝛾 are such that the test attains the level of the test when 𝐻0 is true. i.e. 

𝑐𝛼 and 𝛾 are such that 𝐸𝐻0[𝛷2(𝑥)] = 𝛼. 

 

The MP test for 𝐻0: 𝜃 = 𝜃0 against 𝐻1: 𝜃 = 𝜃1, (𝜃1 > 𝜃0) for p known is given 

by 

 

𝛷3(𝑥) =

{
 
 

 
 1,    

𝑔1(𝑥)

𝑔0(𝑥)
> 𝑐𝛼

𝛾,    
𝑔1(𝑥)

𝑔0(𝑥)
= 𝑐𝛼

0,    
𝑔1(𝑥)

𝑔0(𝑥)
< 𝑐𝛼

      (1.6.3) 

 

where 𝑐𝛼 and 𝛾 are such that the test attains the level of the test when 𝐻0 is true. i.e. 

𝑐𝛼 and 𝛾 are such that 𝐸𝐻0[𝛷3(𝑥)] = 𝛼. The LMP test of size 𝛼 for testing 𝐻0: 𝜃 ≤ 𝜃0 

against 𝐻1: 𝜃 > 𝜃0 for 𝑝 known based on 𝑛 iid observations from the density 𝑔(𝑥; 𝑝, 𝜃) 

is given by 

 

𝛷4(𝑥) =

{
 
 

 
 1,    

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝜃
> 𝑐𝛼

𝛾,    
𝜕 𝑙𝑜𝑔 𝐿

𝜕𝜃
= 𝑐𝛼

0,    
 𝜕 𝑙𝑜𝑔 𝐿

𝜕𝜃
< 𝑐𝛼

      (1.6.4) 
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where 𝑐𝛼 and 𝛾 are such that the test attains the level of the test when 𝐻0 is true. That 

is, 𝑐𝛼 and 𝛾 are such that 𝐸𝐻0[𝛷4(𝑥)] = 𝛼. One may refer to Muralidharan (1999, 

2014) for other tests and their comparisons. Below, we discuss the detection of number 

of inliers in the model.  

 

 

1.7. Test for number of inliers 

 

 

1.7.1. Block test procedure for detecting inliers 

 

In literature, two types of tests have been proposed for the lower outlier testing 

problem. One is the “Block test” and the other one is the sequential procedures. In the 

“Block test” Chikkagoudar and Kunchur (1983), Kimber and Stevens (1981), and 

Lewis and Feller (1979), have often used to test the discordancy of 𝑘 lower outliers in 

the data, and then declared either 𝑘 or  0 lower outliers are lower outliers in a single 

hypothesis test. This procedure suffers from masking and swamping effect when too 

many or too fewer 𝑘 inliers are present in the sample. We consider two different inliers 

prone models to detect inliers in Block test. One is Identified inlier (𝑀𝑘) model and 

another is Labeled slippage inlier (𝐿𝑘) model. They are described below.  

 

Likelihood ratio test under 𝑴𝒌 model: Suppose that 𝑛 units put on a test, let 𝑛0 units 

fails instantaneously and (𝑛 − 𝑛0) failure time is available. Out of these positive 

observations we have to determine which are inliers or early failures. Before the start 

of the experiment we do not know which units will fail instantaneously or will produce 

inliers. These experimental conditions are to be modeled in 𝑀𝑘 inliers model for given 

𝑘. Let us re-label failure times of these (𝑛 − 𝑛0) units as  (𝑋1, 𝑋2, … , 𝑋𝑛−𝑛0). Then in 

𝑀𝑘 inliers model, we assume that (𝑛 − 𝑛0 − 𝑘) are from target population with pdf 

𝐹 ∈ ℱ and 𝑘 are from the inliers population 𝐺 ∈ 𝒢. Thus the joint pdf of 

(𝑋1, 𝑋2, … , 𝑋𝑛−𝑛0) can be written as 
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 (𝑥1, 𝑥2, … , 𝑥𝑛−𝑛0|𝑓, 𝑔, 𝑣) = ∏ 𝑔(𝑥𝑖)𝑖∈𝑣 ∏ 𝑓(𝑥𝑖 , 𝜃),𝑖∉𝑣  𝐹 ∈ ℱ, 𝐺 ∈ 𝒢, 𝑣 ∈ 𝜈. 

