
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Sigma Level and Process Shift: A SSM Perspectives 
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Complete understanding of Six Sigma approach is not possible without focusing upon sigma 

level and process shift. As explained in Chapter 1 sigma level of the process is number of 

standard deviations covered between process centres to nearest specification limit. And 

process shift is drifting of process mean over long run that result into higher defective units. 

This chapter examines both these aspects in detail. Thereafter, we discuss how these concepts 

are important in SSM. 

 

3.1 Sigma estimation 

Since sigma level of the process is based on process standard deviation, it is important to 

understand different estimation methods of standard deviation. Muralidharan and Raval 

(2012) proposed different estimators for process standard deviation. Majority of standard 

deviations estimators are sensitive to normality assumption. Of estimators can be suggested 

for the estimation of standard deviation (sigma) ranging from traditional square distance 

estimator of standard deviation to score estimators.     

For the observations, ( )nXXXXX ...,, 321=  the most common estimators of sigma is 

                                    ( )å
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-
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Equation (3.1) can also be written as, 
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The sample variance 2s  is the minimum variance unbiased estimator for the population 

variance 2s . However, sample standard deviation is a biased estimator of underlying 

population standard deviation. A vague estimator of process standard deviation can be 
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defined in terms of Range as the difference between highest and lowest observation. 

Unfortunately this estimator is highly influenced by extreme values and hence is less useful.  

The most commonly used robust scale estimator is the Inter Quartile Range (IQR) which is 

defined as, 

                                           )( 13
2

1
QQIQR -=        (3.3) 

Where 1Q  and 3Q  are respectively the first and third quartiles. An estimator similar to (2) is 

given by Gini’s mean difference which is defined as, 
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)(                               (3.4) 

Use of absolute value in above estimator instead of squared distance reduces the impact of 

large distance. But this statistic is also not very robust. Another important estimator of 

standard deviation is given by Median Absolute Deviation (MAD) as, 

                                     })()( jjii XmedianXmedianXMAD -=                           (3.5) 

Two alternate estimators of MAD is given as nS and  nQ , 

                                { }jijin XXmedianmedianS -=                                           (3.6) 

                                { }
( )kjiin jiXXmedianQ <-= ;                                            (3.7) 
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Where 
0s
MX

Z i
i

-
= , M is an auxiliary estimate of location and 0s  is an auxiliary estimate of 

scale. Muralidharan and Raval (2012) provided efficiency comparison between all above 

estimators for normal and non normal data given in Table 3.1. 

 

        Table 3.1. Sigma Estimators and their efficiencies 

Formula 3.1 3.2 3.3 3.5 3.6 3.7 3.8 

Efficiency 

(Normal data) 

100% 100% 97.41% 98.38% 88.18% 72.68% 102.79% 

Efficiency 

(Non-normal data) 

100% 100% 83.85% 87.98% 61.22% 56.49% 97.62% 

 

3.2. Sigma level estimation  

Method through which process variation can be measured is known as sigma level of the 

process. Sigma level of the process measures number of standard deviation process can 

produce between process mean and nearest specification limit. Estimation of sigma level 

depends upon type of variable you are dealing with which is discussed below.      

3.2.1 Sigma level estimation for discrete distribution 

Calculation of sigma level for discrete distribution is based on DPMO approach. This 

approach involves concept of unit, opportunity and defects. Unit is any product, part, 

assembly, process or service for which quality is desired. Opportunity is a value added 

feature of a unit that should meet specifications proposed by customer. Defect is the 

characteristic of the product that fails to meet customer requirements and Defectives are the 

total number if units containing different types of defects. Thus, total opportunity (TOP), 

defect per unit (DPU) and defect per million opportunities (DPMO) is defined as,    

TOP= Number of units checked*Number of opportunities of failure           (3.9) 

                       
checkedunitsofNo.

DefectsofNo.
DPU =

                 (3.10) 
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And 

                      

610*
unitper yopportunit ofNo.

DPU
DPMO=           (3.11) 

Then, 
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As an illustration, consider, 250 units are selected from the production process and each are 

tested for 20 possible opportunities, then from (3.9), TOP = 250*20 = 5000. If suppose, 75 

defects are observed, then, the defects per unit is 3.0
250

75
DPU == , and the 

1500010*
20

0.3
DPMO 6 ==  according to (3.10) and (3.11) respectively. That is, process fails 

to meet specification for 15000 opportunities out 1,000,000 opportunities. Hence, from 

(3.12), through normal inverse long term sigma level of the process is 2.17σ .  

