Chapter 3
Sigma Level and Process Shift: A SSM Perspectives




Complete understanding of Six Sigma approach is not possible without focusing upon sigma
level and process shift. As explained in Chapter 1 sigma level of the process is number of
standard deviations covered between process centres to nearest specification limit. And
process shift is drifting of process mean over long run that result into higher defective units.
This chapter examines both these aspects in detail. Thereafter, we discuss how these concepts

are important in SSM.

3.1 Sigma estimation

Since sigma level of the process is based on process standard deviation, it is important to
understand different estimation methods of standard deviation. Muralidharan and Raval
(2012) proposed different estimators for process standard deviation. Majority of standard
deviations estimators are sensitive to normality assumption. Of estimators can be suggested
for the estimation of standard deviation (sigma) ranging from traditional square distance

estimator of standard deviation to score estimators.

For the observations, X = (X,, X,, X;...X,,) the most common estimators of sigma is

1 -\
UZJjZ(Xf—X) G.1)
— 1<
Where X :F;X’

Equation (3.1) can also be written as,

i<j

0=\/ﬁ2(& X, f (32)

2

The sample variance s° is the minimum variance unbiased estimator for the population

variance o°. However, sample standard deviation is a biased estimator of underlying

population standard deviation. A vague estimator of process standard deviation can be
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defined in terms of Range as the difference between highest and lowest observation.

Unfortunately this estimator is highly influenced by extreme values and hence is less useful.

The most commonly used robust scale estimator is the Inter Quartile Range (IQR) which is

defined as,
1
IQR —5(03 -Q) (3.3)

Where Q, and Q, are respectively the first and third quartiles. An estimator similar to (2) is

given by Gini’s mean difference which is defined as,

G(X) = ﬁzw - X (3.4)

i<j

Use of absolute value in above estimator instead of squared distance reduces the impact of
large distance. But this statistic is also not very robust. Another important estimator of

standard deviation is given by Median Absolute Deviation (MAD) as,
MAD(X) = median,-|X,- - medianj(X]-)|} (3.5)
Two alternate estimators of MAD is given as S,and Q,,
S, = median, {median;|X; - Xj|} (3.6)

Q, = median,-{ |X; = X;

i< Tk (3.7)

Which is the k" largest of the |X; - X;| for i<j, where k = [[n/i]Jr lj Thus Q,is the k™ order

i n . )
statistics of the k = (2] . The Score estimator for scale is defined as,

1< 1

S, = \/E;m(x, —/VI)2 (3.8)
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Where Z; = XizM is an auxiliary estimate of location and o, is an auxiliary estimate of
(o) 4

scale. Muralidharan and Raval (2012) provided efficiency comparison between all above

estimators for normal and non normal data given in Table 3.1.

Table 3.1. Sigma Estimators and their efficiencies

Formula 3.1 3.2 33 3.5 3.6 3.7 3.8
Efficiency 100% | 100% | 97.41% | 98.38% | 88.18% | 72.68% | 102.79%
(Normal data)

Efficiency 100% | 100% | 83.85% | 87.98% | 61.22% | 56.49% | 97.62%
(Non-normal data)

3.2. Sigma level estimation

Method through which process variation can be measured is known as sigma level of the
process. Sigma level of the process measures number of standard deviation process can
produce between process mean and nearest specification limit. Estimation of sigma level

depends upon type of variable you are dealing with which is discussed below.

