Chapter 7

Inferences on inliers in Pareto Il distribution
with Type Il censored data

7.1. Introduction

In this chapter, we model the inliers situation using the Type Il censored lifetime data
from a Pareto Il distribution. As discussed in the previous chapter, here also, we follow
the same censoring scheme and sample discussed therein. The Pareto Type Il
distribution (also called Lomax distribution with location parameter zero) has the

probability distribution function (pdf)
f(x (X) W, x>0;[3>0,6>0 (711)

where a = (8,0), B is a scale parameter and 6 is a shape parameter. The Pareto
distribution has been used in connection with studies of income, property values,
insurance risk, migration, size of cities and firms, word frequencies, business
mortality, service time in queuing systems, etc. The paper by Aban et al. (2006)
contains a detailed list of important areas where heavy-tailed distributions are found
applicable. There are also recent applications of the Pareto distribution in data sets on
earthquakes, forest fire areas, fault lengths on Earth and Venus, and on oil and gas

fields sizes, see Reed and Jorgensen (2004) for details.

This chapter is published as research article in Reliability: Theory and Applications. Vol. 13, No. 3
(50): 60 —89, 2018.
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When g =1, the Pareto Type Il inliers distribution has the density function as

p1, x=0
h(x;0) = {F? x=1 (7.1.2)
T a-pee s () x> 1
P17P2) @) 7 ¥

The parameter vector to be estimated are 8 = (pq,p,, 8). In various sections below,
we suggest product moment estimator along with MLE and UMVU estimator of the
unknown parameters in the model. We consider four real datasets for implementing

the proposed model in the last section.

7.2. Maximum Likelihood Estimation

Suppose n items placed on life test, where r; items have life zero where as r, items
have life 1 and remaining n — r; — r, items have life greater than 1, is denoted by
X1,X2, ey Xn—r,—r,- BY applying the technique of ‘Type II censored sample’, the
experiment terminates after prefixed number of failures n —r; —r, — ¢ out of n —
r, — 1, items, where, n—r,—nr,—c<n—nr, —n,. Clearly, if n—r,—n, —c =
n —r; — 1y, then the experiment is not terminated and all n — r; — r, lifetimes are
observed. Lt n—-nrn-nrn-—-—c =minn—r—nrn—c, n—r—r) and
X1y, X2y - » X(n-r,—r,~c+) denote ordered observed failure time of these n —r; —
r, —c* items from h € H as given in (7.1.2). Then the likelihood equation can be

written as

L(81x) = T2 77 h(xqy: 0) [1 = H(xnory-rp—ci 0)]°

If we define Il(x)={é' z;o and Iz(x)={(1)' i:,l
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then the likelihood equation is

r—1)!

en—rl—rz—c*
c*!

n —
L(Q|£) =p"p,*(1—py — Pz)(n_rl_m (

n-ri—rp—c*

n-ri-rp—c* 1+x( " 1+x(n—r1—rz—c*)
1_[ 1 e—9 Yol ? log(T)+c log| ———+—

1+ X(i)

i=1

(7.2.1)

where r; = it I (x(;)) and r, = Yt I (x(;)), denotes the number of zero and one
observations respectively. Let the maximum likelihood estimator of parameter 6 =

(P1,02,0), 1S Oue = Prmirr P2mrr, Oumie), Say. We now investigate the following

four possible cases of likelihood estimates:

Case (i). ; = 0, that is 7, = n. The likelihood function simply reduces to L(8|x) =
py. Obviously, this is maximum when p, = 1. This corresponds to the maximum

likelihood estimator P,y g = %2 Since L(Q|§) = p7 is free from the other parameters,

the maximum likelihood estimator of other parameters does not exist.

Case (ii). r, = 0, that is r; = n. The likelihood function simply reduces to L(Q|£) =
pr. Obviously, this is maximum when p; = 1. This corresponds to the maximum
likelihood estimator py . x = % Since L(8|x) = p} is free from the other parameters,

the maximum likelihood estimator of other parameters does not exist.

Case (iii). r; <n,r, < nbut r; +r, = n. The likelihood function simply reduces to

L(8]x) = p;'py2. Here p;+p,<n and the likelihood function L(8|x) <

T T-
(ﬂ) ' (x—z) * S0 PumLe =% and Popyrp = ;—2 The maximum likelihood of other

n n

parameters does not exist.
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Case (iv). r; + r, < n. The log-likelihood function is given by

log L(8]x) = rylogp;y + 13 log p; + (n — 11 — 1) log(1 — p; — p2)
+login—r, — ) —logc'+(n—1r, —1r, —c*) log O

n-ry—ry—c”

i=1
n—-ry—ry—c* X(i) (n-r1-ry—c*)
~0[ZI5 7 t0g (F52) + ¢ log (o)
(7.2.2)
The maximum likelihood estimator of parameter 6 is obtained by solving the

following likelihood equations:

dlogL(0lx) _ r _n-m-m _ (7.2.3)
0P, P1 1-p1-D2 h
dlogL(Blx) _ 12 _n-m-m _ (7.2.4)