 

3.2.2 Sigma level estimation for continuous distribution 

Calculation of sigma level for continuous distribution is based on capability analysis and 

inverse standard normal distribution. With customer proposed upper specification limit 

(USL) and lower specification limit (LSL), capability indices are defined as, 

6σ

LSLUSL
Cp
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       (3.13) 
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We can obtain sigma level of the process through corresponding z-score, 
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-
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( )

σ

LSLμ
ZlevelsigmaLower LSL

-
=

         (3.16) 

Consider the following data: 25, 28, 32, 38, 29, 36, 29, 28, 26, 29. Suppose, the USL and 

LSL of the process are given as 25 and 40 respectively. If the process mean ( m ) and standard 

deviation (s ) are 30 and 5 respectively, then from (3.15), we get the  

( ) 2
5

3040
=

-
=

-
=

σ

μUSL
ZUSL  and from (3.16), we get ( ) 1

5

2530
=

-
=

-
=

σ

LSLμ
ZLSL  .  

Now suppose a continuous measurement of a process is given with its upper and lower 

specification values. The long term sigma level of such a process is obtained by computing

( ) ( ){ }[ ]
USLLSL
ZZPZZP >+<F-1

. 

For the process discussed above, if the long term sigma level is   

( ) ( ){ }[ ] ( ) ( ){ }[ ]2111 >+<F=>+<F --
ZPZPZZPZZP

USLLSL  

            [ ] 091022084101
... =+F= -  

Hence, short term sigma level ( )
ST

Z  of the process is 1.09+1.5 = 2.59. 

  

3.3 Sigma-shift estimation  

To account for certain process variations the proposed concept of s6 later degraded to 3.4 

DPMO with reference to s51.  shift in long run. In order to make it comparable over 

different CTQs, s level is converted into corresponding Z value. 

Estimate of STZ  (short term sigma level) is obtained by adding 1.5 to LTZ  (long term sigma 

level) as given in equation (3.17) 

                51.+= LTST ZZ       (3.17) 

Hence, s51. shift inflate the number of defects depends on off centring of the process, it is 

important to understand s51. shift in detail.  Harry (2003) consider s51.  shift as a one of 
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the mystical pillar of Six Sigma. Effect of s51. shift is indicated in Fig 3.1 and 

corresponding DPMO are explained in Table 3.2. 

 

Fig 3.1. Sigma shift of distribution 

 

Table 3.2. DPMO for targeted and shifted distribution 

Specification 

limit 

Percentage within 

specification 

DPMO 

 Targeted 

distribution 

Shifted 

distribution 

Targeted 

distribution 

Shifted 

distribution 

s1±  68.27 30.85 317310 691462 

s2±  95.45 69.14 45500 308537 

s3±  99.73 93.32 2699 66807 

s4±  99.994 99.379 63.34 6210 

s5±  99.99994 99.9767 0.57 233 

s6±  99.9999998 99.99966 0.002 3.4 

 

s51. shift has its origin in the world of control charts. Understanding of s51. shift requires 

the understanding of the connection between variation, producibility, process capability and 

tolerance. Smith identified the connection between how well product did in the field versus 

how much rework had been required during production. In order to cope up with Japanese 

quality, Smith proposed to follow 50% design margins for all the key product performance 

specifications of Motorola, compare to 25% “cushion” of the period (Harry, 2003). Smith 

believed that 25% cushion” was not sufficient for absorbing a sudden shift in process 

centring. Figure 3.2 represents Bill’s assertion about 50% design margin. However, at that 

time Bill’s assertion was statistically undefended. Later on Harry (2003) form the statistical 

foundation of Six Sigma methodology.    
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According to Six Sigma philosophy, the variation in Six Sigma model is defined through 

causal relation as given in equation (3.18) 

 

             ( ) e+= nXXXXfY ...,, 321     (3.18) 

Here  is response variable,  are causative variables,  is error in prediction of . In order 

to examine variation in  it is important to adopt such a rational sampling plan that fully 

captures white noise while preserving the effect of assignable causes. Only after removing 

effect of special causes of variation, it is possible to estimate variation in through 

instantaneous producibility. This can be done by isolating random transient effect and 

temporal effect. 

 

Fig 3.2. Increased design margin 

 

Hence, shift of the distribution of  away from their normal specifications cause shift in the 

distribution of response variable . This in turn increases the probability of non conformance. 

