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Chapter 2 

 

Inferences on inliers in Exponential distribution 

 

 

2.1. Introduction 

 
Statistical methods in life testing analysis have been developed in the literature 

primarily for the case of single population. In their classical paper, Epstien and Sobel 

(1951) postulated a model for life test experiments for ordered observations when 

underlying distribution was exponential. Interestingly, the observations arising from 

life testing experiments are generally available in an ordered form. Also, the ordered 

observations facilitate a decision in a shorter time or with fewer observations. Earlier 

Walsh (1950) has studied estimates and tests based on 𝑟 smallest values in a sample 

of normal distribution. When the failure patterns are subjected to many causes, a single 

failure time distribution (FTD) may not be a good model for describing the system 

characteristics. In particular, in tests on electronic components and devices, it has been 

frequently been observed that the failure rate is initially relatively high, and then 

actually decreases with increasing age. As the item becomes still older the failure rate 

either becomes constant or again increases with age depending on the basic failure 

mechanism involved. This behavior suggests strongly that the population is not 

homogeneous but rather is made up of several subpopulations mixed in unknown 

proportions. Finite mixture models have been broadly developed and widely applied 

to classification, clustering, density estimation and pattern recognition problems, as 
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shown by Titterington, Smith and Markov (1985), McLachlan and Basford (1988), 

Lindsay (1995), B¨ohning (1999) and McLachlan and Peel (2000) etc. With the 

growing advances of computational methods, especially for the development of 

Markov chain Monte Carlo (MCMC) techniques, many works are also devoted to 

Bayesian mixture modeling issues, refer Diebolt and Robert (1994), Escobar and 

West(1995), Richardson and Green (1997) and Stephens (2000). 

 

 The occurrence of instantaneous or early failures is common in many life 

testing experiment (See Section 1.1 and 1.2 of Chapter 1 for many such situations, 

contexts and examples). In the former case, the random variable will have discrete 

probability mass at the origin (that is life time will be zero) and some positive life 

times, and in the latter case the failure times may be small in relation to other life 

times. Exponential distribution has been widely used as model in areas ranging from 

studies on the lifetimes of manufactured items to research involving survival or 

remission times in chronic diseases. Early failures (or inliers) are natural occurrences 

of a life test, where some of the items fails immediately or within in a short time of 

life test due to inferior quality or faulty construction.  

 

In connection with the early failure study, Mendenhall and Hader (1958) 

considered a FTD which can be divided into subpopulations each representing a 

different type or cause of failure and proposed estimation procedures for exponential 

distribution censored at a predetermined test termination time. The problem was 

further considered by Miller (1960), where an early failure model is postulated in 

which one failure rate is assumed to be in effect for an initial time interval [0, 𝑇0] and 

another; lower failure rate is operative thereafter. Estimation for the two failure rates 

are given for the case 𝑇0 is known and not known exactly but can be assumed to be 

within a specified interval. Here 𝑇0 can be the censoring time or any time point 

described by the data set for early failures. If it is assumed that the early failures are 

reported in a small interval say [0, 𝛿], 𝛿 known and very small, then the failure times 

during [0, 𝛿] and the remaining life times will be completely inconsistent with respect 

to each other. Kale and Muralidharan (2000) have first introduced the term inliers in 
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connection with the estimation of (𝑝, 𝜃) of early failure model with modified failure 

time distribution (FTD) being an exponential distribution with mean 𝜃 assuming 𝛿 

known. If 𝛿 = 𝑇0, then both the problem will be similar, and for 𝛿 = 0, the problem 

reduces to that of Aitchison (1955) for instantaneous failure case. A similar problem 

was attempted by Lai et al. (2007), wherein they have defined nearly instantaneous 

through the sample configurations, considering Weibull as the underlying distribution. 

For a detailed review of inlier prone models and their inferences, refer to Muralidharan 

(2010).  

 

In this chapter we revisit various early failure models and propose inferential 

procedures to deal with different life testing situations. Along with the likelihood 

estimation, we also propose uniformly minimum variance unbiased estimate 

(UMVUE) for various parametric functions, wherever possible. Throughout the 

chapter, we consider the FTD as exponential with the following pdf 

 

 𝑓(𝑥; 𝜃) =
1

𝜃
𝑒−

𝑥

𝜃, 𝑥 ≥ 0 .     (2.1.1) 

 

The maximum likelihood estimator of 𝜃 is 𝜃 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 . The desirable 

properties of 𝜃 is numerous. In particular 𝜃 is exactly distributed as (
θ

2n
) χ(2n)

2  and it 

is a sufficient, efficient and minimum variance estimator of 𝜃. In Section 2.2, we 

discuss the instantaneous failure model, and obtain ML estimates and unbiased 

estimates for various parametric functions. The next two Sections 2.3 and 2.4 will 

discuss early failure models, and their significance in practical studies. The discussion 

on nearly instantaneous failure model is presented in Section 2.5. We conclude the 

discussion with simulation studies and some numerical computations in the last two 

Sections 2.6 and 2.7. 
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2.2. Analysis of instantaneous failure model 

 

If the underlying distribution is exponential as given in (2.1.1), then according to 

(1.3.1), the pdf of instantaneous failure model will be  

 

𝑔(𝑥; 𝑝, 𝜃) = {
1 − 𝑝,      𝑥 = 0
𝑝

𝜃
𝑒−

𝑥

𝜃,       𝑥 > 0
     (2.2.1) 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from (2.2.1) then the pdf of 𝑋𝑖 is  

 

𝑔(𝑥𝑖; 𝑝, 𝜃) = {(1 − 𝑝)
𝐼(𝑥𝑖) (

𝑝

𝜃
𝑒−

𝑥
𝜃)

1−𝐼(𝑥𝑖)

𝑥𝑖 ≥ 0,0 < 𝑝 ≤ 1, 𝜃 > 0, 𝑖 = 1, 2, … , 𝑛

0,                                              𝑜. 𝑤.

 

 

where, 

𝐼(𝑥) = {
1,    if 𝑥 = 0   
0,    o. w.

      (2.2.2) 

 

If 𝑝 = 𝑃(𝑥 > 0) and further, if we denote ∑ 𝐼(𝑥𝑖) = 𝑛 − 𝑟
𝑛
𝑖=1 , where 𝑟 is 

number of positive observations, then the joint pdf is given by  

 

𝑔(𝑥; 𝑝, 𝜃) = {
(1 − 𝑝)𝑛−𝑟 (

𝑝

𝜃
)
𝑟

𝑒−
1

𝜃
∑ (1−𝐼(𝑥𝑖))𝑥𝑖
𝑛
𝑖=1 , 𝑥𝑖 ≥ 0, 𝑟 = 0,1, … , 𝑛

0,                                                           𝑜. 𝑤.
 

          (2.2.3) 

 

The following results are found obvious: 

 

Result 2.2.1. The joint density function given in (2.2.3) is a two-parameter exponential 

family of distribution. 
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Result 2.2.2. (∑ 𝐼(𝑥𝑖),∑(1 − 𝐼(𝑥𝑖))𝑥𝑖) are jointly sufficient for 𝑝 and 𝜃.  

Result 2.2.3. The MLE of  𝑝 and 𝜃 are respectively given by 𝑝̂𝑀𝐿𝐸 =
𝑟

𝑛
 and 𝜃𝑀𝐿𝐸 =

1

𝑟
∑ 𝑥𝑖𝑥𝑖>0

. 

 

Result 2.2.4. (𝑝̂𝑀𝐿𝐸 , 𝜃𝑀𝐿𝐸)
′
 ~ 𝐴𝑁(2) [(𝑝, 𝜃)′, 𝑑𝑖𝑎𝑔 (

𝑝(1−𝑝)

𝑛
,
𝜃2

𝑛𝑝
)]. 

 

Result 2.2.5. The parameter 𝑝 and 𝜃 are orthogonal. 