0p2 P2 1-p1-D2 h

and
d logL(ng) o n-n—r—C
26 B 0
n—r;—ry—c*

—_ Z (1 + x(l)) + C* log (1 + x(n_rl_rZ_C*)) — 0
2

(7.2.5)

Solving (7.2.3) and (7.2.4) simultaneously, we get

ﬁ1MLE = rn_l (7-2-6)
and
A Iz
: (7.2.7)
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From (7.2.5), the estimate of 0 is
Ouis = i e : 7.2.8
MLE ™ gnoriory-et log( (n)) +C*log(1+ (n-ryorpc )) (7.2.8)
7.3. Asymptotic distribution of MLE
For density function h(x; 8) where 8 = (p;, p, 0) given in (7.1.2),
I(pi x=0
dlogh(x;0 1
g h(x:6) _ o’ L
Ip1 | 1
—_—,x>1
U5
0, x=0
1
E)logh(x 9) I— x=1
op, Lp
x>1
A-pi—p2)’
and
0, x=0
dlog h(x; Q) 0, x=1
—— =1
96 i [log(1+x) —log2],x>1
. dlogh(x; 0)\ dlogh(x;0)\ dlogh(x; 0)\
One can verify that E (—ap1 ) =0,E (—apz ) =0and E (—) =0.
Also,
1
—?, x=0
0% log h(x; 6 1
OPloghlxio) _ ], =1
dp1 1
x>1

U= p—pp?’
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0, x=0
1
0%log h(x;0) -, x=1
— = b
op; 1
— , x>1
\ (1 —py —p2)?
x=0
3% log h(x 0) x=1
2
96 92, x>1
x=0
9% log h(x; 8) 9) x=1
dp; 0p, r>1
(1 —p1 — P2)? '
02 log h(x;0) 0 0%log h(x;0) y
dp, 06 S dp, 060 x
Hence, the Fisher information is
p —E( azlogh(x;Q))_ 1-p,
b1 dp? p1(1—p; —Dp2)
p —E( azlogh(x;Q))_ 1-p;
pab2 dp3 p2(1—p; — p2)

9% log h(x; 0) 1—p,—p,
199 = E —_ — =
062 62

0%log h(x;0) 1
Ipp, = E (‘ ) =

dp; 0p; 1-p1—p2
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_ 92 logh(x; 0)\ _
I.6 _E(_ ap, 90 )_O
and
0%log h(x; 9)
oo =B\~ 50 -

The Fisher information matrix I, (8) is given by

1-p, 1
{ 1(1-p1-p2) 1-p1-p2 0 }
1 1-py
Ih( I 1-p1-p2 p2(1-p1-p2) 0 l (7'3'1)
l 0 1-p,— PZJ

The determinant of 1,(8) is given by ——~= and hence, the inverse matrix I;*(8)is

given by
p1(1—p1) —P1P2 0
-1 _| - (1—-p,) 0
I (Q) = P(;Pz P2 . P2 ” (7.3.2)
1-p1—D2

Using the standard result of MLE, we have (8,;) ~AN® [(Q)’,%I,jl(g)].

Using the estimated variances, one can also propose large sample tests for p,, p, and
6. The approximate (1 — a)% confidence interval for p;, p,, and 6 are respectively

given by

Pruie + za, /ﬁlMLE(ln_ﬁlMLE) (7.3.3)
A + D2mLE(1—P2MLE) 7.3.4
Pa2mLE T 22/, n (7.34)

and
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(n—c*) 1-P1mLE—D2MLE)

~ n2
GMLE i ZCZ/2 \/ QMLE (735)

7.4. Maximum Product Spacings Estimation

Suppose n items placed on life test, where r; items have life zero where as r, items
have life 1 and remaining n — r; — r, items have life greater than 1, is denoted by
X1, X2, o, Xy, —r,- With same setup of ‘Type II censored sample’ used in 7.2, let
Y1), Y2y, - » Y(my denote the m distinct values (including the observations 0 and 1).
Referring equation (1.5.8) and Singh et al. (2016), the product spacing (in presence of

ties) with Type Il censoring sample can be written as

S(le) _ u lH(ywi 9) —ij(J’(j—l); o)’ (1= H(yom; 0)]

1+ Y(3) Rs
_ (Pl)“ (pz)rz a ) 1—e " (=2)
= " r b1 —DP1 R,
1+ Y(j-1) 1+ V() Rj
m e—@log(f]) _ e—Blog(T])
H (1—-p1—p1) .
j=4 J
610 1+y(m)
. o1 g<—2 )
(1 =p—p) | (7.41)

Let the maximum product spacings estimator of parameter 8 = (p,,p,,60) is
Oupse = (Dimps Pampse, Oupse), say. We now investigate the following four

possible cases of product spacings estimator.
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Case (i). r; = 0, that is r, = n. The product spacings reduces toS(0|y) (1:2)
2
Obviously, this is maximum when p, = 1. This corresponds to the maximum product
spacings estimator p,ypsg = 1. Since S(9|y) (%) is free from the other
2

parameters, the maximum product spacings estimator of other parameters does not

exist.