3.2.1 Sigma level estimation for discrete distribution

Calculation of sigma level for discrete distribution is based on DPMO approach. This
approach involves concept of unit, opportunity and defects. Unit is any product, part,
assembly, process or service for which quality is desired. Opportunity is a value added
feature of a unit that should meet specifications proposed by customer. Defect is the
characteristic of the product that fails to meet customer requirements and Defectives are the
total number if units containing different types of defects. Thus, fotal opportunity (TOP),
defect per unit (DPU) and defect per million opportunities (DPMO) is defined as,

TOP= Number of units checked*Number of opportunities of failure (3.9)

No.of Defects
No.of unitschecked (3.10)

DPU=
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And

DPMO= bPU *10° (3.11)

No.of opportunity per unit

Then,

DPMOj

orr = ‘D_l(l_ 10°

(3.12)

As an illustration, consider, 250 units are selected from the production process and each are

tested for 20 possible opportunities, then from (3.9), TOP = 250*20 = 5000. If suppose, 75

defects are observed, then, the defects per unit is DPU=%20.3, and the

DPMO= g—g *#10°=15000 according to (3.10) and (3.11) respectively. That is, process fails

to meet specification for 15000 opportunities out 1,000,000 opportunities. Hence, from

(3.12), through normal inverse long term sigma level of the process is 2.17c.

3.2.2 Sigma level estimation for continuous distribution

Calculation of sigma level for continuous distribution is based on capability analysis and
inverse standard normal distribution. With customer proposed upper specification limit

(USL) and lower specification limit (LSL), capability indices are defined as,

USL-LSL
C,=——_—
60 (3.13)
. :min(USL—p. ’u—LSL )
3. 30 (3.14)
We can obtain sigma level of the process through corresponding z-score,
Uppersigmalevel(Zyg ) = USL-u
(3.15)
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Lower sigma level(Z,g )= 2= LSL

(3.16)

Consider the following data: 25, 28, 32, 38, 29, 36, 29, 28, 26, 29. Suppose, the USL and

LSL of the process are given as 25 and 40 respectively. If the process mean ( ) and standard

deviation (o) are 30 and 5 respectively, then from (3.15), we get the
)_USL—p._40—3O )_u—LSL_30—25_

(25 )= =2 and from (3.16), we get (Z,y )= .
o 5 o 5

Now suppose a continuous measurement of a process is given with its upper and lower

specification values. The long term sigma level of such a process is obtained by computing

o '[{P(z< 2z, )+P(Z> 2, )]
For the process discussed above, if the long term sigma level is
O '[{P(z<24)+P(Z> 2, }]=D'[{P(z <1)+P(z > 2)}]
=®'[0.841+0.022]=1.09

Hence, short term sigma level (ZST) of the process is 1.09+1.5 =2.59.

3.3 Sigma-shift estimation

To account for certain process variations the proposed concept of 60 later degraded to 3.4
DPMO with reference to 1.50 shift in long run. In order to make it comparable over

different CTQs, o level is converted into corresponding Z value.

Estimate of Zsr (short term sigma level) is obtained by adding 1.5 toZ;r (long term sigma

level) as given in equation (3.17)

Hence, 1.50 shift inflate the number of defects depends on off centring of the process, it is
important to understand 1.50 shift in detail. Harry (2003) consider 1.50 shift as a one of
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the mystical pillar of Six Sigma. Effect of 1.50 shift is indicated in Fig 3.1 and
corresponding DPMO are explained in Table 3.2.
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Fig 3.1. Sigma shift of distribution

Table 3.2. DPMO for targeted and shifted distribution

Specification | Percentage within DPMO
limit specification
Targeted Shifted Targeted Shifted
distribution distribution | distribution | distribution
tlo 68.27 30.85 317310 691462
2o 95.45 69.14 45500 308537
30 99.73 93.32 2699 66807
+4o 99.994 99.379 63.34 6210
+50 99.99994 99.9767 0.57 233
+60 99.9999998 | 99.99966 0.002 34