 

 

2.2.1. UMVUE based on conditional approach 

 

The UMVUE of survival function using traditional approach of taking conditional 

expectation of an unbiased estimator given a complete sufficient statistics is given by 

Muralidharan (2000).  True reliability or survival function for this model at time 𝑡 is 

given by  

 

𝑆(𝑡) = 1 − 𝐺(𝑡; 𝑝, 𝜃) = 𝑝𝑒−
𝑡

𝜃, 𝑡 > 0, 𝜃 > 0    (2.2.4) 

 

where  

𝐺(𝑥; 𝑝, 𝜃) = {
0,                  𝑥 < 0

1 − 𝑝𝑒−
𝑥
𝜃,   𝑥 > 0

 

 

It is obvious that the distribution of R is Binomial with parameters (𝑛, 𝑝). Now, 

we obtain the joint pdf of 𝑋, 𝑅 and 𝑍 as follows: 

 

From (2.2.3) 

 

𝑔(𝑥; 𝑝, 𝜃) = (
𝑛
𝑟
) (1 − 𝑝)𝑛−𝑟 (

𝑝

𝜃
)
𝑟

𝑒−
1
𝜃
∑ 𝑥𝑖𝑥𝑖>0

1

(
𝑛
𝑟
)
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       = ∑ (1 − 𝑝)𝑛−𝑟 (
𝑝

𝜃
)
𝑟

𝑒−
1

𝜃
∑ 𝑥𝑖𝑥𝑖>0

1

(
𝑛
𝑟
)

(𝑖1.𝑖2,…,𝑖𝑟)  

 

where the summation is taken over all values of 𝑖1. 𝑖2, … , 𝑖𝑟 such that only 𝑥𝑖𝑘 > 0, 

𝑘 = 1,2, … , 𝑟. The above density can be written as 

 

𝑔𝑋,𝑅(𝑥; 𝑝, 𝜃) = ∑ 𝑃(𝑋𝑗1 = 0, 𝑋𝑗2 = 0,… , 𝑋𝑗𝑛−𝑟 = 0 )(𝑖1.𝑖2,…,𝑖𝑟)  𝑔(𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑟; 𝑝 𝜃)

          (2.2.5) 

 

where 

𝑔(𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑟; 𝑝 𝜃) =
1

𝜃𝑟
𝑒−

1

𝜃
∑ 𝑥𝑖𝑥𝑖>0 , 𝑥𝑖𝑘 > 0, 𝑘 = 1,2, … , 𝑟. (2.2.6) 

 

Making the transformation 𝑋𝑖𝑘 = 𝑥𝑖𝑘, 𝑘 = 1,2, … , 𝑟 − 1 and 𝑍 = ∑ 𝑥𝑖𝑘
𝑟
𝑖=1 , we have 

the joint pdf of 𝑋𝑖1 , 𝑋𝑖2 , … , 𝑋𝑖𝑟−1 and 𝑍 as 

 

𝑔(𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑟−1 , 𝑧; 𝑝 𝜃) =
1

𝜃𝑟
𝑒−

𝑧

𝜃, 𝑧 > 0    (2.2.7) 

 

Using (2.2.7) in (2.2.6), we get 

 

𝑔𝑋,𝑅,𝑍(𝑥, 𝑟, 𝑧; 𝑝, 𝜃) = (1 − 𝑝)
𝑛−𝑟 (

𝑝

𝜃
)
𝑟

𝑒−
𝑧

𝜃, 𝑥𝑖 ≥ 0; 𝑧 = ∑ 𝑥𝑖𝑥𝑖>0
 (2.2.8) 

 

Integrating out 𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑟−1  from (2.2.6), we get the conditional pdf of 𝑧 given 𝑅 =

𝑟 as 

 

𝑔𝑍|𝑅(𝑧; 𝜃|𝑟) = {
𝑒
−
𝑧
𝜃 𝑧𝑟−1

𝛤𝑟 𝜃𝑟
, 𝑧 > 0, 𝑟 > 0 

1,              𝑧 = 0, 𝑟 = 0 
    (2.2.9) 

 

Again the density (2.2.8) can be written as  
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𝑔𝑋,𝑅,𝑍(𝑥, 𝑟, 𝑧; 𝑝, 𝜃) = (
𝑛
𝑟
) (1 − 𝑝)𝑛−𝑟𝑝𝑟

𝑒−
𝑧
𝜃 𝑧𝑟−1

𝛤𝑟 𝜃𝑟
𝛤𝑟

(
𝑛
𝑟
) 𝑧𝑟−1

 

 

         = 𝑔𝑅(𝑟; 𝑝)𝑔𝑍|𝑅(𝑧; 𝜃|𝑟)𝑔(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑝, 𝜃|(𝑧, 𝑟)) 

 

Then the pdf of 𝑥1, 𝑥2, … , 𝑥𝑛 given (𝑧, 𝑟), 𝑧 > 0, 𝑟 > 0 is 

 

𝑔(𝑥1, 𝑥2, … , 𝑥𝑛|(𝑧, 𝑟)) =
𝛤𝑟

(
𝑛
𝑟
)𝑧𝑟−1

𝑥𝑖 ≥ 0.    (2.2.10) 

 

Consider 𝑥1 > 0 and using the fact that in the remaining (𝑛 − 1) 𝑥’s only (𝑟 − 1) are 

positive, we get 

 

𝑔(𝑥1|(𝑧, 𝑟)) =
𝛤𝑟

(
𝑛
𝑟
) 𝑧𝑟−1

(
𝑛 − 1
𝑟 − 1

)∫ ⋯∫ 𝑑𝑥𝑟−1

𝑡−∑ 𝑥𝑖
𝑟−1
𝑖=1

0

𝑡−𝑥1

0

⋯𝑑𝑥2 

 

Evaluating the integrals successively, we get  

 

𝑔(𝑥1|(𝑧, 𝑟)) =
𝛤𝑟

𝑛(𝑟 − 2)! 𝑧𝑟−1
(𝑧 − 𝑥𝑙)

𝑟−2, 0 < 𝑥1 < 𝑧, 𝑟 > 1 

 

Hence the pdf of 𝑋1|(𝑍, 𝑅) is  

 

𝑔(𝑥1|(𝑧, 𝑟)) =

{
 
 

 
 
1,                         𝑥1 = 0; 𝑧 = 0 (given 𝑟 = 0) 

1 −
𝑟

𝑛
,                 𝑥1 = 0; 𝑧 > 0 (given 𝑟 ≥ 1) 

𝑟

𝑛
,                         𝑥1 = 𝑧; 𝑧 > 0 (given 𝑟 = 1) 

𝑟(𝑟−1)(𝑧−𝑥)𝑟−2

𝑛𝑧𝑟−1
,   0 < 𝑥1 < 𝑧; 𝑧 > 0 (given 𝑟 > 1)

  

          (2.2.11) 
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We use (2.2.11) to obtain UMVUE of 𝑆(𝑡) when 𝑝 unknown and known cases 

below: 

Case: 𝑝 unknown 

 

Define 

𝜙𝑡(𝑥) = {
1, 𝑥 > 𝑡
0, 𝑜. 𝑤.

       (2.2.12) 

 

Then 𝐸[𝜙𝑡(𝑥)] is equal to (2.2.4), which implies that 𝜙𝑡(𝑥) is an unbiased estimator 

of 𝑆(𝑡) Using Rao-Blackwell and Lehmann-Scheffe's theorem, the UMVUE of 𝑆(𝑡) 

for 𝑝 unknown is given by 

 

𝑆̃1(𝑡) = 𝐸[𝜙𝑡(𝑋)|(𝑧, 𝑟)] 

 

= ∫ 𝑔(𝑥|(𝑧, 𝑟))𝑑𝑥
𝑧

𝑡

 

 

=
𝑟

𝑛
(1 −

𝑡

𝑧
)
𝑟−1

, 𝑡 < 𝑧      (2.2.13) 

 

Corollary 2.2.1. If 𝑟 = 𝑛, i.e. 𝑝 = 1, then the UMVUE obtained in (2.2.13) reduces to 

that of the UMVUE of exponential distribution. (See also Sinha, 1986). 