T
Case (ii). r, = 0, that is r; = n. The product spacings reduces to S (Q|y) = (%) "
- 1
Obviously, this is maximum when p; = 1. This corresponds to the maximum product
. . n . P\,
spacings estimator p;ypsg = 1. Since S (Qly) = (r—) is free from the other
- 1

parameters, the maximum product spacings estimator of other parameters does not

exist.

Case (iii). 7, < n,r, < nbut r; +r, = n. The product spacings reduces to S (Q|X) =

(&)“ (&)TZ_ Here, p; +p, <n and the product spacing functionS(QIX)<

1 2

( . )Tl( i >r2 So, p =2 and p =2 the maximum product
(m—cry m—cr,) » Pimpse = 7 Pampse =

spacings estimator of other parameters does not exist.

Case (iv). r; + r, < n. The log-likelihood function is given by

log S (QIX) = rillogp, — logm] + 1;[log p, — log 2] + R3 log(1 — p; — p1)

| otos(222)

+R; |log R — log R3
3

1+ Y(J 1) _ vy
+2 llog(l p1—p1) + log( elog( )—e elog< 2 )>—logle

j=

+c* [log(l —p1—p)—0 log( +y(m))] (7.4.2)
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The maximum product spacing estimator of parameter 6, is obtained by

solving the following likelihood equations:

alogs(gly) T1 R3 m+1 Rj c*
2/ A 3 ym - =0 7.4.3
op1 1 1-pP1—D2 Z}_l 1-p1—-p2 1-P1-D2 ( )
alogs(Oly) _ v, R _ mi_ & _g (7.4.4)
op2 P2 1-p1—p2 J=F 1-p1-p2  1-P1-D2
and
1+J/(3)
-0
dlogs(0ly) Rse 09( >109(—1+§(3))
a6 o _ *Y3)
[1—3 Glog( > >l
1+ 3’(;‘)) 1+ y(j_
—910g< 1+ i -0 log(—2U=D 1+ i—
m Rj [e 2 log( Zy(]_)> — € 0g< 2 )log< %](] 1)>
+Z _o1 <1+ y(j—1)> _o1 <1+ y(j))
j=1 e N2 —e N\
1+ y
(L)
That is,
. 2] . .\ O .
o2 sl ) ) )
1+ y(3)\? T 2j=1 1y N\ 1+ yo1)? - ¢ log( 2 )= 0
(59) = (9) ()

(7.4.5)

Solving (7.4.3) and (7.4.4) simultaneously, we get

5 =" and % =
Pimpse = 7 N0 Paypsg = -

Equation (7.4.5) cannot solved analytically, therefor for getting solution to Equation

(7.4.5) we use Newton-Rapson method iteratively to get, Oyps -
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7.5. Uniformly Minimum Variance Unbiased Estimation

Here, we propose the distributional properties of complete sufficient statistic and study
UMVU estimation for parameters and various parametric functions of the model in
subsequent section. Referring (1.5.24) the model in (7.1.2) can be expressed as

(1—11(x)—12(x))< D1 >11(x)( D2 >12(x)
0(1—p; —p2) 6(1—p; —p2)

h(x; Q) - ((1 j—x))

-1

( _9){109( ) (a-n G- Iz(x))}< 1

0(1—py— pz)>

C;(x)
= (a(x))(l C1(x)-C2(x)) —Hl 1(2((9—))) (751)

where a(X) = (1-I1-—X)’ hl(Q) = m, hz(Q) = m, h3(Q) = 6_9, g(g) =

1
6(1-p1-p2)’

I,(X)). Also a(X) > 0, C;(X),i=1,2 and 3 are nontrivial real-valued statistics, g(6)

() = LX), C(X) = LX), and C;(0) = log (=2) (1 = LX) —

and h;(0) are at least twice differentiable functions of 6;, i=1,2 and 3. Here g(g) =

fx>1(a(x))(1—cl(x)—cz(x)) Hi3=1(hi(Q))Ci(x)

defined with respect to a measure u(x) which is the sum of Lebesgue measure over

dx. The density in (7.5.1) so obtained is

(1, 0) a well-known form of a three parameter exponential family with natural

parameters M1, Mg m3) = (log (m),log (M) log(e~ 9))

generated by underlying indexing parameters 6 = (p,p,,0). Hence C(X) =

(600, 6,00,650) = (L OO, LEO,log (%) (1= L) = L,N)) s jointly

complete sufficient for 8 = (p,, p,, 8). Now solving the equation (1.5.24), we get
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E(Cz(x))
E(C3(x))

(1-p1-p2) (752)

E(cl(x))‘ [

P1
P2
0

and the variance-covariance matrix X given equation (1.5.31) is obtained as

p1(1—p1) —P1D2 —60 p1(1 —py —p2)
y = [O'ij] = —P1D2 pP2(1—p2) —O0p(1—p1—p2) (7.5.3)
3x3 _ p1(1-p1—p2) _ p2(1-p1—p2) [1—(P1+P2)2]
0 0 62

1

where |A| = —.
p1 P2 (1-p1-p2)

We now propose some uniformly minimum variance unbiased estimators for
parameters and some parametric function of the model (7.5.1) in various subsections

below.