(1.7.1) 

 

where 𝑣 is the new parameter representing a set of inliers and ranges over 𝑉, the set of 

integers (𝑖1, 𝑖2, … , 𝑖𝑘) chosen out of (1, 2, … , (𝑛 − 𝑛0 )) with cardinality (𝑛−𝑛0
𝑘
). This 

is so far similar to the model 𝑀𝑘 for 𝑘 outliers. The main difference in 𝑀𝑘 inlier model 

is that we assume that 𝐺 ∈ 𝒢 and 𝐹 ∈ ℱ are such that 
𝜕𝐺

𝜕𝐹
 is strictly decreasing in 𝑋. 

The following theorem will help us to write the likelihood function under 𝑀𝑘 model. 

 

Theorem 1.7.1. Let 𝑋(1) < 𝑋(2), < ⋯ <  𝑋(𝑛−𝑛0) be the order statistics and 

(𝑅1, 𝑅2, … , 𝑅𝑛−𝑛0) be the corresponding rank order statistics, then 

 𝜑(𝑟1, 𝑟2, … , 𝑟𝑘)1<𝑟𝑖<⋯<𝑟𝑘<𝑛−𝑛0
𝑀𝑎𝑥                 = 𝜑(1,2, … , 𝑘) and (𝑥(1), 𝑥(2), … , 𝑥(𝑘)) have the 

maximum probability of being inliers. (See Muralidharan, 2015 page 12.16 for proof). 

 

As a consequence of this theorem, v̂ = k and therefore, Mk (x|f, g, v̂), (say), 

the likelihood under Mk inlier model, is 

 

𝑀𝑘 (𝑥|𝑓, 𝑔, 𝑣) =  𝐴 𝑘! (𝑛 − 𝑛0 − 𝑘)!∏ 𝑔(𝑥(𝑖))∏ 𝑓(𝑥(𝑖)),
𝑛−𝑛0
𝑖=𝑘+1

𝑘
𝑖=1   𝐹 ∈ ℱ, 𝐺 ∈ 𝒢.  

(1.7.2) 

where, 

 

𝐴 = (
𝑛
𝑛0
) (1 − 𝑝)𝑛0𝑝𝑛−𝑛0 , 𝑝 = 𝑃(𝑋 > 0).     (1.7.3) 

 

Suppose we want to test the hypothesis  

 

𝐻0: 𝑋(1), 𝑋(2), … , 𝑋(𝑛)  are from 𝐹 ∈ ℱ  

against 

 𝐻1: 𝑋(1), 𝑋(2), … , 𝑋(𝑘) are from 𝐺 ∈ ℊ  and 

       𝑋(𝑘+1), 𝑋(𝑘+2), … , 𝑋(𝑛) are from 𝐹 ∈ ℱ    (1.7.4) 
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Then the test is equivalent to testing 𝐻0: 𝐾 = 0  versus 𝐻1: 𝐾 = 𝑘. The likelihood ratio 

using 𝑀𝑘 model can be obtained as  

 

 𝛬𝑘(𝑥) =  
 𝑀𝑎𝑥 𝑀𝑘0 (𝑥|𝑓)

𝑀𝑎𝑥𝑀𝑘1 (𝑥|𝑓,𝑔,𝑣̂)
      (1.7.5) 

 

where 𝑀𝑘0 (𝑥|𝑓) and 𝑀𝑘1 (𝑥|𝑓, 𝑔, 𝑣) denote the likelihood function under 𝐻0 and 𝐻1 

respectiely.  