 

Case: 𝑝 is known 

 

We have from (2.2.10), the joint density of 𝑋1, and 𝑅 given 𝑍 = 𝑧 is  

 

𝑔(𝑥1, 𝑟|𝑧) =∑𝑔(𝑥1|(𝑧, 𝑟))𝑔𝑅(𝑟)

𝑟
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𝑔(𝑥1|(𝑧, 𝑟))

=

{
 
 

 
 
(1 − 𝑝)𝑛,                                                          𝑥1 = 0; 𝑟 = 0 (given 𝑧 = 0) 

1 −
𝑟

𝑛
(
𝑛
𝑟
) 𝑝𝑟(1 − 𝑝)𝑛−𝑟 ,                              𝑥1 = 0;  𝑟 ≥ 1 (given 𝑧 > 0) 

𝑝(1 − 𝑝)𝑛−1,                                                   𝑥1 = 𝑧; 𝑟 = 1 (given 𝑧 > 0) 

𝑟(𝑟 − 1)

𝑛𝑧
(
𝑛
𝑟
) 𝑝𝑟(1 − 𝑝)𝑛−𝑟 (1 −

𝑥1
𝑧
)
𝑟−2

, 0 < 𝑥1 < 𝑧; 𝑧 > 0 (given 𝑟 > 1)

 

 

Then the conditional density of 𝑋1 given 𝑍 = 𝑧 and 𝑅 ≥ 1 is 

 

𝑔(𝑥1|𝑧, 𝑟 ≥ 1) =

{
 
 

 
 (1 − 𝑝)[1 − (1 − 𝑝)

𝑛−1], 𝑥1 = 0 
(𝑛−1)

𝒫𝑧
𝑝2 (1 −

𝑝𝑥1

𝑧
)
𝑛−2

,        0 < 𝑥1 < 𝑧 

𝑝(1−𝑝)𝑛−1

𝒫
,                               𝑥1 = 𝑧

  (2.2.14) 

 

where  

 

𝒫 = 𝑃(𝑅 ≥ 1) = 1 − (1 − 𝑝)𝑛−1     (2.2.15) 

 

Then, the UMVUE of 𝑆(𝑡) for 𝑝 known is given by 

 

𝑆̃2(𝑡) = ∫ 𝑔(𝑥1|𝑧, 𝑟 ≥ 1) 𝑑𝑥
𝑧

𝑡

 

 

= ∫
(𝑛 − 1)

𝒫𝑧
𝑝2 (1 −

𝑝𝑥1
𝑧
)
𝑛−2

𝑑𝑥
𝑧

𝑡

 

 

=
𝑝

𝒫
[(1 −

𝑝𝑡

𝑧
)
𝑛−1

− (1 − 𝑝)𝑛−1].    (2.2.16) 

 

Corollary 2.2.2. If 𝑝 = 1 then 𝒫 = 1, and hence the UMVUE obtained in (2.2.16) 

reduces to that of the UMVUE of exponential distribution. 
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2.2.2. UMVUE based on exponential family approach 

 

It is observed that, to obtain conditional distribution given the sufficient statistics is 

bit difficult. There are no closed forms available in some of the cases, and hence an 

easy approach is by using the method given by Roy and Mitra (1957) in exponential 

family of distribution is used.  Writing (2.2.1) in the form of (1.5.9), then 

 

𝑔(𝑥; 𝑝, 𝜃) =
[𝑒−

1
𝜃]
(1−𝐼(𝑥))𝑑(𝑥)

[
𝜃(1 − 𝑝)

𝑝 ]
𝐼(𝑥)

(
𝜃
𝑝)

 

 

       =[𝑎(𝑥)](1−𝐼(𝑥))[ℎ(𝜃)](1−𝐼(𝑥))𝑑(𝑥) [
𝑔(𝜃)(1−𝑝)

𝑝
]
𝐼(𝑥)

(
𝑔(𝜃)

𝑝
)
−1

  

          (2.2.17) 

 

where 𝑎(𝑥) = 1, ℎ(𝜃) = 𝑒−
1

𝜃, 𝑑(𝑥) = 𝑥, 𝑔(𝜃) = 𝜃. The density in (2.2.17) is so 

obtained is defined with respect to measure 𝜇(𝑥) which is the sum of Lebesgue 

measure over (0,∞) and a singular measure at {0}, is a well-known form of two 

parameter exponential family with natural parameters (𝜂1, 𝜂2) =

(𝑙𝑜𝑔 (
𝜃(1−𝑝)

𝑝
) , 𝑙𝑜𝑔 (𝑒−

1

𝜃)) generated by the underlying indexing parameters (𝑝, 𝜃). 

Here (𝐼(𝑥), (1 −  𝐼(𝑥))𝑥) is jointly minimal sufficient for (𝑝, 𝜃) as 𝐼(𝑥) and  (1 −

𝐼(𝑥))𝑥 do not satisfy any linear restriction. Hence the natural parameter space is 

convex set in 𝐸2 containing a two-dimensional rectangle making (2.2.17) a full rank 

family. The statistic (𝐼(𝑥), (1 −  I(x))𝑥) is thus complete (Lehmann and Casella, 

1998, p 42). Kale and Muralidharan (2000) considered the above mixture and obtained 

optimal estimating equation for 𝜃 ignoring 𝑝 in the case of exponential FTD. 

 

Further, if we denote 𝑧 = ∑ [1 − 𝐼(𝑥𝑖)]𝑥𝑖
𝑛
𝑖=1 (= ∑ 𝑥𝑖𝑥𝑖>0

), then the joint 

density function can be expressed as 
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 𝑔(𝑥; 𝑝, 𝜃) = (
𝑛
𝑟
) (1 − 𝑝)𝑛−𝑟 (

𝑝

𝜃
)
𝑟

𝑒−
𝑧

𝜃    (2.2.18) 

 

Hence (𝑛 − 𝑅, 𝑍) are jointly complete sufficient for (𝑝, 𝜃). Also, the variable 

(𝑍|𝑅 = 𝑟, 𝑟 > 0) is distributed as a Gamma random variable with parameter (𝑟, 𝜃 ). 

Since, 𝑛 − 𝑅 is binomial which is same as that of 𝑅 with parameter (𝑛, 𝑝). Hence the 

joint distribution of (𝑛 − 𝑅, 𝑍) is 

 

𝑔(𝑧, 𝑛 − 𝑟; 𝑝, 𝜃) = 𝑃(𝑛 − 𝑅 = 𝑛 − 𝑟) 𝑔(𝑧; 𝜃|𝑛 − 𝑟) 

 

  = 𝑃(𝑅 = 𝑟) 𝑔(𝑧; 𝜃|𝑟) 

 

  =(
𝑛
𝑟
) (1 − 𝑝)𝑛−𝑟𝑝𝑟

1

𝛤𝑟 𝜃𝑟
𝑧𝑟−1𝑒−

𝑧

𝜃 

  

= {

(1 − 𝑝)𝑛,                                               𝑧 = 0;  𝑟 = 0

(
𝑛
𝑟
)
𝑧𝑟

𝛤𝑟
𝑒−

𝑧
𝜃 (
𝜃(1 − 𝑝)

𝑝
)

𝑛−𝑟

(
𝜃

𝑝
)
−𝑛

, 𝑧 > 0;  𝑟 > 0
 

 

= {
(1 − 𝑝)𝑛,                                                             𝑧 = 0;  𝑟 = 0

𝐵(𝑧, 𝑟, 𝑛)[ℎ(𝜃)]𝑧 [
𝑔(𝜃)(1−𝑝)

𝑝
]
𝑛−𝑟

(
𝑔(𝜃)

𝑝
)
−𝑛

, 𝑧 > 0;  𝑟 > 0
 

        (2.2.19) 

 

where 

 

𝐵(𝑧, 𝑟, 𝑛) = {
1,                    𝑧 = 0; 𝑟 = 0

(
𝑛
𝑟
)𝐵(𝑧|𝑟), 𝑧 > 0; 𝑟 > 0

    (2.2.20) 

 

is such that 

 

(1 − 𝑝)𝑛 + ∑ ∫ (
𝑛
𝑟
)

𝑧>0
𝑛
𝑟=1 𝐵(𝑧|𝑟) [𝑒−

1

𝜃]
𝑧

(
𝜃(1−𝑝)

𝑝
)
𝑛−𝑟

(
𝜃

𝑝
)
−𝑛

𝑑𝑧 = 1. 
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and 𝐵(𝑧|𝑟) =
𝑧𝑟−1

𝛤𝑟
. Following Roy and Mitra (1957) and Jani and Singh (1995), it is 

possible to obtain the uniformly minimum variance unbiased estimates (UMVUE) for 

some parametric functions. Note that by referring Lemma 1.5.1, the UMVUE’s of 

parametric function 𝜙(𝑝, 𝜃)exits if and only if 𝜙(𝑝, 𝜃)can be expressed in the form 

 

𝜙(𝑝, 𝜃) = 𝛼(0,0, 𝑛)(1 − 𝑝)𝑛 + ∑ ∫
𝛼(𝑧,𝑟,𝑛)𝑒

−
𝑧
𝜃(
𝜃(1−𝑝)

𝑝
)
𝑛−𝑟

[
𝜃

𝑝
]
𝑛𝑧>0

𝑛
𝑟=1 𝑑𝑧. 