Mean off set can be expressed as equivalent inflation (c) of standard deviation. The mean off 

set equivalent to inflated standard deviation is shown Figure 3.3.   
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Fig 3.3. Inflated distribution with equivalent mean shift 

3.3.1 ANOVA approach 

Here we discussed a technically sound method of understanding the shift through the 

Analysis of Variance (ANOVA) approach, which is described as follows: Consider a one-

way classification of observations as, 

 

Treatment-1 Treatment-2 … Treatment-r 

11X  

12X  

… 

sX1  

21X  

22X  

… 

sX2  

… 

… 

… 

… 

1rX  

2rX  

… 

rsX  

 

A suitable model to represent the above classification is 

                   ijiijX eam ++=
      

(3.19)

 

Where m is the mean of the population for all treatments and ia  is the effect due to i-th 

treatment. Then the null hypothesis that all treatment means are equal is given by  

aaaa ==== rH ....210  

If 0H is true, we conclude that all treatment means are same. In such a case there is just one 

treatment population, and chances of shift between populations may be a resultant of chance 
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causes only. If hypothesis is rejected, then we conclude that at least one of the mean is 

shifted. To test the above hypothesis, we use F-test for equal means, and the test statistic is 

given as 
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=          (3.20)

 

which has F-distribution with r-1 and r(s-1) degrees o freedom. Where 2
BŜ  is the mean 

square variation between treatments and 2
WŜ  the mean square variation within treatments (see 

Table 3.2. below). The hypothesis of equal means is rejected if ( )( )11 --> srrFF ,,a . The 

quantities 2
BŜ  and 2

WŜ  are calculated as follows: 
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Since, ( ) ( )XXXXXX iiijij -+-=- ..  
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That is,  

Total variation = variation within treatments + variation between treatments 

                     BWT VVV +=  

Where 
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The one way analysis of variance for equal number of observations is presented in Table 3.3. 

In the table, the mean sum of squares (MSE) is obtained by dividing the sum of squares by 

their corresponding degrees of freedom.  

 

Table 3.3. One way ANOVA for equal number of observations 

Source of 

variation 

Degrees of 

freedom 

Sum of Squares Mean sum of 

squares 

F-ratio 

Between 

treatment 

r -1 ( )å
=

-=
r

i

iB XXsV
1

2

.  1

2

-
=
r

V
S B
B
ˆ  

2

2

W

B

S

S
ˆ

ˆ
 

Within 
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Note that ( )1-rsVT  is an estimate of the long-term variance ( )LTs and ( )1-srVW is an 

estimate of the short-term variance ( )STs .Then the ratio STLTc ss=  is the ratio of root 

mean squares (RMS) is a hybrid performance metric that provides us with an insight into how 

much ‘dynamic centring error’ is occurring in the process over the total period of sampling. 

When c = 0, then 0=BV , but only after adjusting for differences in degrees-of-freedom, and 

when c > 0, (i.e. LTs > STs ), then 0>BV . Thus c is a measure of capability related to process 
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centring. Given the circumstance that 0=BV , it is quite natural to recognize that all of the 

subgroup means would necessarily be identical in value, a situation called state of perfection 

of the given process. Now, let us estimate the ratio c as, 
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From (3.24) 
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Note that for c = 1, (3.26) reduces to rsrZshift /)( 1-= . According to   Harry (2003) it is 

highly desirable to set 0=shiftZ  for c = 1. When c = 1.5, the value of  shiftZ  will be 1.5. Also 

as ¥®rs , shiftZ asymptotically approaches to the quantity c
2
-1. Typically, the range of r and 

s are considered to be 10025 ££ r  and 64 ££ s . The best commonly employed combination is 

that of r = 50 and s = 5. shiftZ values for different combination of rs is shown in Figure 3.4. 

 

 

Fig 3.4 shiftZ
 
for c=1 to 3 and different combination of rs 

 

3.3.2 Equivalence of distributions 

Now consider any two set of treatments AT  and BT  having same or different samples. If  

mmm == BAH :0  is rejected, then it is obvious that the mean is shifted. Suppose for 

convenience, the treatment B is inflated with respect to the treatment A, then the total 

variation of treatment B is explained in terms of A as 
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and is called the dynamic correction used to adjust or compensate the influence of random 

sampling error over a protracted period of time or many cycles of operation. Again, if 

22 ss =A  is known and fixed, then 
222 ss Bc = follows a Chi-square distribution with n-1 

degrees of freedom.  That is 
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For various levels of a ,one can visualize the shift happening in one variable with respect to 

the other. For example: Suppose n=30, 280ˆ =As , and 376=Bŝ .Then 343.1ˆˆˆ == ABc ss  

using (3.28) and 346.11629ˆ ==c  for α =0.025 using (3.29). The shiftZ  according to (3.26) 

where r=2 and s=n=30 is 0.99. 