1.50 shift has its origin in the world of control charts. Understanding of 1.50 shift requires
the understanding of the connection between variation, producibility, process capability and
tolerance. Smith identified the connection between how well product did in the field versus
how much rework had been required during production. In order to cope up with Japanese
quality, Smith proposed to follow 50% design margins for all the key product performance
specifications of Motorola, compare to 25% “cushion” of the period (Harry, 2003). Smith
believed that 25% cushion” was not sufficient for absorbing a sudden shift in process
centring. Figure 3.2 represents Bill’s assertion about 50% design margin. However, at that
time Bill’s assertion was statistically undefended. Later on Harry (2003) form the statistical

foundation of Six Sigma methodology.
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According to Six Sigma philosophy, the variation in Six Sigma model is defined through

causal relation as given in equation (3.18)

Y = F(X,, Xy, X5..X,) + & (3.18)

Here Y is response variable, X;'s are causative variables, ¢ is error in prediction of Y. In order
to examine variation in Y it is important to adopt such a rational sampling plan that fully
captures white noise while preserving the effect of assignable causes. Only after removing
effect of special causes of variation, it is possible to estimate variation in Y through
instantaneous producibility. This can be done by isolating random transient effect and

temporal effect.

UsSL
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Fig 3.2. Increased design margin

Hence, shift of the distribution of X; away from their normal specifications cause shift in the
distribution of response variable Y. This in turn increases the probability of non conformance.
Mean off set can be expressed as equivalent inflation (c¢) of standard deviation. The mean off

set equivalent to inflated standard deviation is shown Figure 3.3.
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Fig 3.3. Inflated distribution with equivalent mean shift

3.3.1 ANOVA approach

Here we discussed a technically sound method of understanding the shift through the

Analysis of Variance (ANOVA) approach, which is described as follows: Consider a one-

way classification of observations as,

Treatment-1 | Treatment-2 | ... | Treatment-r
X X Xn
X 12 X 22 X r2
Xis X,s Xrs

A suitable model to represent the above classification is
XI] :y+a,-+8,-j (319)

Where # is the mean of the population for all treatments and «; is the effect due to i-th

treatment. Then the null hypothesis that all treatment means are equal is given by
Hy=a=a,=...0, =«

If H,is true, we conclude that all treatment means are same. In such a case there is just one

treatment population, and chances of shift between populations may be a resultant of chance
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causes only. If hypothesis is rejected, then we conclude that at least one of the mean is
shifted. To test the above hypothesis, we use F-test for equal means, and the test statistic is

given as

FoSs

- 3.20
) (3.20)

which has F-distribution with -1 and r(s-1) degrees o freedom. Where éé is the mean

square variation between treatments and Sj, the mean square variation within treatments (see

Table 3.2. below). The hypothesis of equal means is rejected if F>F, (- (s_;). The

quantities S 5 and é,ﬁ, are calculated as follows:

Let

Y Sx - (3:21)

Since, X;; — X = (Xij —Xi.)+()_(i. _)_()

Therefore,
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That is,

Total variation = variation within treatments + variation between treatments
VT = VW =+ VB

Where

(3.22)

(3.23)

The one way analysis of variance for equal number of observations is presented in Table 3.3.
In the table, the mean sum of squares (MSE) is obtained by dividing the sum of squares by

their corresponding degrees of freedom.

Table 3.3. One way ANOVA for equal number of observations

Source of | Degrees of | Sum of Squares Mean sum of | F-ratio
variation freedom squares
Between r-1 ro_ o _y ~, Vg S2
- _ Sz = B/,

treatment Vg = 5; (X =X ) B~ Fr S,
Within r(s-1) r.s — v | & . W
treatment Vi :ZZ(XU—X:‘.) T rs-1)

i=1 j=1
Total rs—1 rS —v

Vr = b - X)
i=1 j=1

Note that Vi /(rs —1) is an estimate of the long-term variance (o,,)and V,, /r(s —1)is an
estimate of the short-term variance (osr).Then the ratio ¢ = o,7/osr is the ratio of root

mean squares (RMS) is a hybrid performance metric that provides us with an insight into how
much ‘dynamic centring error’ is occurring in the process over the total period of sampling.