7.5.1. UMVU Estimation of parameters

For the Type Il censored sample discussed in the previous section, consider the

following transformation

1+Xx;
Yi=(—-r —n)log (%),

and

= ) og (229) g (2],

i=2,.,n—1r—1r—c" (7.5.4)

It can be seen that
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n—ri—ry—c* n—ri—ry—c* 1 1
+ x¢; + X —p—c*
Z Yl= Z lOg( (l)>+c*log< (TI. r1—12 C))
_ _ 2 2
i=1 i=1

and

n-rq-rp-c*
c*l Hi:l 1772 (1+x(i))

(n-ry—ry)!

I/l = (7.5.5)

Using (7.5.4) and (7.5.5),

h (X; Q) = "1y (1 — py — p) 717 glnrama=e?) =0 T

(7.5.6)

(9(1 —I;?i - Pz))21 (9(1 —I;Z1 - p2)>22 (9—9)23 (1=p=p2)"

(9(1 - ;91 - Pz))n_c

where
n n-c*
Zy = Z C:(X;) = Z L(Y;) =nr
i=1 i=1
n n—c*
Z, = Zcz(Xi) = Z L) =mr
i=1 i=1
and

Z3 =Y GX) =X 0,

Hence by Neyman Factorization theorem Z = (Z,, Z,, Z3) is jointly sufficient for 6 =
(p1,p2,0). Also,

n!
h (X? Q) = Py (1 = py —pp) T

! nm—-r—nr)

e(n—rl—rz—c*) R =1
_ezizll 2 yi

e

(rl! 17,! (nn—! T —1)! )
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= P(Z1=n,Z, =1) h(y; 0|2, = 11,2, = 13)
Here distribution of (Z, Z,) is trinomial and is a complete family of distribution and

h(z; 9|Z1 =1,Zy = rz)
1

" n-rq-ry—c*
= g(n—H—TZ—C ) e—HZizl 2y

. (rl! 1! (nn—! - rz)!)

which belongs to the one-parameter exponential family. Hence Z5|Z,, Z, is complete
sufficient for & and also a member of the exponential family. The distribution of

Z5|Z4,Z, is Gamma with parameter (n —r; — r, — ¢, 8) with pdf

. ZB(n—rl—rz—c*—l) en—rl—rz—c* e—@ Z3
h(Z3;9|Tl—T1 — T, —C ) =

,Z2>0;0>0
n—r—r,—c* 3

which depends only on 6 and is also a complete family of distribution. Therefore, Z =
(Z1,Z,,Z3) is complete sufficient for 8 = (py, p,, 0). The Joint distribution of Z =
(Zl,Zz,Zg) IS

|
hy(z:8) = =

"ip,"2(1 — — (n—ry—13)
Ll (n—1 =)l P P2 (1-py—p2)

7 (n-ry—-ry—c*-1)
3 gn-ri—r2—c* p=01z3
)

n—-rn—nr-—c*

0<rnnrn<n—-c,2z23>00<p,p,<1,6>0

i3=1(hi@))2i

g(Q)n_C* (1 —P1— pZ)C (757)

= B(z4,2,,23,¢",n)

where
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B(z4,25,23,¢c*,n)

n! Z3(n—r1—r2—c*—1)

z3>0rn+rn—-1<n-c"
={n! nlh-—r-nr)Th-r—-r—c’ 37 71" 2
1, Zz3=01rn=0o0rr,=0

(7.5.8)

zz€ET(n—c") S R,0 € Q. Here z = (z1,273,23,¢,n) and B(zy,2,,23,¢c*,n) are

such that

g@"
(1-p1-p2)¢

* 3 Zi
leeT(n—c*) J-ZZET(n—c*) fz3ET(n—c*) B(Zl’ 2223, €, n) Hi:l(hi( Q )) le de dZ3

Using (7.5.2),
E(2y) = E(S, (%)) = X5 E (L(3)) = (n = <) py,

E(Z,) = E(Y, C(x)) =S5 E (L(y)) = (= ) ps,
and

E(Zs) = E(X]-1 Ga(x)) = ZiZ 7T E(h) = (n— ) S22,

which in turn give UMVUE’s of p,, p, and 6 respectively as

. z

Piumvue = n_lc* = nilc* (7.5.9)

