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5.1 INTRODUCTION

For many products, it is a common phenomenon that after an initial period of

popularity, demand of product decreases. As described in this section, many

authors have developed inventory models where demand of product varies

with time. It is a common practice among sellers to reduce the selling price of

product to deal with the decreasing demands. End of season sale of items

such as fashion goods, and reducing prices of electronic gazettes over time

are excellent examples of this practice. We can, therefore, categorize these

types of items as value deteriorating items. Products that are kept lying on the

racks for very long, deteriorate in their appearance and may also deteriorate

in quality due to dusting and/ or exposure to environment. This also increases

holding costs. For such reasons, as soon as the product cycle in terms of the

requirement/ demand completes, sellers would like to do away with that

product, although at a lower price, which may or may not cover the cost but

certainly conserve on the holding cost. Outdated products due to changed

fashion or taste of buyers also command lower prices in the market place.

This practice of ‘stock clearance sale’ also helps to ensure smooth flow of

money in the business system.

In the present chapter we incorporate this phenomenon in the proposed

model and obtain optimum inventory levels. Since the product is required to

be sold at a lower price (sometimes significantly lower), the model can be

regarded as a model for value deteriorating items.

Whitin (1952) appears to be first who recognized and incorporated this

phenomenon while proposing an inventory model for fashion goods. He
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assumed that items on hand at the end of the period are liquidated at a loss

(i.e. value deteriorated). He assumed that the cost of liquidating an unsold

item dominates the set up cost and holding cost and hence did not consider

these costs in his analysis.

Although, we are not directly modeling demand as a function of time, the

model proposed in this chapter can also be viewed from the point of view of

time dependent demand. By “time dependent demand”, we mean demand

that varies with time. Several researchers have considered time dependent

demand patterns, as discussed in section 1.1.2, for inventory models. The

age-on-shelf of inventory may make a negative impact on demand because of

the loss of confidence of consumers on the quality of such products. As

discussed by Goyal and Giri (2001), and Ruxain et al. (2010) in their review,

most of the continuous-time inventory models have been developed assuming

either linearly varying demand or exponentially varying demand patterns.

Resh et al. (1976) and Donaldson (1977) have also considered an inventory

model with a linear trend in demand. Goyal (1986), Goswami and Chaudhuri

(1991), Chung and Ting(1993),  Dave and Patel (1981), and Dutta and Pal

(1992) are some more authors who also considered models with time

proportional (i.e. linearly varying with time) demand. Hariga and Benkherouf

(1994), and Wee (1995) considered exponentially time varying demand. Giri

and Chaudhuri (1997), Papachristos and Skouri (2000), Chu and Chen

(2002), Khanra and Chandhuri (2003), Yang (2005), Dye et al. (2006) also

considered time dependent demand.
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Mishra (2013) proposed a deterministic model with demand rate and holding

cost as liner function of time. Tripathi (2013) developed an inventory model for

time varying demand and constant demand. Sing, et al (2013) and Mishra et

al. (2013) also proposed model with time dependent demand. Jagadeeswari

and Chenniappan (2014) developed Inventory Model for Deteriorating Items

with Time – Quadratic Demand. S.Kumar and Rajput (2015) developed fuzzy

inventory model for time dependent demand.

Hill (1995) proposed a “ramp-type” time dependent demand as described in

section 1.1.2. It is a combination of linearly varying demand and exponentially

varying demands over the entire time horizon. Mandal and Pal (1998), Deng

et al (2007), Skouri et al. (2007) also consider the ramp type demand in the

study of inventory for the deteriorating items. Manna and Chaudhuri (2003)

also considered ramp type demand pattern that is generally followed by new

brands of consumer goods coming in the market. Panda et al. (2008)

discussed an inventory model for a seasonal product with constant

deterioration rate and a ramp-type time dependent demand. Tend et al.

(2011) also consider ramp type demand rate in their work. Karmakar and

Dutta Chaudhury (2014) also consider ramp type demand, constant

deterioration rate and holding cost as a linearly increasing function of time.

Jagadeeswari and Chenniappan (2014) considered deterioration rate is

constant and quadratic time dependent demand.

Generally, in market, it is observed that a price reduction results in an

increased demand. The retailers exploit this phenomenon by offering price

discounts to their customers to address the problem of decreasing demands.
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This policy is frequently used in supermarkets, malls etc. Wee and Yu (1997)

considered the effects of the temporary discount sale when the items

deteriorate exponentially with time.

In the work referenced above, it appears that Whitin (1952) is the only author

who considered items with discrete demand. Many authors considered time

varying demand but no one seems to have considered price discount with

time in order to maintain demand.

In the present chapter we propose an inventory model for the inventory items

having unit demand, where seller takes the approach described above to deal

with reducing demand rate. We further assume that the price discount is

offered in such a way that the demand rate remain unchanged after the

discount (i.e. demand rate is maintained).

5.2 NOTATIONS

Following notations are used in this paper.

: Lot size. (Initial inventory level)

: Cycle length (time to reorder)

: Time after which items are sold at a reduced price.

: Holding cost per unit per unit time before time .

: Holding cost per unit per unit time after time .

: Cost of inventory per unit.
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: Ordering cost per order.

 : Mean customer inter arrival time.(Equivalently, Customer arrival rate = )

5.3 THE PROPOSED MODEL

Following are the basic assumptions of the model.

1. Customer arrival process is Poisson with arrival rate of customers per unit

time. It is further assumed that each customer has a demand of one unit.

2. Supply/ replenishment is instantaneous.

3. Reorder is placed as soon as inventory level reaches zero.

4. Holding cost is incurred only for the period during which the items are in

stock.