 

Thus, using (1.5.15) the UMVUE of a function 𝜙(𝑝, 𝜃) of 𝜃 and 𝑝 in 𝑔(𝑥; 𝑝, 𝜃) 

is given by  

 

𝜓(𝑍, 𝑅, 𝑛) =
 𝛼(𝑍,𝑅,𝑛)

𝐵(𝑍,𝑅,𝑛)
, 𝐵(𝑍, 𝑅, 𝑛) ≠ 0. 

 

Result 2.2.6. Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from (2.2.17). For 𝑚 ≤ 𝑛, 

and using Result 1.5.1, the UMVUE of (1 − 𝑝)𝑚 is 𝐺𝑚(𝑍, 𝑅, 𝑛) as given by (1.5.16). 

 

Result 2.2.7. For 𝑚 = 1, in Result 2.2.6, the UMVUE of (1 − 𝑝) is  

 

𝐺1(𝑧, 𝑟, 𝑛) = {

𝑛 − 𝑟

𝑛
, 𝑟 > 0; 𝑧 > 0

1,                  𝑟 = 0, 𝑧 = 0
 

 

Result 2.2.8. For  𝑚 ≤
𝑛

2
 using Result 1.5.2 the UMVUE of the variance of 𝐺𝑚(𝑍, 𝑅, 𝑛) 

is given by (1.5.17). 

 

Result 2.2.9. For 𝑚 = 1, the UMVUE of the variance of UMVUE of (1 − 𝑝) is given 

by 

𝑣𝑎𝑟 ̂[𝐺1(𝑧, 𝑟, 𝑛)] = {

𝑟(𝑛 − 𝑟)

𝑛2(𝑛 − 1)
, 𝑟 = 1, 2, … , (𝑛 − 1)

0,                          𝑜. 𝑤.
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Result 2.2.10. For  𝑘 > 0 and using Result 1.5.3, the UMVUE of parametric function 

(1 − 𝑝)𝑛 + (
𝑝 

𝜃
)
𝑘
[1 − (1 − 𝑝)𝑛−𝑘] is given by 

 

𝐻𝑘(𝑧, 𝑟, 𝑛) = {

(𝑟)𝑘(𝑟 − 1)𝑘
(𝑛)𝑘𝑧𝑘

, 𝑟 = 1, 2, … , 𝑛;  𝑧 > 0

1,                                𝑟 = 0;  𝑧 = 0

 

 

where (𝑎)𝑘 = 𝑎(𝑎 − 1)… (𝑎 − 𝑘 + 1), and 𝑧 = ∑ 𝑥𝑖𝑥𝑖>0
.  

 

For various values of 𝑘 ≥ 1, one can obtain the UMVUE of the parametric 

function. Unfortunately, it is impossible to find a unbiased estimate for the parameter 

𝜃 alone. Aitchison (1955) through the usual classical approach obtain the UMVUE of 

the parametric function (1 − 𝑝)2𝜃2 as 

 

𝜑(𝑧, 𝑟, 𝑛) = {

(2𝑛 − 𝑟 − 1)𝑧2

𝑛(𝑛 − 1)(𝑟 + 1)
, 𝑟 > 0;  𝑧 > 0

0,                                      𝑟 = 0;  𝑧 = 0

 

 

Result 2.2.11. The UMVUE of the variance of 𝐻𝑘(𝑍, 𝑅, 𝑛), according to Result 1.5.4 

is obtained as 

 

𝑣𝑎𝑟 ̂[𝐻𝑘(𝑧, 𝑟, 𝑛)] = {
[
(𝑟)𝑘(𝑟 − 1)𝑘
(𝑛)𝑘𝑧𝑘

]

2

−
(𝑟)2𝑘(𝑟 − 1)2𝑘
(𝑛)2𝑘𝑧2𝑘

, 𝑟 = 1, 2, … , 𝑛;  𝑧 > 0

0,                                                                       𝑜. 𝑤.

  

 

Result 2.2.12. For fixed 𝑥, according to Result 1.5.5, the UMVUE of pdf 𝑔(𝑥; 𝑝, 𝜃) is 

shown as 

 

𝜙𝑥(𝑧, 𝑟, 𝑛) =

{
 
 

 
 
𝑟(𝑟 − 1)

𝑛𝑧
(1 +

𝑥

𝑧
)
𝑟−2

,     0 < 𝑥 < 𝑧;  𝑟 = 1,2, … , 𝑛

𝑛 − 𝑟

𝑛
,                                 𝑥 = 0;  𝑟 = 0,1, … , 𝑛 − 1

0,                                          𝑜. 𝑤.
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Result 2.2.13. For 𝑟 = 𝑛, that is when all the observations are coming from the density 

given in (2.1.1), then the UMVUE of the density 𝑓(𝑥; 𝜃) is simplified as 

 

𝜙𝑥(𝑧, 𝑟, 𝑛) = {
𝑛 − 1

𝑧
(1 +

𝑥

𝑧
)
𝑛−2

,   0 < 𝑥 < 𝑧;  𝑛 > 1

0,                                  𝑜. 𝑤.
 

 

Result 2.2.14. For fixed 𝑥, according to Result 1.5.6, the UMVUE of variance of pdf 

𝑔(𝑥; 𝑝, 𝜃) is obtained as 

 

𝑣𝑎𝑟̂[𝜙𝑥(𝑧, 𝑟, 𝑛)] 

=

{
 
 
 
 

 
 
 
 [
𝑟(𝑟 − 1)

𝑛𝑧
(1 −

𝑥

𝑧
)
𝑟−2

]
2

−
𝑟(𝑟 − 1)2(𝑟 − 2)

𝑛(𝑛 − 1)𝑧(𝑧 − 𝑥)
(1 −

𝑥

𝑧
)
𝑟−2

(1 −
𝑥

𝑧 − 𝑥
)
𝑟−3

,   0 < 𝑥 < 𝑧;  𝑟 = 2… , 𝑛

[
𝑟(𝑟 − 1)

𝑛𝑧
(1 −

𝑥

𝑧
)
𝑟−2

]
2

,                                                0 < 𝑥 < 𝑧;  𝑟 = 2,… , 𝑛

𝑟(𝑛 − 𝑟)

𝑛2(𝑛 − 1)
,                                                                         𝑥 = 0;  𝑟 = 0,1, … , 𝑛 − 1

0,                                                                                           𝑜. 𝑤.

 

 

For 𝑟 = 𝑛, all the results will reduces to that of the estimates of an exponential 

distribution, without inliers.  

 

Result 2.2.15. For fixed 𝑧 and 𝑟, the UMVUE of the survival function 𝑆(𝑡) = 𝑃(𝑋 >

𝑡), 𝑡 ≥ 0 is obtained as 

 

𝑆̂(𝑡) = {
𝑟

𝑛
(1 −

𝑡

 𝑧
)
𝑟−1

,      𝑡 < 𝑧      

0,                              𝑜. 𝑤.