When ¢ = 0, then ¥, =0, but only after adjusting for differences in degrees-of-freedom, and

when ¢ > 0, (i.e. o,7>04r), then Vg > 0. Thus c is a measure of capability related to process
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centring. Given the circumstance that ¥, =0, it is quite natural to recognize that all of the
subgroup means would necessarily be identical in value, a situation called state of perfection

of the given process. Now, let us estimate the ratio c as,

:wﬁ—ﬂP+Zé} (3.24)

r(s_l)_1+ (r-1) Vg/(r-1) }
)L rls—1) Vi /(r(s - 1))

Ve ]
:ﬂuf%%:% (3.25)

From (3.24)
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e Zon Ji [rs - 12 - r(s - 1) (3.26)

Note that for ¢ = 1, (3.26) reduces to Z.,s =+/(r —1)/rs. According to Harry (2003) it is
highly desirable to set Z;;z =0 for c = 1. When ¢ = 1.5, the value of Z.,; will be 1.5. Also
as rs —» o, Z,» asymptotically approaches to the quantity ¢’-1. Typically, the range of r and

s are considered to be 25<» <100 and 4 <s<6. The best commonly employed combination is

that of ¥ =50 and s = 5. Z,;» values for different combination of rs is shown in Figure 3.4.
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1
1.25
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1.75
2.25
2.5
2.75
3.25

Fig 3.4 2y for c=1 to 3 and different combination of rs

3.3.2 Equivalence of distributions

Now consider any two set of treatments T4 and Tz having same or different samples. If
Hy:pup = ug = p 1s rejected, then it is obvious that the mean is shifted. Suppose for
convenience, the treatment B is inflated with respect to the treatment A, then the total

variation of treatment B is explained in terms of A as
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H+36g = p+364+ ZshinGa

where,

(3.27)

(3.28)

and is called the dynamic correction used to adjust or compensate the influence of random

sampling error over a protracted period of time or many cycles of operation. Again, if

o’ =0 is known and fixed, then ¢’ =2 /c” follows a Chi-square distribution with n-1

degrees of freedom. That is

[&_szn,"—l
2

o X
That is
n n-1
UB =0 2
(04
Therefore,
n ~ n-1
Op =0y
2
Xa
65 =Cé 4
where,
a_ [n-1
N 2

(3.29)



For various levels of « ,one can visualize the shift happening in one variable with respect to

the other. For example: Suppose n=30,6, =280, and 6,=376.Then ¢=6,/6,=1.343

using (3.28) and ¢ =,/29/16 =1.346 for o =0.025 using (3.29). The Z, , according to (3.26)

where =2 and s=n=30 is 0.99.

3.3.3 Tolerance analysis based approach

Evolution of Tolerance analysis is found in the concept of interchangeability, which focuses

upon replacing damaged assembly piece hence making assembly parts interchangeable.

Buckingham (1921) examines interchagability over four different phases:

Design a product: Manufacturing design determines the success and failure of a
project. Construction of mechanism that works properly is the major objective of this
phase. Perfect manufacturing design is aimed to initiate large scale production and
this designing phase last throughout production to examine issues that might be
difficult to foreseen in advance.

Manufacturing model: Testing a model developed in design phase is the focus of this
phase. Creating a physical model of accepted design to persuade large scale
production.

Clearance: It is an important consideration in developing manufacturing design.
Clearance is the allowable space between operating parts. Minimum clearance should
be as small as assembling parts and their proper operation. Maximum clearance
should be as great as the functioning permits. Design allowing higher clearance
between parts results in to higher degree of interchangeability and greater economic
benefits.

Manufacturing tolerance: Manufacturing tolerance is about trying to hold the product
as closely as possible to a fix size. Though practically tolerance value often exceeds
its decided design value, it is important to note it down since sometimes it match with

its design value.