 

3.3.3 Tolerance analysis based approach  

Evolution of Tolerance analysis is found in the concept of interchangeability, which focuses 

upon replacing damaged assembly piece hence making assembly parts interchangeable. 

Buckingham (1921) examines interchagability over four different phases: 

· Design a product: Manufacturing design determines the success and failure of a 

project. Construction of mechanism that works properly is the major objective of this 

phase. Perfect manufacturing design is aimed to initiate large scale production and 

this designing phase last throughout production to examine issues that might be 

difficult to foreseen in advance. 

· Manufacturing model: Testing a model developed in design phase is the focus of this 

phase. Creating a physical model of accepted design to persuade large scale 

production.   

· Clearance: It is an important consideration in developing manufacturing design. 

Clearance is the allowable space between operating parts. Minimum clearance should 

be as small as assembling parts and their proper operation. Maximum clearance 

should be as great as the functioning permits. Design allowing higher clearance 

between parts results in to higher degree of interchangeability and greater economic 

benefits.  

· Manufacturing tolerance: Manufacturing tolerance is about trying to hold the product 

as closely as possible to a fix size. Though practically tolerance value often exceeds 

its decided design value, it is important to note it down since sometimes it match with 

its design value.  

 

The issue of s5.1 shift is discussed extensively in Tolerance analysis literature which is a part 

of mechanical engineering. Bender (1968), Gilson (1951), Evans (1975) discussed s5.1 shift 
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in the early tolerance literature. Two important methods discussed in the literature are the 

Worst case and root sum square (RSS) techniques. The worst case method is based on the 

consideration that component dimension are taking extreme values.  

The concept of tolerance analysis is again based on the model presented in (3.18), where i
th 

product characteristic Xi has upper specification limit ( iU ) and lower specification limits ( iL ) 

indicating worst scenario, tolerance for i
th 

product characteristic will be, 

 iii LUT -=    (3.30) 

According to worst case model, the assembly tolerance, aT  is given by 

 
å
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ia TT
1    

(3.31) 

Worst case tolerance analysis method is considered as the most widely used method from 

design engineering perspective (Kuo and Tsai, 2011). This method can be used if all product 

component characteristics are within allowable variability and few rejections are not 

permissible (Chase and Greenwood, 1988). Since there are very less chance of all product 

components characteristics to fall at extreme tolerance limits, this method is considered as 

most pessimistic method. 

Root sum square (RSS) method is based on the assumption of statistical distribution of 

components and generally but not restricted to normal distribution. This method further 

assumes that component characteristics are within statistical control and process mean is at 

the centre of specified tolerance. RSS model is provided in (3.32). This method is based on 

tolerance range corresponds to ±3σ range of component distribution.   
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(3.32) 

Issues with root sum square model is that, if all component characteristics may not be in 

control state which leads to more predicted out of control assemblies, then all component 

characteristics may not be approximated through normal distribution and process centre may 

not lie exactly at the  centre of specified tolerance.  

Mansoor (1963) propose the model combining both worst case and root sum square part. He 

proposed probabilistic model based on requirement of predicting probable limits of assembly 
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dimension or assignment of component tolerance based on assembly requirement. This need 

can be cater through selecting appropriate theoretical distribution for component tolerance. 

Depending upon the shape of distribution the author provide estimate of probable sum of 

component tolerances (Tprob) as, 
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(3.33) 

Here value of constant c depends upon the shape of the distribution. Mansoor (1963) 

proposed theory based on “relative precision index” (RPI), which examines the matching 

between natural process tolerance (±3.09 times the distribution standard deviation) and 

specified tolerance interval.  

According to this model tolerance specifications of different dimensions are denoted by 

T1,T2,...Tn and natural process tolerance of dimensions are indicated by t1, t2,...tn.  