 

 

Proof: Using Corollary 1.5.1, 
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𝑆̂(𝑡) = ∫ 𝜙𝑥(𝑧, 𝑟, 𝑛) 𝑑𝑥
𝑥>𝑡

 

 

                    = ∫
𝑟(𝑟−1)

𝑛𝑧

∞

𝑡
(1 −

𝑥

 𝑧
)
𝑟−2

𝑑𝑥 

 

                    =
𝑟

𝑛
(1 −

𝑡

 𝑧
)
𝑟−1

,     𝑡 < 𝑧.  

 

Hence the proof. ∎ 

 

Remark: The above result coincides with the result obtained in (2.2.13) under the 

conditional approach. 

 

Result 2.2.16. For fixed 𝑧 and 𝑟, the UMVUE of the variance of 𝑆̂(𝑡) is obtained as 

(see also equation (1.5.23)) 

 

𝑣𝑎𝑟 ̂[𝑆̂(𝑡) ] =  

{
 
 

 
 [
𝑟

𝑛
(1 −

𝑡

 𝑧
)
𝑟−1

]

2

− 
𝑟(𝑟 − 1)

𝑛(𝑛 − 1)
(1 −

2 𝑡

 𝑧
)
𝑟−1

, 𝑧 > 2𝑡

[
𝑟

𝑛
(1 −

𝑡

𝑧
)
𝑟−1

]

2

,                                                  𝑡 < 𝑧 <  2𝑡

0,                                                                              𝑜. 𝑤.

 

 

For 𝑟 = 𝑛, both the above results reduce to the case of an exponential distribution.  

 

 

2.3. Analysis of early failure model-1 

 

In this section, we consider the early failure model given by Miller (1960) in which 

one failure rate is assumed to be in effect for an initial time interval [0, 𝑇0) and another 

lower failure rate is operative thereafter, as given in section 1.3.2. We viewed this 

model as a model for a shift in the hazard function of exponential distribution, where, 
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we assume that the population of components is composed of two groups with 

different failure rates, 𝜆1 and 𝜆2. Suppose, the early failure group comprises a 

proportion 𝑝 of this population, then the situation is modeled using a complete mixture 

of two distributions in the proportion 𝑝 and (1 − 𝑝). Mendehall and Hader (1958) also 

discussed this type of problem with exponential data. In this context the estimation 

of 𝜆1, 𝜆2, and 𝑝 is complicated unless each failure is examined to determine to which 

subpopulation it belongs. For some experimental programs, however, it is not always 

possible to examine each failure to determine its cause. 

 

 Miller (1960) proposed another early failure model, which works in the 

following manner: Suppose 𝑁 items are put on test and are tested until failure or time 

𝑇1, whichever is sooner, where 𝑇0 < 𝑇1. Due to limitations on experimental time, no 

item is tested past 𝑇1. For this censored test structure, let 𝑋∗ be the time at which the 

test terminates for any particular unit. For 𝑋∗ = 𝑥 < 𝑇1, the value 𝑋∗ = 𝑥 denotes the 

failure of the item at time 𝑥. 𝑋∗ = 𝑇1, denotes the time that had not failed when the 

experiment was terminated at 𝑇1. Then the probability distribution of 𝑋∗ to be 

 

𝑓𝑋∗(𝑥; 𝜆1, 𝜆2) = {

𝜆1𝑒
−𝜆1𝑥,                           0 ≤ 𝑥 < 𝑇0

𝜆2𝑒
−𝜆1𝑇0−𝜆2(𝑥−𝑇0),        𝑇0 ≤ 𝑥 < 𝑇1

𝑒−𝜆1𝑇0−𝜆2(𝑇1−𝑇0),             𝑥 = 𝑇1

  (2.3.1) 

 

In the event that the experimental procedure is to test all items to failure, the 

equation (2.3.1) becomes the limiting expressions as 𝑇1 → ∞. The above experiment 

leads to the estimator of 𝜆 as 

 

𝜆̂ =
𝑛

∑ 𝑥𝑖
𝑛
𝑖=1  +(𝑁−𝑛)𝑇1

.       (2.3.2) 

 

As 𝑁 → ∞, 𝜆̂ will converge in probability to  𝜆. However, if the assumption of 

a constant failure rate is incorrect and in fact the early failure model pertains, 𝜆̂ will 

converge in probability to 
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Λ(𝜆1, 𝜆2, 𝑇0, 𝑇1) =
1−𝑒−𝜆1𝑇0−𝜆2(𝑇1−𝑇0)

1

𝜆1
(1−𝑒−𝜆1𝑇0)+

1

𝜆2
𝑒−𝜆1𝑇0(1−𝑒−𝜆2(𝑇1−𝑇0))

.  (2.3.3) 

 

By choosing plausible values of 𝜆1, 𝜆2, and 𝑇0, the experimenter can determine 

the magnitude of the error one may be making by not assuming the early failure model. 

For asymptotic studies under cases 𝑇0 known and unknown, one may refer to Miller 

(1960) for details. By retaining the model in equation (1.3.3), we slightly modify the 

sampling plan in this way: Suppose 𝑛 items are put on test, and 𝑛 − 𝑟 of them failed 

before some time, say  𝛿, which is known and fixed. If we define 

 

 𝐼(𝑥) = {
1,   𝑥 ≤ 𝛿 
0,   𝑥 > 𝛿

       (2.3.4) 

 

then the following results are obvious: 

 

Result 2.3.1. The MLE of 𝜃1 and 𝜃2 are respectively given by  

 

𝜃1𝑀𝐿𝐸 =
1

𝑛−𝑟
(∑ 𝑥𝑖 + 𝑟𝛿𝑥𝑖<𝛿

) and  𝜃2𝑀𝐿𝐸 =
1

𝑟
(∑ 𝑥𝑖 − 𝛿𝑥𝑖<𝛿

). 

 

Result 2.3.2. (𝜃1𝑀𝐿𝐸 , 𝜃2𝑀𝐿𝐸)
′
~𝐴𝑁(2) [(𝜃1, 𝜃2)

′, 𝑑𝑖𝑎𝑔(
𝜃1
2

𝑛(1−𝑒
−
𝛿
𝜃1)

,
𝜃2
2

𝑛𝑒
−
𝛿
𝜃1

)]. 

 

Result 2.3.3. The parameter 𝜃1 and 𝜃2 are independent. 

 

The above results are comparable with the results obtained by Miller (1960) 

for 𝑁 → ∞. Note that, the model discussed in (1.3.2) and (2.3.1) may look like a 

change point model where changes are observed in the failure rate of two exponential 

distributions. Instead, if we allow, the failure mechanism to decide the early failures 

from the available data, then the model can be more viable for easy implementation. 
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We now discuss one such model in the next section. Also note that UMVU estimation 

is not possible in the above model. 

 

 

2.4. Analysis of early failure model-2 

 

Now consider the model as given in equation (1.3.4) of Section 1.3.3. If 𝑓(𝑥; 𝜃) is as 

in (2.1.1), 𝐼(x) is the indicator function defined in equation (1.5.10), for 𝑑 = 𝛿 and 

∑ 𝐼(𝑥𝑖) = 𝑛 − 𝑟
𝑛
𝑖=1 , where 𝑟 is number of observations greater than 𝛿, then the joint 

probability correspond to exponential early failure is written as 

 

𝑔(𝑥; 𝑝, 𝜃) = (1 − 𝑝 𝑒−
𝛿

𝜃)
𝑛−𝑟

(
𝑝

𝜃
)
𝑟
𝑒−

∑ 𝑥𝑖𝑥𝑖>𝛿
𝜃 .    (2.4.1) 

 

The following results are found obvious: 

 

Result 2.4.1. The MLE of 𝑝 and  𝜃 are respectively given by 

 

 𝑝̂𝑀𝐿𝐸 =
𝑟

𝑛
 𝑒
𝛿

𝜃 and 𝜃𝑀𝐿𝐸 =
∑ (𝑥𝑖−𝛿)𝑥𝑖>𝛿

𝑟
. 