. zZ

P2umvue = n_zc* = nizc* (7.5.10)
and

Oumvue = (20 Pa) (7.5.11)

Z3
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7.5.2. UMVU Estimation of parametric functions

Let X;, X5, ..., X,,—c~ be Type Il censored random sample from (7.5.1), then there exists

an UMVUE of @( 8 ) if and only if &( Q)[g(g)]n_c* can be expressed in the form

OO

1—-p— Pz)c*

3
= f —[ f a(Z]JZZ)ZBIC*In) l_l(hl(g))Zl le dZZ dZ3
z1€T(n—c*) Yz,€T(n—c*) Yz3€T(n—c*) i=1

Thus, the UMVUE of a function @( 8 ) of 8 in h(x; 8) is given by

a(Zy,Z,,Z5,c*,n)

) B Z IZ ,Z ) *' ¢ 0
B(21'ZZJZ3,C*,n) ( 1,49, 43,C n)

l/)(Zl,ZZ,Z3, C*, Tl) =

The following results are now obvious.

ki+k
1 )1 2k

kz —9k3 H
—_— e IS
0(1-p1-p2) P2

Result 7.1. The UMVUE of [T, (h;(8))" = ( Py

given by

B(zy —ky, z; — ks, z3 — ks, c*,n)

H Z1,2Z5,23,C",N) =
k1,k2:k3( 122,23, ¢, ) B(z4,23,23,¢*,1)

ks)(n—rl—rz —c*-1)

_ (rog, 2k, (1__ (z3—k3z)k1tkz

z3
[n—11—T2+ 1k, 4k [M—T1—T2—C iy 4ky

7’

where k; <1 k, <1y k3 <z3; ki +k,<n—-nr—-nr—-c5n+r—-1<n-c*

r! __I'r+k

and (T)k = m, [T]k =7
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Corollary 7.1. If ky # 0, k, = 0 and k; = 0, then UMVUE of (h,(8))" =
k4
(L) is given by

0(1-p1-p2)

B(z1—kq,23,23,c",n)

H, (z4,2,,23,¢c",n) =
kl( 1,22, 23,C", 1) B(21,23,23,¢*1)

(rl)kl Zskl

[n—ry=1rp+1]k, [n—11 =12 =C*1i,

*

ki<r;ki<n—-nrn-n-c5; n+rn—-1<n-c

Corollary 7.2. If ky = 0,k # 0 and k; = 0, then UMVUE of (h,(8))"* =
ko
(p—z) is given by

0(1-p1-p2)

B(z1,22—k3,23,c"n)

H, (z4,2,,22,¢c",n) =
kz( 122,23, €7, B(24,23,23,¢*1)

(r2)k, z3k2

[n—ry=1p+1]k, [n-11—12—Cc*],’

ky<ry,k,<n-rn-n-cy,n+rn-1<n-c"

Corollary 7.3. If k; = 0,k, = 0 and k3 # 0, then UMVUE of (h3(Q))k3 =e 9% s
given by

B(Zl,ZZ,Z3 - k3, C*,n)

H, . (z4,2,,22,c",n) =
ks (21,72, 23, €",m) B(z,,2,,23,c*,n)

k n— T1—T2—C*—1
3

=(1——) k3 <zgymm+r,—1<n-—c*
Z3

Result 7.2. The UMVUE of the variance of Hy, x, x.(Z1,Z2,Z3,c*,n), is given by
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var [Hkl,kz,,<3 (24,25, 23,C", n)]

— g2 * *
= Hic, kp ks (21,22,23,¢",1) — Hak, 21,2k (z1,22,23,¢", 1)

2
(z3 — k3)k1+k2]

(n—-ry-r;—c*-1)

[(T‘l)kl(rz)kz ( _l;_:)

l [n—7 — 71 + U, n, (M =11 — 12— i 4, J

2 ey (PT1=T2=C"=1)
(7”1)2k1(7”2)2k2 ( _2_33) (z5 —2k3)2(k1+k2)

[n—r—mr+ 1]2(k1+k2)[n - —rn - C*]Z(k1+k2)

2ky <15 2ky <1y; 2k3 < 735 2(ki+ k) Sn—-n—-n—ch n+nrn—-1<n-c".