 

The test reject 𝐻0 if 𝛬𝑘(𝑥) < 𝐶𝑘(𝑛 − 𝑛0, 𝛼) where 𝐶𝑘(𝑛 − 𝑛0, 𝛼) is such that 

 

𝑃𝐻0 (𝛬𝑘(𝑥) < 𝐶𝑘(𝑛 − 𝑛0, 𝛼)) = .     (1.7.6) 

 

Likelihood ratio test under Lk model: In M𝑘 model, M𝑘(𝑥|𝑓, 𝑔, 𝑣) given by (1.7.2) is 

likelihood and not the joint pdf of  (𝑥(1), 𝑥(2), … , 𝑥(𝑛−𝑛0)). Making it a pdf, then, the 

model for 𝐿𝑘 inliers is therefore 

 

𝐿𝑘(𝑥|𝑓, 𝑔) = 𝐴
 𝑘! (𝑛−𝑛0−𝑘)!

𝜑(1,2,… ,𝑘)
∏ 𝑔(𝑥(𝑖))∏ 𝑓(𝑥(𝑖))

𝑛−𝑛0
𝑖=𝑘+1

𝑘
𝑖=1 ,    𝐹 ∈ ℱ, 𝐺 ∈ 𝒢 

          (1.7.7) 

 

where 𝐴 is as given in (1.7.3) and 𝜑(1,2, … , 𝑘) is the normalizing constant to make 𝐿𝑘 

a pdf. The model 𝐿𝑘 is called Labeled slippage model and it can also be derived from 

𝑀𝑘 with (𝑌1, 𝑌2, … , 𝑌𝑘) are iid distributed as 𝒢 and (𝑉1, 𝑉2, … , 𝑉𝑛−𝑛0−𝑘) as iid ℱ and 

with the additional condition(𝑌1, 𝑌2, … , 𝑌𝑘) ≤ 𝑀𝑖𝑛(𝑉1, 𝑉2, … , 𝑉𝑛−𝑛0−𝑘) . Therefore, 

𝜑(1,2, … , 𝑘) can be interpreted as the probability that the 𝑘 smallest observations 

correspond to the order statistics of 𝑘 inlier observations coming from 𝐺 and the 

remaining observations coming from 𝐹 under the exchangeable model.  

 

𝜑(1,2, … , 𝑘) = 𝜑𝑘(𝐺, 𝐹) 
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         = 𝑃(𝑥(𝑘) < 𝑥(𝑘+1)|𝐺, 𝐹) 

 

         = ∫ [𝐺(𝑢)]𝑘
+∞

−∞
(𝑛 − 𝑛0 − 𝑘)[1 − 𝐹(𝑢)]

𝑛−𝑛0−𝑘−1 𝑑 𝐹(𝑢). 

         (1.7.8) 

 

 In order to test the hypothesis shown in (1.7.4), that is 𝐻0: 𝐾 = 0  versus 

𝐻1: 𝐾 = 𝑘. Then the likelihood ratio using 𝐿𝑘 model is obtained as  

 

𝛬𝑘
′ (𝑥) =  

 𝑀𝑎𝑥 𝐿𝑘0 (𝑥|𝑓)

𝑀𝑎𝑥𝐿𝑘1 (𝑥|𝑓,𝑔,𝑣̂)
    (1.7.9) 

 

where 𝐿𝑘0 (𝑥|𝑓) and 𝐿𝑘1 (𝑥|𝑓, 𝑔, 𝑣) denote the likelihood function under 𝐻0 and 𝐻1 

respectively.  

 

The test reject 𝐻0 if 𝛬𝑘
′ (𝑥) < 𝐶𝑘

′ (𝑛 − 𝑛0, 𝛼) where 𝐶𝑘
′ (𝑛 − 𝑛0, 𝛼) is such that  

 

𝑃𝐻0 (𝛬𝑘
′ (𝑥) < 𝐶𝑘

′ (𝑛 − 𝑛0, 𝛼)) = .     (1.7.10) 

 

 

 

1.7.2. Sequential test procedure for detecting inliers 

 

The sequential procedure can be further classified into inward and outward 

procedures. 