 

Result 2.4.2. (p̂𝑀𝐿𝐸 , θ̂𝑀𝐿𝐸)
′
~AN(2) [(𝑝, 𝜃),,

1

𝑛
𝐼𝑔1
−1
(𝑝,𝜃)], where 

 

1

𝑛
𝐼𝑔1
−1(𝑝, 𝜃) =

[
 
 
 
 
 
 𝑝 (1 − 𝑝 𝑒

−
𝛿

𝜃)

 𝑛𝑒
−
𝛿

𝜃

(1 +
𝛿2

𝜃2 (1 − 𝑝 𝑒−
𝛿

𝜃)
) −

𝛿 

 𝑛𝑒
−
𝛿

𝜃

−
𝛿 

 𝑛𝑒
−
𝛿

𝜃

𝜃2

𝑛𝑝 𝑒
−
𝛿

𝜃 ]
 
 
 
 
 
 

 

 

Result 2.4.3. The parameter 𝑝 is not orthogonal to the parameter 𝜃. 
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We now proceed with the UMVU Estimation. Writing (2.4.1), in the form of 

(1.5.9), we get 

 

𝑔1(𝑥; 𝑝, 𝜃) = (1 − 𝑝𝑒−
𝛿
𝜃)𝐼(𝑥) (

𝑝

𝜃
𝑒−

𝑥
𝜃)

(1−𝐼(𝑥))

 

 

= [𝑎(𝑥)](1−𝐼(𝑥))[ℎ(𝜃)](1−𝐼(𝑥))𝑑(𝑥) [
𝑔(𝜃)(1−𝑝𝑒

−
𝛿
𝜃)

𝑝𝑒
−
𝛿
𝜃

]

𝐼(𝑥)

(
𝑔(𝜃)

𝑝𝑒
−
𝛿
𝜃

)

−1

 

(2.4.2) 

 

where, 𝑎(𝑥) = 1, ℎ(𝜃) = 𝑒−
1

𝜃 , d(𝑥) = 𝑥, 𝑔(𝜃) = 𝜃𝑒−
𝛿

𝜃. If we apply the same 

arguments as before, we can show that (2.4.2) is a two-parameter exponential family 

with natural parameters (𝜂1, 𝜂2) = (𝑙𝑜𝑔 [
𝑒
−
δ
𝜃(1−𝑝𝑒

−
δ
𝜃)

𝑝𝑒
−
δ
𝜃

] , 𝑙𝑜𝑔 (𝑒−
1

𝜃)), indexed by the 

parameters (𝑝𝑒−
δ

𝜃, 𝜃). Hence (𝐼(𝑥), (1 − 𝐼(𝑥))𝑥) is jointly minimal sufficient for 

(𝑝𝑒−
δ

𝜃, 𝜃), as 𝐼(𝑥) and (1 − 𝐼(𝑥))𝑥 do not satisfy any linear restriction. Further, if we 

denote 𝑧 = ∑ [1 − 𝐼(𝑥𝑖)]𝑥𝑖
𝑛
𝑖=1 (= ∑ 𝑥𝑖𝑥𝑖>δ

), then the joint density function can be 

expressed as 

 

𝑔1(𝑧; 𝑝, 𝜃) = (
𝑛
𝑟
) (𝑝𝑒−

δ
𝜃)

𝑟

  (1 − 𝑝𝑒−
δ
𝜃)

𝑛−𝑟

   
(𝑒−

1
𝜃)

𝑧

 

(
𝑛
𝑟
) (𝜃𝑒−

δ
𝜃)

𝑟 

 

        = 𝑃(𝑛 − 𝑅 = 𝑛 − 𝑟)  𝑔1(𝑧; 𝜃 |𝑛 − 𝑟).   (2.4.3) 

 

Therefore, by Neyman factorization theorem (𝑛 − 𝑅, 𝑍) are jointly sufficient for 

(𝑝𝑒−
δ

𝜃, 𝜃). Here 𝑟 is number of observations greater than 𝛿. Also, 𝑛 − 𝑅 is binomial 



Inferences on inliers in Exponential distribution  68 

 

 

which is same as that of 𝑅 with parameter (𝑛, 𝑝𝑒−
δ

𝜃), and is a complete family. Also 

the variable (𝑍|𝑅 = 𝑟, 𝑟 > 0) is distributed as a Gamma random variable having density 

 

𝑔1(𝑧;  𝜃|𝑟) =
1

Γ𝑟 (𝜃𝑒
−
δ
𝜃)

𝑟 𝑧𝑟−1𝑒
−(

𝑧

𝜃𝑒
−
δ
𝜃

)

, 𝑧 > 0;  𝜃 > 0.  (2.4.4) 

 

Hence 𝑍|𝑅 is complete sufficient for 𝜃𝑒−
δ

𝜃. This preserves the exponential structure 

for (2.4.4). Therefore, the joint pdf of complete sufficient statistics can be written as  

 

𝑔1(𝑧, 𝑛 − 𝑟;  𝑝, 𝜃)

=

{
 
 
 
 

 
 
 
 (1 − 𝑝𝑒−

δ
𝜃)

𝑛

,                                                   𝑧 = δ; 𝑟 = 0

𝐵(𝑧, 𝑟, 𝑛)

[ℎ(𝜃)]𝑧 [
𝑔(𝜃)(1 − 𝑝𝑒−

δ
𝜃)

𝑝𝑒−
δ
𝜃

]

𝑛−𝑟

(
𝑔(𝜃)

𝑝𝑒−
δ
𝜃

)

𝑛 , 𝑧 > δ; 𝑟 = 1, 2, … , 𝑛

 

          (2.4.5) 

 

where  

𝐵(𝑧, 𝑟, 𝑛) = {
1,                       𝑧 = δ;  𝑟 = 0

(
𝑛
𝑟
)
𝑧𝑟−1

Γ𝑟
 ,       𝑧 > δ;  𝑟 = 1,2, … , 𝑛.

  (2.4.6) 

 

and 𝐵(𝑧|𝑟) =
𝑧𝑟−1

𝛤𝑟
.  The UMVUE’s of parametric function 𝜙(𝑝, 𝜃)exits if and only if 

(𝑝, 𝜃)can be expressed in the form 

 

𝜙(𝑝, 𝜃) = 𝛼(δ, 0, 𝑛) (1 − 𝑝𝑒−
δ

𝜃)
𝑛

+ ∑ ∫ 𝛼(𝑧, 𝑟, 𝑛)
𝑧>δ

𝑛
𝑟=1 𝑒−

z

𝜃 [
𝑔(𝜃)(1−1−𝑝𝑒

−
δ
𝜃)

𝑝𝑒
−
δ
𝜃

]

𝑛−𝑟

(
𝑔(𝜃)

𝑝𝑒
−
δ
𝜃

)

−𝑛

𝑑𝑧. 
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Note that, the UMVUE of function 𝜃 alone is not 𝑈-estimable. The UMVUE 

of parametric function can be developed in the same way as we have done in the 

instantaneous failure case above, where the observations are considered as 𝑋 = δ and 

𝑋 > δ instead of 𝑋 = 0 and 𝑋 > 0 respectively. Hence the expressions are not 

represented again. The numerical computation of parametric functions are discussed 

in the last section. 

 

 

2.5. Nearly instantaneous failure model 

 

It is seen that the models described above are represented as a mixture of a singular 

distribution at zero and exponential distribution in different proportion. Because of the 

singular nature of the distribution, it is unable to define the failure rate function 

meaningfully. Lai et.al. (2007) have studied a flexible model as a mixture of two 

continuous distributions. This modification allows establishing and studying the 

failure rate function via mixture distribution.  