Corollary 7.4. The UMVUE of the variance of Hy (Z,,Z,,Z3,c*,n), is given by
v/dr[Hkl (le 22,23, C*; n)] = ngl (Z]J Z3, 23, C*; n) - H2k1 (le Z3,Z3, C*I n)

2
_ [ (r)k, z3*1 (r)ok, 232kt
1

n—11 =Ty 41, [n—-11-12—c*]k, [n—r1-12 413k, [N-T1-T2—C*]2k,

2k <1 2k <Sn—-nrn—rn—-cKsnn+nrn—-1<n-c"
Corollary 7.5. The UMVUE of the variance of Hy, (Z,,Z5,Z3, c*,n), is given by

v’a\r[sz (21, 24,23, C7, n)] = H,%2 (241, 25,23,¢",n) — Hyy, (21,25, 23,¢",n)

2
_ [ (r2)k, 23*2 (r2)ok, z3%k2

[n—r1-1ro+1]g, [n-11-12—C*]k, [n—r1—1r2+1lpk, [n-T1-12—c*ok,’

2k, <1y 2k, <n—-nrn-—-n-—-chn+rn—-1<n-c*

Corollary 7.6. The UMVUE of the variance of Hy,(Z1,Z;, Z3,c",n), is given by
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v/a\r[Hk3 (z4,2,,23,c7, n)] = H,f3 (21,22, 23, ¢", ) — Hyy, (24,25, 23,¢7, M)

k3 2(n—-ry—ry—c*-1) 2k3 n—ri—ry—c*—1
o -2
Z3 Z3

)

2k; < z3;m+r—1<n-—c"

1

k
m) ,k # 0 as per the model given

Result 7.3. The UMVUE of [g(©)]" = (

in (7.5.1)is

B(zy,25,23,¢*,n+ k)

B(z4, 24, 23,c*, 1)

Gy (24,25,23,c",n) =

[n+1]g Z3k

T n-r—rptle [n-r-re—ctly

k<n-r-nrn-cyn+rn—-1<n-c"
Result 7.4. The UMVUE of the variance of G,(Z,,Z,,Z5,c*,n) is given by

U/Cl\T[Gk(Zl,ZZ,Zg, n)] = Gl% (le Z3, 23, C*,n) - GZk(ZIIZZIZ3I C*,n)

2 2k

[n+1l,  z3* [n+1ly  z3

[[n—rl—r2+1]k [n—r1—7”2—5*]k] [n—ri—rp+1lk [n—r1—r2—c*]2k’

2k<n-nrn-—-nrn-c,n+nrn-1<n-c"

Result 7.5. For fixed x, the UMVUE of the density given in (7.5.1) is

B(21—C1(x), 2,—C;(x), z3—C3(x),c* n—1)

B(z1,22,23,c*n)

¢x(zll Z,Z3, C*’ n) = a(x)

_( 1 )(rl)ll(x) (21500 M=T1-72) (11 ()1, 0)) VT1=T2=C" D1y (1) -1, ()

i n [ za-tog (D) a-n G- ooy )

log(5)(1-1,(0)-L (%)
<1—Og(2)( 1L ,z3>log(%);r1+r2—1<n—c*

Z3

>(n—r1—r2—c*—1)
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Result 7.6. The UMVUE of the variance of ¢,.(Z4,Z,, Z3, c*,n) is given by

var[¢y (21,2, 23,¢",n)] = ¢§ (21,23, 23,¢",1)

— (21,25, 23, ¢", 1) Py (21 — C1(x), z; — Cy(x), z3 — C3(x),c",n—1)

1 )2 (7”1)211(x) (Tz)zlz(x)(n - - 7”2)2(1_11(x)_12(x))

= (p)% (ZlJZZJ Z3, C*; n) - (1 +x n(n — 1)

m—1r —1rp—c"— 1)2(1—11(x)—12(x))

(22— 2109 (E5) 1 - o o]

(n-ry—-ry—c*-1)

2log ( Tx )(1—11(x)—12(x))

Z3

1—

1+x
z3>210g(T>; n+rn—-—1<n-c"

Result 7.7. For afixed z = (z,,z,, z3,c*, n), the UMVUE of the survival function

S(t) = P(X>t), t =0isobtained as

.§'(t) _ <(T1)11(t)(r2)12(t)(n -1 — 7'2)(1—11(t)—12(t))(n - —r,—Cc = 1)(1_11(t)_12(t))>
- nln—r—r—c)—(1-L(E-LO)]

(L®O+1(1))
m—r—rn—c - 1)(1—11(t)—12(t)) <Z3 log ( ) (1 —1L(t) — Iz(t))>

g () (- -n@)\

1—
ZB

1+t
Z3>log<T>;r1+r2—1<n—c*
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Result 7.8. For the fixed z = (z, 25, z3, ¢*, n), the UMVUE of the var($(t)), is

obtained as

(n-ri-r2-c*-1)

1+t
~ ~ 2 1 ZlOg —_— 1_I(t)—1(t)
var($) = [S®] - o\ ( 2 )(Z3 1 2(8))

< (7”1)211(t) (T2)212(t) n—mr — 7”2)2(1—11(0—12(@) m—r—1r,—c— 1*)2(1—11(t)—12(t)) >
[(n—r—-r—c)-21-LEO -LEO)]|[h-r—r—c"+1)—-2(1- L) - L©D)]

1+t

(zs—210g (F) A= 1®-1©

2(I. () +1,(1))
) ,Z3>2log(%);r1+r2—1<n—c*

7.6. lllustrative examples

We consider four dataset from an appendix to illustrate the proposed model. The
motivation behind considering a different variety of data sets is to show the flexibility
of the proposed model in different situations. The detailed description regarding the

data sets is given below:

Example 7.1. Consider Dataset A.8, where Table A.2. shows the loss ratios (yearly
data) for earthquake insurance in California from 1971 through 1993. Note that, for
four years there was no loss for earthquake insurance and the information where loss
of less than 1 billion dollars per year is considered as 1, for simplicity. The analysis of

this data is carried out at the end of this section.