The issue of 1.5o shift is discussed extensively in Tolerance analysis literature which is a part

of mechanical engineering. Bender (1968), Gilson (1951), Evans (1975) discussed 1.5¢ shift
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in the early tolerance literature. Two important methods discussed in the literature are the
Worst case and root sum square (RSS) techniques. The worst case method is based on the

consideration that component dimension are taking extreme values.

The concept of tolerance analysis is again based on the model presented in (3.18), where i"
product characteristic X; has upper specification limit (U, ) and lower specification limits (L;)

indicating worst scenario, tolerance for i product characteristic will be,
T -U -, (330)

According to worst case model, the assembly tolerance, 7, is given by

Ta =iTi (3.31)
i=1
Worst case tolerance analysis method is considered as the most widely used method from
design engineering perspective (Kuo and Tsai, 2011). This method can be used if all product
component characteristics are within allowable variability and few rejections are not
permissible (Chase and Greenwood, 1988). Since there are very less chance of all product
components characteristics to fall at extreme tolerance limits, this method is considered as

most pessimistic method.

Root sum square (RSS) method is based on the assumption of statistical distribution of
components and generally but not restricted to normal distribution. This method further
assumes that component characteristics are within statistical control and process mean is at
the centre of specified tolerance. RSS model is provided in (3.32). This method is based on

tolerance range corresponds to £3¢ range of component distribution.

n 1/2
T, =T+ T2+ T2 +..T7 = [27}2] (3.32)
i=1

Issues with root sum square model is that, if all component characteristics may not be in
control state which leads to more predicted out of control assemblies, then all component
characteristics may not be approximated through normal distribution and process centre may

not lie exactly at the centre of specified tolerance.

Mansoor (1963) propose the model combining both worst case and root sum square part. He

proposed probabilistic model based on requirement of predicting probable limits of assembly
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dimension or assignment of component tolerance based on assembly requirement. This need
can be cater through selecting appropriate theoretical distribution for component tolerance.
Depending upon the shape of distribution the author provide estimate of probable sum of

component tolerances (7},0p) as,

n 1/2
TProb :C(Zt] (333)
i=1

Here value of constant ¢ depends upon the shape of the distribution. Mansoor (1963)
proposed theory based on “relative precision index” (RPI), which examines the matching
between natural process tolerance (+3.09 times the distribution standard deviation) and

specified tolerance interval.

According to this model tolerance specifications of different dimensions are denoted by
T,,T5,...T, and natural process tolerance of dimensions are indicated by ¢y, t,...t;.

%

Damens:on mean Process mean

— N

|
1
W

Fig 3.5. biasness in dimensional position of natural process tolerance

Biasness in dimensional position of natural process tolerance for first component is denoted

by x, similarly biasness in dimensional position of natural process tolerance of rest of the
components given by x,,x;,...x,. Figure 3.5 shows biasness for fist assembly component,

where biasness is the difference between midpoint of natural process tolerance and specified

dimension tolerance given as below:
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tj

—,i=12,..n
2

2)_(1' :7-1 _til i:1,2,..n

(3.34)

Therefore, the probable sum of assembly dimension comprise biasness in dimensional

position of each components and their natural process tolerance,

Torob =2X; +2X, +...2X, +6\/012 +03 ...+ 0}

=2(X, + X, +..X,)+ 6\/012 +0i+...+0p
If natural process tolerance is,
t; =30 —(-30) = 60
Then, upon using (3.34) and (3.36) in (3.35) we get,

T prob :(7-1 —t1)+(T2 _t2)+---(Tn _tn)+\/t12 +t5 +.. L}
=T +Ty 4ot Ty =t + b+t by )+ t2 +t2 +.. 12

n n
= Tarith - [Z ti] + z tiz

i=1 i=1

Hence

n n
Tarith = Tprob + (Z tiJ - Z tiz
i=1

i=1
where
Tarieh =T, +T, +...+T,
Assuming constant ratio for allowable tolerance and natural tolerance we get,
T, T, T,