 

Instead of assuming an instant or an early failure to occur at a particular time 

point as in the original model, the model is represented as a mixture of a generalized 

Dirac delta function and 𝑓(𝑥;  𝜃) as given in (2.1.1). Thus the resulting modification 

gives rise to a density function 

 

𝑓(𝑥; 𝑝, 𝜃) = (1 − 𝑝)Δ𝛿(𝑥 − 𝑥0) +
𝑝

𝜃
𝑒−

𝑥

𝜃    (2.5.1) 

 

where 

 

Δ𝛿(𝑥 − 𝑥0) = {
1

𝛿
,     𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝛿 

0,      𝑜. 𝑤.
    (2.5.2) 
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for sufficiently small 𝛿. We note that Δ(𝑥 − 𝑥0) = lim
𝛿→0

(𝑥 − 𝑥0), where Δ(. ) is the 

Dirac delta function that is well known in mathematical analysis. We may view the 

Dirac delta function as a normal distribution having a zero mean and standard 

deviation that tends to 0. For a fixed value of 𝛿, equation (2.5.2) denotes a uniform 

distribution over an interval [𝑥0, 𝑥0 + 𝛿]  so the modified model is now effectively a 

mixture of a continuous FTD with a uniform distribution. Also note that from (2.5.1) 

and (2.5.2), we see that the mixture density function is not continuous at 𝑥0 and 𝑥0 +

𝛿. However, both the survival function and failure rate function are continuous. They 

are respectively given as 

 

𝑆(𝑥) =

{
 
 

 
 1 − 𝑝 + 𝑝𝑒−

𝑥

𝜃,                    0 ≤ 𝑥 < 𝑥0
(1−𝑝)(𝛿+𝑥0−𝑥)

𝛿
+ 𝑝𝑒−

𝑥

𝜃,       𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝛿

𝑝𝑒−
𝑥

𝜃,                                    𝑥 > 𝑥0 + 𝛿

  (2.5.3) 

 

and 

 

ℎ(𝑥) =

{
  
 

  
 1
𝜃
(

𝑝𝑒
−
𝑥
𝜃

1−𝑝+𝑝𝑒
−
𝑥
𝜃

) ,                    0 ≤ 𝑥 < 𝑥0

1−𝑝+
1

𝜃
(𝛿𝑝𝑒

−
𝑥
𝜃)

(1−𝑝)(𝛿+𝑥0−𝑥)+𝛿𝑝𝑒
−
𝑥
𝜃

,         𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝛿

1

𝜃
,                                           𝑥 > 𝑥0 + 𝛿.

  (2.5.4) 

 

Also, note that, for 𝑥0 = 0, the model reduces to the case of instantaneous 

failures and for (small) 𝑥0 ≠ 0, the model reduces to the case of early failures. We 

consider a special case of the model (2.5.1) where 𝑥0 = 0. The model may be called 

the exponential with “nearly instantaneous failure” model. The snapshots are taken of 

some possible shapes from this model, as it is important to identify whether the model 

is useful for specific datasets for which empirical plots are available. In Figure 2.1, 

three density functions with 𝑝 = 0.2, 0.5 and 0.8 are plotted.  In all figures, largest 

mixing proportion 𝑝 is given by the solid line. The survival functions are given by 
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Figure 2.2, which corresponds to the density functions in Figure 2.1. The failure rate 

function is given in Figure 2.3. 

 

 

Figure 2.1. Plots of density function f(𝑥; 𝑝, 𝜃): 𝜃 = 0.8, 𝛿 = 0.2, 𝑥0 = 0 

 

 

 

Figure 2.2. Plots of survival function 𝑆(𝑡): 𝜃 = 0.8, 𝛿 = 0, 𝑥0 = 0 



Inferences on inliers in Exponential distribution  72 

 

 

 

Figure 2.3. Plots of failure rate function 

 

The parameter estimates are not available in closed form, but can be estimated 

numerically. This and other comparative study on all the model parameter estimates 

and confidence intervals are presented in the last section.  

 

 

2.6. Simulation study 

 

In this section, we conduct simulation experiments to check the performance of 

estimators under different combination of (𝑛, 𝑟). We present the estimates of the 

parameters and parametric functions for various choices of inliers using simulated 

data. Each estimate is based on a simulation of 1000 random samples of size 𝑛=50 

with different choices of 𝑟. For all models, a value of 𝜃 =12 is assumed for exponential 

distribution, and for early failure models, the value of 𝛿 is set at 3. In Table 2.1, we 

present the estimates of the parameters and parametric functions for various choices 

of early failures. The standard error of the estimate is shown in the bracket. For early 

failure model-1, we estimated both the exponential parameters of failure rate. Note 

that the estimate of  𝑝 and is 𝜃 is comparable in all cases.  
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Table 2.1. Summary of estimates of models 

Model (𝑛, 𝑟) Parameter Estimates (se) Confidence interval 

Instantaneous 

failure 

(50,15) 𝑝̂𝑀𝐿𝐸  

𝜃̂𝑀𝐿𝐸 

0.30132 (0.06413) 

11.84763 (3.10818) 

(0.17563, 0.42701) 

(5.75571, 17.93956) 

(50,25) 𝑝̂𝑀𝐿𝐸  

𝜃̂𝑀𝐿𝐸 

0.49904 (0.07002) 

11.94607 (2.40912) 

(0.36180, 0.63628) 

(7.22428, 16.66786) 

Nearly 

instantaneous 

failure 

(50,15) 𝑝̂𝑀𝐿𝐸  

𝜃̂𝑀𝐿𝐸 

0.30916 (0.07346) 

11.92468 (2.98543) 

(0.16518, 0.45314) 

(6.07334, 17.77602) 

(50,25) 𝑝̂𝑀𝐿𝐸  

𝜃̂𝑀𝐿𝐸 

0.50780 (0.06922) 

12.06702 (2.56342) 

(0.37213, 0.64347) 

(7.04281, 17.09123) 

Early failure-1 

(𝛿=3) 

(50,15) 

 
𝜃̂1𝑀𝐿𝐸 

𝜃̂2𝑀𝐿𝐸 

2.59393 (0.44694) 

11.76792 (3.03974) 

(1.44270, 3.74516) 

(3.93808, 19.59778) 

(50,25) 

 
𝜃̂1𝑀𝐿𝐸 

𝜃̂2𝑀𝐿𝐸 

4.36831 (0.88836) 

11.91585 (2.41742) 

(2.08006, 6.65656) 

(7.08942, 16.85781) 

Early failure-2 

(𝛿 =3) 

(50,15) 

 
𝑝̂𝑀𝐿𝐸  

𝜃̂𝑀𝐿𝐸 

0.31351 (0.05083) 

12.03409 (0.35732) 

(0.21388, 0.41313) 

(5.03070, 19.03748) 

(50,25) 

 
𝑝̂𝑀𝐿𝐸  

𝜃̂𝑀𝐿𝐸 

0.50290 (0.06306) 

11.92112 (2.75176) 

(0.37930, 0.62649) 

(6.52778, 17.31447) 

 

 

Table 2.2 presents the UMVU estimates of parametric functions and its 

variance for instantaneous and early failure model-2. It is seen that the standard error 

is very small for every combination of (𝑛, 𝑟) and 𝑘.  

 

 

Table 2.2. Summary of estimates of parametric functions and its estimate of 

the variance 

 

 

 

(𝑛, 𝑟) 

 

 

 

𝑘 

UMVUE of parametric function and its variance 

Instantaneous failure model Early failure model-2 (𝛿 =3.0) 

(1 − 𝑝)𝑛 + (
𝑝

𝜃
)
𝑘

[1 − (1 − 𝑝)𝑛−𝑘] (1 − 𝑝𝑒−
𝛿
𝜃⁄ )𝑛 + (

𝑝

𝜃
)
𝑘

[1 − (1 − 𝑝𝑒−
𝛿
𝜃⁄ )

𝑛−𝑘

] 

(50,15) 1 2.531e-02 (7.822e-05) 1.530e-02 (3.690e-05) 

2 6.381e-04 (2.291e-07) 2.261e-04 (3.489e-08) 

3 1.603e-05 (3.415e-08) 3.253e-06 (4.122e-09) 

(50,25) 1 4.179e-02 (1.113e-04) 2.526e-02 (5.590e-05) 

2 1.746e-03 (8.576e-07) 6.255e-04 (1.432e-07) 

3 7.306e-05 (4.022e-09) 1.518e-05 (2.077e-10) 

(50,40) 1 6.672e-02 (1.392e-04) 4.120e-02 (7.801e-05) 

2 4.458e-03 (2.660e-06) 1.675e-03 (5.326e-07) 

3 2.986e-04 (3.015e-08) 6.717e-05 (2.027e-09) 

(50,50) 1 8.360e-02 (1.456e-04) 5.170e-02 (8.638e-05) 

2 6.991e-03 (4.305e-06) 2.648e-03 (9.330e-07) 

3 5.849e-04 (7.372e-08) 1.343e-04 (5.622e-09) 
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It is observed from Table 2.2 that as the value of 𝑘 increases, the estimate of 

the parametric function increases and variance of the estimate goes down. For early 

failure model case the reduction in variance is drastic for each combination of 𝑛 and 

𝑟. It is also observed that the UMV estimates are increasing function of the sample 

sizes. The UMV estimate of probability density function and reliability function for 

the above two models along with their standard errors are shown in Table 2.3. A value 

of 𝛿 =3 is assumed for early failure model-2. The entries in brackets are the estimate 

of variances.  