Example 7.2. We consider dataset A.6, is on child’s age at death from the woman’s
questionnaire of NFHS-3 for Gujarat state. There are 15 stillbirths (the death of a baby
before or during the birth after 28 weeks of gestation) considered as observation 0, 37
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neonatal deaths (the death of a baby within the first 28 days of life) considered as
observation 1. This is a perfect data for inliers model with two discrete point at zero
and one. Authors of this paper had already modeled this data using exponential and
Weibull distribution. The analysis based on Pareto Type Il distribution is presented

below.

Example 7.3. We use dataset A.9. on State/Union Territory burnt area from February
to May 2014. There are six State/Union Territory (Delhi, Andaman and Nicobar,
Chandigarh, Daman and Diu, Lakshadweep and Pondicherry) having burnt area zero,
five State/Union Territory having percentage burnt area less than 1 sg. Km.

conveniently considered here as observation 1

Example 7.4. This example based on dataset A.10, about the amount of snowfall in
all 50 states of US. It is observed that there are three states having decade's average
amount of snowfall zero and for four states having decade’s average amount of

snowfall less than 1 inches (coded as observationl).

For all the datasets above we have calculated parameter estimates, goodness-
of-fit criteria values, goodness-of-fit statistics and corresponding p-values (see Table
7.1 for details) for positive observations only. It may be noted from the table that for

all the considered data sets, the Pareto Distribution fits well (see p-values).
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Table 7.1. The parameter estimates, goodness-of-fit criteria and corresponding p-
value for various datasets (Pareto distribution)

K-S CVM |AD
Data MLE (SE) AlC BIC
(p-value) | (p-value) |(p-value)
Earthquake |3=19.5743 (19.2742) 0.1213 0.0362 |0.2901
) R 124.7323 | 126.2778
insurance  |9=2.0113 (1.4153) (0.9498) | (0.9563) |(0.9448)
[=18557.4806 (34321.4861) 0.1210 0.0898 |0.6150
NFHS-3 R 470.3576 | 473.4683
6= 65.5015 (119.8512) (0.6848) | (0.6400) [(0.6327)
Forest burnt | 3=3418.3510 (4828.3362) 0.1446 0.0984 |1.0663
R 431.6623 | 434.1000
area 6=2.6249 (2.7363) (0.6214) | (0.5964) |(0.3236)
£=2907.8650 (8293.9850) 0.1049 0.0933 |0.5532
Snowfall R 383.029 | 386.5043
6=87.5320 (247.1416) (0.7447) | (0.6208) |(0.6922)

The plot of pdf, h(x) and survival function, S(x) for all four datasets under

study, is displayed in Figure 7.1 and Figure 7.2 respectively for varying censoring

schemes under Pareto Il and the Weibull distribution. For the data sets under study,

the summary of the various estimates of parameters and parametric functions along

with their standard error (shown in bracket) and 95 % confidence interval considering

censoring schemes at value c* is given in Table 7.2. Whereas Table 7.3 shows, the

UMVU estimate of pdf and survival function with Pareto 1l and the Weibull

distribution for varying censoring schemes. It is observed that Pareto distribution has

a heavier tail than Weibull.
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Fig. 7.1 Density plot to various data sets censored at value c*
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Table 7.2. Summary of estimates of parameters/parametric functions of Pareto |1 distribution censored at c*

. . Earthquake insurance data NFHS-3 data Forest fire burnt area data Snowfall data
Parameter/Parametric function
c*=1 c*=5 c*=1 c =2
PimLE 0.17391 (0.07904) 0.17241 (0.04050) 0.16667 (0.06212) 0.08000 (0.03837)
DamLe 0.13043 (0.07022) 0.42529 (0.05300) 0.13889 (0.05764) 0.08000 (0.03837)
O 0.61420 (0.15857) 0.19539 (0.03402) 0.16667 (0.03380) 0.38550 (0.06095)

95% Cl of p,
95% Cl of p,

95% Cl of 8

(0.01901, 0.32882)
(0.00000, 0.26807)

(0.30648, 0.92191)

(0.09304, 0.25179)
(0.32140, 0.52917)

(0.12871, 0.26206)

(0.04493, 0.28841)
(0.02592, 0.25186)

(0.10041, 0.23292)