 

The inward sequential procedure: In the inward sequential procedure, one start with 

the full sample and single-inlier test applied repeatedly, by starting with most-smallest 

observation, deleting discordant value at each stage and then applying the test again to 

the reduced sample. The process continued until a non-significant result is obtained. 

The estimated number of inliers is 𝑘̂, is the number of rejected (marginal) tests. In 
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addition to certain theoretical weakness, this inward sequential procedure is not 

recommended by Kimber (1982) and Chikkagoudar and Kunchur (1983) due to the 

fact that the presence of two or more lower outliers may well lead to a non-significant 

result at the very first stage. Due to the limitations in the Block test and the inward 

sequential procedure suffering from swamping and/or masking effects, Rosner (1975) 

suggested applying an outward sequential procedure also called “inside-out” 

sequential procedure to the reduced sample. 

 

The outward sequential procedure: Here, one specifies a maximum number of inliers 

𝑘, then the 𝑘𝑡ℎ smallest inlier is being tested first; if this gives a significant result, then 

𝑘 inliers are declared to be discordant; if a non-significant result is obtained, then test 

the (𝑘 − 1)th smallest inliers and so on. This process is continued until either a 

significant result obtained or no inliers can be declared as discordant. This procedure 

minimizes the probability and magnitude of both masking and swamping effects. As 

such, the outward procedure has been claimed superior over the inward procedure (see 

Kimber, 1982, Chikkagoudar and Kunchur, 1983, Balasooriya and Gadag, 1994). 

However, control of Type 1 error (the probability of a false alarm) is difficult in the 

outward procedure. Larger the value of 𝑘, more the power it loses. The test considers 

the null hypothesis 𝐻0 that there are no inliers, with multiple alternatives, 𝐻𝑗 , 𝑗 =

1,2, … , 𝑘 that there are 𝑗 inliers, with test statistic 𝑇𝑗. A single rejection of the 𝑘 tests 

rejects the null hypothesis 𝐻0. Thus, to achieve an overall Type I error level of 0 ≤

𝛼 ≤ 1, the marginal tests need to have a lower level. Thus, one defines all marginal 

tests to have equal level 𝑏, That is, 

 

𝑃𝑘(𝑇𝑗 > 𝑡𝑗) = 𝑏, 𝑗 = 1,2, … , 𝑘     (1.7.11) 

 

 and the level 𝑏 such that 

 

𝑃𝑘(𝑇𝑗 ≤ 𝑡𝑗 , 𝑗 = 1,2, … , 𝑘|𝐻0) = 1 − 𝑎.    (1.7.12) 
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Clearly, 𝑎𝑘 ≤ 𝑏 ≤ 𝑎, where the lower bound corresponds to the case of 

independent tests (the Bonferonni bound), and the upper bound to perfect dependence. 

In contrast, for the inward method, the Type I error is equal to the marginal level 

(𝑎 = 𝑏). This is because a rejection of the null hypothesis only happens when the first 

marginal test is rejected. This is the major advantage over the outward procedure in 

terms of computation and also because no power is lost due to a multiple testing 

correction. 

 

 

1.8. Summary of the thesis 

 

The presentation of the thesis is as follows: Chapter 1 is a detailed introduction of the 

study and its foundation. Various real-life examples of inliers are discussed in this 

chapter along with its modeling. An exhaustive literature survey on the study of inliers 

is presented. It also contains necessary prerequisites for other chapters. We discuss 

various estimation procedures including the problem of UMVU estimation for inlier 

prone models. Also, the distributional properties of the complete sufficient statistics 

are explored in the multi-parameter exponential family. A brief discussion about the 

test procedures for parameters and number of inliers is also presented. 