 

 

Table 2.3. Summary of estimates of pdf and survival functions 

(𝑛, 𝑟) 𝑘 UMVUE of PDF UMVUE of survival function 

Instantaneous  

failure model 

Early failure  

model-2 

Instantaneous 

failure model 

Early failure 

model-2 

(50,15) 2 0.02142 (4.424e-05) 0.01352 (2.450e-05) 0.25469 (0.00315) 0.20924 (0.00288) 

4 0.01812 (2.525e-05) 0.01194 (1.622e-05) 0.21524 (0.00253) 0.18381 (0.00238) 

6 0.01533 (1.477e-05) 0.01054 (1.076e-05) 0.18187 (0.00214) 0.16136 (0.00203) 

8 0.01296 (9.041e-06) 0.00929 (7.239e-06) 0.15364 (0.00185) 0.14155 (0.00178) 

10 0.01096 (5.920e-06) 0.00819 (4.970e-06) 0.12978 (0.00161) 0.12409 (0.00158) 

(50,25) 2 0.03534 (6.171e-05) 0.02222 (3.629e-05) 0.42209 (0.00379) 0.33774 (0.00375) 

4 0.02989 (3.420e-05) 0.01954 (2.346e-05) 0.35702 (0.00317) 0.29604 (0.00313) 

6 0.02528 (1.922e-05) 0.01717 (1.518e-05) 0.30199 (0.00280) 0.25938 (0.00272) 

8 0.02138 (1.124e-05) 0.01508 (9.927e-06) 0.25544 (0.00252) 0.22717 (0.00243) 

10 0.01808 (7.078e-06) 0.01324 (6.635e-06) 0.21608 (0.00228) 0.19888 (0.00220) 

(50, 40) 2 0.05647 (7.303e-05) 0.03614 (4.885e-05) 0.67773 (0.00262) 0.54433 (0.00379) 

4 0.04780 (3.714e-05) 0.03170 (3.025e-05) 0.57370 (0.00259) 0.47658 (0.00331) 

6 0.04046 (1.840e-05) 0.02779 (1.860e-05) 0.48564 (0.00269) 0.41718 (0.00305) 

8 0.03425 (9.140e-06) 0.02436 (1.146e-05) 0.41110 (0.00276) 0.36509 (0.00288) 

10 0.02899 (4.907e-06) 0.02135 (7.197e-06) 0.34800 (0.00274) 0.31944 (0.00274) 

(50,50) 2 0.07073 (7.126e-05) 0.04534 (5.260e-05) 0.84603 (0.00041) 0.68298 (0.00285) 

4 0.05983 (3.214e-05) 0.03975 (3.136e-05) 0.71578 (0.00118) 0.59800 (0.00269) 

6 0.05062 (1.277e-05) 0.03485 (1.833e-05) 0.60558 (0.00239) 0.52351 (0.00270) 

8 0.04283 (4.065e-06) 0.03054 (1.056e-05) 0.51234 (0.02390) 0.45821 (0.00276) 

10 0.03623 (8.409e-07) 0.02676 (6.101e-06) 0.43347 (0.02660) 0.40098 (0.00278) 

 

 

2.7. Numerical examples  

 

Here we discuss two datasets given in the Appendix. Dataset A.2 is based on the 

complete failure times in weeks of 50 items as considered by Murthy et al. (2004) 
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involves early failures and other dataset A.1 is based on Vannman’s (1991) data on 

drying of woods under schedules 1 of Experiments 3 involves both instantaneous and 

early failures. Both the datasets supports exponential distribution for the positive 

failures times. The plots along with the parameter estimates are presented below.  

 

The graphical plot of these examples is given in Figure 2.4 and Figure 2.5 below.  

 

Figure 2.4. Example-Murthy et al. (2004) data (𝛿 = 1.0, 𝑝 = 0.8) 

 

 

Figure 2.5. Example-Vannman’s (1991) data (𝛿 = 0.2, 𝑝 = 0.3) 
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The summary of estimates of models for some selected value of parameters of the 

above two examples are shown in Table 2.4. The entry shown in bracket is the estimate 

of standard error.  

 

 

Table 2.4. Summary of estimates of models 

Model Parameter/parametric function Estimates (SE) 

Murthy et al. (2004) Vannman’s (1991) 

 

 

 

Instantaneous 

failure 

𝑝̂𝑀𝐿𝐸 

𝜃̂𝑀𝐿𝐸 

95% Confidence Interval for 𝑝 

95% Confidence Interval for 𝜃 

1.00000 (0.00000) 

7.82102 (1.10606) 

(-) 

(5.65318, 9.98886) 

0.30000 (0.07246) 

1.01686 (0.29354) 

(0.15799, 0.44201) 

(0.44153, 1.59219) 

UMVUE of (1 − 𝑝) 

UMVUE of (1 − 𝑝)𝑛 +
𝑝

𝜃
[1 − (1 − 𝑝)𝑛] 

UMVUE of pdf at 𝑥 =2.0 

UMVUE survival function at 𝑥 =2.0 

- 

0.12530 (0.01789) 

0.09797 (0.01049) 

0.77783 (0.02793) 

0.70000 (0.07335) 

0.27044 (0.10310) 

0.04515 (0.01703) 

0.04187 (0.02608) 

 

Nearly 

instantaneous 

failure 

 

𝑝̂𝑀𝐿𝐸 

𝜃̂𝑀𝐿𝐸 

95% Confidence Interval for 𝑝 

95% Confidence Interval for 𝜃 

δ =1.0 δ =0.0135 

0.78000 (0.00654) 

9.92026 (1.05647) 

(0.67822, 0.96684) 

(6.12068, 11.71984) 

0.30406 (0.01022) 

1.00336 (0.28964) 

(0.28404, 0.32409) 

(0.43566, 1.57105) 

 

 

Early failure-1 

 

𝜃̂1𝑀𝐿𝐸 

𝜃̂2𝑀𝐿𝐸 

95% Confidence Interval for 𝜃̂1 

95% Confidence Interval for 𝜃̂2 

δ =1.0, 𝑝 =0.80 δ =0.2, 𝑝 =0.30 

3.92373 (1.16990) 

8.92026 (1.43296) 

(1.63078, 6.21668) 

(6.11170, 11.72881) 

0.07120 (0.01161) 

1.00664 (0.64841) 

(0.04843, 0.09395) 

(0.00000, 2.27750) 

Early failure-2 

 δ =1.0 δ =0.20 

𝑝̂𝑀𝐿𝐸 0.87253 (0.04812) 0.30495 (0.04520) 

𝜃̂𝑀𝐿𝐸 8.47973 (1.42838) 1.00664 (0.31833) 

95% Confidence Interval for 𝑝 (0.77822, 0.96684) (0.21636, 0.39353) 

95% Confidence Interval for 𝜃 (6.12068, 11.71984) (0.38273, 1.63055) 

UMVUE of (1 − 𝑝𝑒−𝛿/𝜃) 0.22000 (0.05918) 0.75000 (0.06935) 

UMVUE of  

(1 − 𝑝𝑒−𝛿/𝜃)
𝑛
+
𝑝

𝜃
[1 − (1 − 𝑝𝑒−𝛿/𝜃)

𝑛
] 

0.07661 (0.01369) 0.18647 (0.07899) 

UMVUE of pdf at 𝑥 =2.0 0.06324 (0.00955) 0.04375 (0.01449) 

UMVUE of survival function at 𝑥 =2.0 0.64056 (0.05273) 0.04893 (0.03922) 

 

 

 