 

Fig 3.5. biasness in dimensional position of natural process tolerance 

Biasness in dimensional position of natural process tolerance for first component is denoted 

by 1x similarly biasness in dimensional position of natural process tolerance of rest of the 

components given by 2x , 3x ,... nx . Figure 3.5 shows biasness for fist assembly component, 

where biasness is the difference between midpoint of natural process tolerance and specified 

dimension tolerance given as below:    
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Therefore, the probable sum of assembly dimension comprise biasness in dimensional 

position of each components and their natural process tolerance, 
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If natural process tolerance is, 
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Then, upon using (3.34) and (3.36) in (3.35) we get,  
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where  

 narith TTTT +++= ...21     (3.39) 

Assuming constant ratio for allowable tolerance and natural tolerance we get,  
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Therefore,  
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Hence (3.39) reduces to  
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Substituting From (3.38) in to (3.42) we get, 
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On substituting (3.41) in (3.43) we get, 
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(3.44) 

According to Mansoor (1963), the constant K can take different values:  

· For K<1, process will not meet with tolerance specification 

· 1<K<1.33, process will meet with tolerance specification under strict statistical 

control 

· 1.33<K<2, process will easily meet tolerance specification but still statistical control 

is required 

· K>2, process will easily meet tolerance specification 
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As it is depicted in Figure 3.3., inflated distribution is equivalent to linear mean shift, it is 

possible to compare their tail areas based on capability ratios as mentioned in Harry M J 

(1992), comparing midterm capability ratio with long term ratio we get,  

 
*

pPk CC =
   

(3.45) 

In order to examine process capability, the index used is CP, defined as, 

σ

LSLUSL
CP

6

-
=  

However major shortcoming of this index is, it does not account for shifts in the process 

centring. Another index developed to indicate process centring is Cpk defined as,  

 
( ) pPk CKC -= 1

   
(3.46)

 

where 

 ionspecificatnearesttomeanprocessofAmount

centeringoffettofAmount
K

arg
=     (3.47) 

 

The above estimate can be used to understand single component off targeting. To estimate K 

for multiple component assembly (3.44) can be used. As proposed by Evans (1975), long 

term process standard deviation is inflated by factor c,  

                                                  STLT
css =

   (3.48)  

Upon substituting from (3.46) and (3.48) in to (3.45), for bilateral case it can be written as,  
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which yields 
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(3.49) 

Upon substituting value of K from (3.47) for single component off targeting and from (3.45) 

for multiple component assembly in to (3.49), we can get estimate of inflation factor c. 
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As an illustration, consider a single component manufacturing assembly with Mean=1 and 

SD=0.002, with natural process variation =  =6*0.02=0.012. Therefore,  

    Natural tolerance interval = [Mean-0.012, Mean+ 0.012] 

          = [1-0.012, 1+ 0.012] 

                 = [0.988, 1.012] 

Let us take specified tolerance interval as [0.980, 1.014] with Mean=0.097, with amount of 

off targeting as 0.003 (=1- 0.097). Hence, the amount of process mean to nearest specification 

is min[ |0.980-1| , |1.014-1|], which is equal to 0.014. Upon substituting these values in (3.47) 

we get, K=0.003/0.014 = 0.214.  Hence c =1.272. 

 

3.4 How to market sigma level of the process 

Improving business processes and bringing them to the notice of others, is the important 

criteria to establish firm-customer trust building. To stand out of general practitioners many 

organizations are promoting their different quality initiative like ISO, ASQ etc, to generate 

feeling of assured quality standards among customers.  

Though Six Sigma efforts speaks in itself  based on improved quality standards of business 

processes and significant ROI, no criteria has been proposed to promote organization’s Six 

Sigma efforts so far. Since, performance CTQs is important with reference to firms position 

in the market, sigma level of these CTQs can be a great criterion to promote company’s 

quality improvement efforts. Promoting Six Sigma efforts based on sigma level of major 

CTQs, can help organization to establish fact based firm-customer relationship. Companies 

can device plans to promote sigma level for product branding, service quality and competitive 

campaign of their product and processes. The task of convincing all types of customers may 

not be very easy, but with a concerted plan this may be possible. Some of the possible ways 

through which it can be achieved are: 
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· Establishing fact based organizational communication system instead of perception 

based communication system. This can very well done by leveraging use of sigma 

level at each level of communication - from receiving customer order to delivery.  

·  Label each process with their corresponding sigma level 

· Promote quality healthiness of process through assigning sigma level appropriately 

· Promote process improvement through improvement in KPI of the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