L =_2 - ...-2 - K(constant)
t, ¢ t,
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(3.38)
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Therefore,

Tt Tt
SULERE UL N
t t

Tty

T
2 tl

- K (3.41)

Hence (3.39) reduces to

ht, Nt Tt

Tarith =T +
arith 1 tl tl t1

I [Z t,} (3.42)

Substituting From (3.38) in to (3.42) we get,

%[itiJ:Tprob +[iti}_1iti2 (3.43)

On substituting (3.41) in (3.43) we get,

=l (3.44)

According to Mansoor (1963), the constant K can take different values:

e For K<I, process will not meet with tolerance specification

e [<K<I1.33, process will meet with tolerance specification under strict statistical

control
e 1.33<K<2, process will easily meet tolerance specification but still statistical control
is required

e K>2, process will easily meet tolerance specification
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As it is depicted in Figure 3.3., inflated distribution is equivalent to linear mean shift, it is
possible to compare their tail areas based on capability ratios as mentioned in Harry M J

(1992), comparing midterm capability ratio with long term ratio we get,
Co =C, (3.45)

In order to examine process capability, the index used is Cp, defined as,

_USL-LSL

C
P 60

However major shortcoming of this index is, it does not account for shifts in the process

centring. Another index developed to indicate process centring is C,; defined as,
Cpe = (1-K)C, (3.46)
where

Amount of target off centering

= — (3.47)
Amount of process meantonearest specification

The above estimate can be used to understand single component off targeting. To estimate K
for multiple component assembly (3.44) can be used. As proposed by Evans (1975), long

term process standard deviation is inflated by factor c,
0, =CO¢ (3.48)

Upon substituting from (3.46) and (3.48) in to (3.45), for bilateral case it can be written as,

USL-LSL( ) _USL-LSL
30'57— 3O'STC

which yields
cC=—-— (3.49)

Upon substituting value of K from (3.47) for single component off targeting and from (3.45)

for multiple component assembly in to (3.49), we can get estimate of inflation factor c.
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As an illustration, consider a single component manufacturing assembly with Mean=1 and

SD=0.002, with natural process variation = 60 =6*0.02=0.012. Therefore,
Natural tolerance interval = [Mean-0.012, Mean+ 0.012]
=[1-0.012, 1+ 0.012]
=1[0.988, 1.012]

Let us take specified tolerance interval as [0.980, 1.014] with Mean=0.097, with amount of
off targeting as 0.003 (=1- 0.097). Hence, the amount of process mean to nearest specification
is min[ [0.980-1], [1.014-1[], which is equal to 0.014. Upon substituting these values in (3.47)
we get, K=0.003/0.014 = 0.214. Hence ¢ =1.272.

3.4 How to market sigma level of the process

Improving business processes and bringing them to the notice of others, is the important
criteria to establish firm-customer trust building. To stand out of general practitioners many
organizations are promoting their different quality initiative like ISO, ASQ etc, to generate

feeling of assured quality standards among customers.

Though Six Sigma efforts speaks in itself based on improved quality standards of business
processes and significant ROI, no criteria has been proposed to promote organization’s Six
Sigma efforts so far. Since, performance CTQs is important with reference to firms position
in the market, sigma level of these CTQs can be a great criterion to promote company’s
quality improvement efforts. Promoting Six Sigma efforts based on sigma level of major
CTQs, can help organization to establish fact based firm-customer relationship. Companies
can device plans to promote sigma level for product branding, service quality and competitive
campaign of their product and processes. The task of convincing all types of customers may
not be very easy, but with a concerted plan this may be possible. Some of the possible ways

through which it can be achieved are:
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Establishing fact based organizational communication system instead of perception
based communication system. This can very well done by leveraging use of sigma
level at each level of communication - from receiving customer order to delivery.
Label each process with their corresponding sigma level

Promote quality healthiness of process through assigning sigma level appropriately

Promote process improvement through improvement in KPI of the process.
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