(0.00480, 0.15520)
(0.00480, 0.15520)

(0.26651, 0.50449)

PimpsE
DP2mpse

HMPSE

0.17391 (0.07904)
0.13043 (0.07022)
0.32998 (0.02744)

0.17241 (0.04050)
0.42529 (0.05300)
0.11016 (0.00140)

0.16667 (0.06212)
0.13889 (0.05764)
0.12313 (0.00421)

0.08000 (0.03837)
0.08000 (0.03837)
0.17832 (0.00503)

Piumvue

D2umvue
Oumvue

95% ClI of p,
95% Cl of p,

0.18182 (0.08223)
0.13636 (0.07317)
0.61420 (0.13812)
(0.02065, 0.34299)
(0.00000, 0.27976)

0.18293 (0.04269)
0.45122 (0.05495)
0.19539 (0.02791)
(0.09925, 0.26660)
(0.34351, 0.55892)

0.17143 (0.06370)
0.14286 (0.05915)
0.16667 (0.02967)
(0.04657, 0.29629)
(0.02693, 0.25879)

0.08333 (0.03989)
0.08333 (0.03989)
0.38550 (0.05643)
(0.00515, 0.16152)
(0.00515, 0.16152)

95% ClI of 6 (0.34348 0.88492) (0.14069, 0.25008) (0.10850, 0.22483) (0.27489, 0.49610)
3 . b 9 2 _%

1_[( (@) = (1 — pz) P1p2¢€ 0.04992 (0.04299) 8.62541 (4.73007) 1.240801 (0.89610) 3.07667 (0.02775)
i=1

ky =1k, =1k;=1

0
hi(0) =Pk = Lky = 0,ks = 0

0.38309 (0.22204)

2.13250 (0.74236)

1.38463 (0.66351)

0.24131 (0.12880)

0 p2 = = =
5 pz,kl—O,kz 1,k;=0

1-py—

h, (Q) =

0.28732 (0.18391)

5.26018 (1.52329)

1.15386 (0.58886)

0.24131 (0.12880)

hy(6) =78, ky = 0,ky = 0,ks = 1

0.55693 (0.08844)

0.82738 (0.00109)

0.85191 (0.02856)

0.68545 (0.04162)

9 = k=1

1-p1-p2

2.29856 (0.64068)

12.51070 (2.73276)

8.53853 (1.92013)

3.07667 (0.51361)
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Table 7.3. Summary of estimates of pdf and reliability function of the various data sets censored at c*

Functio Earthquake insurance data NFHS-3 data Forest fire burnt area data Snowfall data
n c'=1 c*=5 c*=1 c*=2
Pareto-11 Weibull Pareto-II Weibull Pareto-11 Weibull Pareto-11 Weibull
¢10 =0.01415 | ¢, =0.02091 | ¢100 =0.00030 $100 =0.00110 | ¢hgso = 6.912€-05 | ¢hgso = 0.00022 | ¢, =0.00469 | ¢,5 =0.01383
(0.00185) (0.00295) (5.043e-05) (1.968e-04) (7.524e-06) (3.235e-05) (0.00028) (0.00114)
¢15 =0.00784 | ¢p15 =0.01317 | ¢soo =5.473e-05 | ¢hspo =0.00030 | ¢py350 = 2.966€-05 | ¢p1350 = 0.00012 | ¢, =0.00186 | ¢, = 0.00676
pdf (0.00112) (0.00113) (7.032e-06) (6.096€-05) (3.199¢-06) (8.101e-06) (0.00013) (0.00068)
a0 = 0.00175 | dhay = 0.00273 | 109y = 2.3876-05 | 1000 = 1.8516-05 | bysg = 1.4516-05 | P2s00 356'4216' b100 = 0.00072 | 100 = 0.00108
(0.00046) (0.00046) (3.185e-06) (1.282¢-05) (1.624e-06) (7.193e-05) (0.00044)
(3.185e-06)
$10=0.25585 | $,,=0.17398 | 4, =0.18996 S100 = 0.29777 Ses0 =0.27042 | Sgs0 =0.40038 | S,5=0.31647 | S,5 =0.43451
(0.07038) (0.05400) (0.03638) (0.04249) (0.07114) (0.06434) (0.05347) (0.05291)
Survi_val S15=0.20013 | $;5=0.00183 | S50, =0.13903 Ss00 = 0.05063 | S350 =0.23941 | S350 =0.05022 | S5, =0.24389 | S, =0.18368
function (0.07279) (0.04218) (0.03296) (0.02039) (0.06868) (0.06206) (0.05082) (0.04572)
S40 =0.10957 | S0 =2.139e-06 | S;000 =0.12136 | S;000 =0.00293 | S$,500 =0.21592 | S,500 =0.01212 | S0 =0.18692 | S, = 0.02462
(0.05592) (0.00953) (0.03136) (0.02039) (0.05811) (0.05510) (0.04659) (0.01331)
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