 

In Chapter 2, we revisit various inliers prone models given in equations 

(1.3.2), (1.3.3) and (1.3.4) and propose inferential procedures to deal with different 

life testing situations. We studied the likelihood estimator and its characteristics, also 

proposed UMVUE for various parametric functions, keeping FTD as an exponential 

distribution. Various estimators and characteristics are studied using simulation and 

with the support of numerical examples. The specific examples include one on failure 

times (in weeks) of 50 items as considered by Murthy et al. (2004) and another one on 

Vannman (1991) data on drying of woods under schedule 1 of experiment 3. 
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Chapter 3 reviews the various types of parametric tests for parameters of 

inliers prone models. We propose the most powerful (MP) test and locally most 

powerful (LMP) test for parameters 𝑝 and 𝜃 of exponential inliers model. Various test 

procedures for testing hypothesis consists of single and multiple inliers are reviewed. 

Some existing tests are revisited and studied in detail. A discussion of data descriptions 

with inliers proness and comparative study of sequential procedure and block tests is 

also included in this Chapter. We present the masking effect in Dixon type test and 

Cochran type test for inliers. The performance of the test is studied based on powers 

and masking effects. We carried out an extensive Monte Carlo study to investigate the 

powers and the error probabilities for the effects of masking and swamping effect in 

the outward test when the number of inliers is more than one. We illustrated the same 

for two real data on the outward amount of NEFT and rainfall measurement in this 

chapter. 

 

Chapter 4 we study the inferences of the model given in (1.3.1) by considering 

the FTD as Lindley distribution. We provide the likelihood estimator of the parameters 

of model and UMVUE for various parametric functions, including pdf and reliability 

function along with the SE of estimates. Various estimators and characteristics are 

studied with two real datasets, one is the NFHS-3 survey on child’s age on death for 

Gujarat state (http://www.dhsprogram.com) and another one is concentration of SO2 

in air for industrial area of Amritsar in month April 2017. Also, we propose the most 

powerful (MP) test and locally most powerful (LMP) test for parameters 𝑝 and 𝜃 of 

Lindley inlier model. 

 

In Chapter 5, using Type II censored data we carried out the inferential studies 

of the model (1.3.5) keeping Gompertz distribution as FTD. Apart from MLE, 

UMVUE, we also studied least squares, weighted least squares, and percentile based 

estimation procedures for estimating the parameters. We propose the most powerful 

(MP) test and locally most powerful (LMP) test for parameters 𝑝 and 𝜃 of Gompertz 

inliers model. The Characteristics of various estimators are studied with the simulation 

http://www.dhsprogram.com/
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study. An application of inliers prone models is illustrated with a real dataset of 

Vannman (1991) data on drying of woods under schedule 1 of experiment 2. 

 

The estimation of parameters based on Type II censored sample for model 

presented in equation (1.3.7) with FTD Weibull distribution is experiment in Chapter 

6. The Maximum Likelihood Estimators (MLE) are developed for estimating the 

unknown parameters. The Fisher information matrix, as well as the asymptotic 

variance-covariance matrix of the MLEs, is derived. UMVUE of model parameters as 

well as UMVUE of various parametric functions is obtained. The model is 

implemented on a real data of tumor size in invasive ductal breast carcinoma (IDC) of 

female patients (www.cbioportal.org). The particular case of the exponential 

distribution is also included in the chapter as it has a lot of practical significance. The 

proposed model is then applied on real data based on the NFHS-3 survey for Gujarat 

state (http://www.dhsprogram.com).  

 

Chapter 7 is devoted to the Type II censored sample for model presented in 

(1.3.7) with FTD as the Pareto distribution. The Fisher information matrix, as well as 

the asymptotic variance-covariance matrix of the MLEs, is derived. The UMVUE of 

model parameters as well as UMVUE of various parametric functions is obtained. The 

model is implemented on four real datasets of loss ratios for earthquake insurance in 

California, NFHS-3 data, forest fire burnt are of India 2018, and last three decades 

average snowfall data in the US. and compared with the Weibull inlier model. 

We also provide some discussion on the importance of inliers proness in 

practical significance in Chapter 8. The limitations and future works are also 

suggested in this chapter.  

 

At the end, we provide the appendix of all datasets and its details used in the 

thesis and the list of references. 



 

 