Suppose inventory is maintained for a discrete item. The stock level is raised

to units in the beginning. Items are sold at a regular unit price p1 up to

time . If there are any unsold units left at time , they are sold at a reduce

price p2. Since holding cost includes the cost of tied up capital, reduction in

the selling price leads to an increased holding cost. In the following

development, instead of directly using sale prices p1 and p2, we use the

resultant holding costs and .
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Determination of Optimum Inventory Level

Initially at time = 0, let the inventory level be raised to units. Suppose ith-

customer arrives at time , so that at time +⋯+ , inventory level reduces

to ( − ) units for i = 1, 2, ….

Let be the number of units sold up to a specified time . In practice, two

cases may arise = or < .If < , then remaining − units are sold

at a reduce price. Here should be viewed as a realized value of r.v. .

In the proposed model, number of unit sold is same as the number of

customers arrived.  As customer arrival process is Poisson and since number

of units sold cannot exceed the initial inventory level n, it is clear that follows

truncated Poisson distribution, truncated above at n.

At time = + + …+ , inventory level becomes zero. At this time

reorder is made and the next cycle starts.

Clearly, the cycle length is a random variable.

As the customer arrival process is Poisson, the inter-arrival times are

identically and independently distributed (iid) exponential random variables,

with common mean θ.

That is,

 ( ) , = 1,2, … , .
Then the expected value of Cycle length = ti is given by

( ) =
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In order to obtain the optimal order quantity, we need to minimize the

expected total inventory cost per unit time with respect to the initial inventory

level n. The total inventory cost for one cycle is given by

Total cost = Ordering cost + Inventory cost + Holding cost

Ordering cost = …(5.3.1)
Cost of inventory = …(5.3.2)
The holding cost that incur before time is

= ( + ( − 1) + ⋯+ ( − ( − 1)) + ( − )( − ) ) ; <( + ( − 1) + ⋯+ 1 ) ; =
The holding cost that incur after time T0, is

= ( − )( − ) + ( − ( + 1)) + ⋯ + ; <0 ; ; =
Here and are the arrival times of th and ( + 1)th customers

respectively, i.e. = ∑ and = +
Hence we have

Total holding cost = HC1+HC2

= ( + ( − 1) + ⋯+ ( − ( − 1)) + ( − )( − ) ) +( − )( − ) + ( − ( + 1)) + ⋯ + ; <( + ( − 1) + ⋯+ − ( − 1) ; = … (5.3.3)
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Total cost for one cycle is sum of ordering cost, inventory cost and holding

cost.

From (5.3.1) - (5.3.3),

The total inventory cost per unit time, with initial inventory level n, is

( ) =

⎩⎪⎨
⎪⎧ + + + ( − 1) + ( − 2) + ⋯+− ( − 1) + ( − )( − )+ ( − )( − ) + − ( + 1) + ⋯+ ; <

( + + ( + ( − 1) + ( − 2) + ⋯ + ) ) ; =
… (5.3.4)

Since ( ) is a random variable, we minimize ( ( )) with respect to n for

obtaining the optimum inventory level.

The case, = 1 requires a special attention.

For = 1, = ~ ( ). Hence

1 = 1 ⁄∞

This is a Gamma integral with shape parameter α = 0. It may be recalled that

the Gamma integral converges if and only if α > 0. Thus, it follows that

diverges to ∞.

As a result, for = 1 , expected total cost per unit time is infinite. So optimum

inventory level cannot be 1.
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> 1, ( ) is computed as ( ) = ( ( ( )| = ))
( ( )| = )
=
⎩⎪⎪
⎨⎪
⎪⎧ ( + ) 1 + ( + ( − 1) + ⋯+ − ( − 1) +( − ) − ) + (( − ) − + − ( + 1) + ⋯+2 + ) ; <( + ) 1 + + ( − 1) + ( − 2) +∙∙∙ +(1) ; =( ( )| = )

=
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧( + ) 1 + + ( − 1) + ( − 2) + ∙∙∙ +( − ( − 1) +( − ) − + ( − ) − +

2 (( − ( + 1)) + ⋯+ 2 + 1) ; <( + ) 1 + + ( − 1) + ( − 2) +∙∙∙ +(1) ; =
… (5.3.5)

As per the model assumptions, we have for n>1,1 = 1( − 1) , = 1 , = ( − 1)
= , = + 1

Also, we have,

+ ( − 1) + ( − 2) +∙∙∙ +( − ( − 1)) = ( + − ( − 1))
( − ( + 1)) + ⋯+ 2 + 1) = ( ) ( − ( + 1) + 1)
Therefore,
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( ( )| = )
=
⎩⎪⎪⎨
⎪⎪⎧ +( − 1) + (2 − + 1)2 + ( − ) ( − 1) − +( − ) + 1 − ( − 1) + ( − − 1)( − )2 ; <+( − 1) + + 12 ; =

=
⎩⎪⎪⎨
⎪⎪⎧ +( − 1) + − 2 + 2 + ( − ) ( − 1) − ( − ) +( − ) + 1 − ( − ) ( − 1) + + − 2 − +2 ; <+( − 1) + + 12 ; =
( ( )| = )
=
⎩⎪⎪⎨
⎪⎪⎧ +( − 1) + − 1 ( − ) + − 1 ( − ) + + 12 + 2 ( − )+ ( − )2 ; <+( − 1) + + 12 ; ; =

= , and = ∑ !
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( )
= +( − 1) − − 1 ( − ) + − 1 ( − ) + + 12
− 2 ( − ) − ( − )2 / !
+ +( − 1)
+ + 12 / ! … (5.3.6)
Add and subtract th term  in 2nd, 3rd , 5th and 6th term in above expression

(5.3.6),

( ) = +( − 1) / ! + +( − 1) / !
− − 1 ( − ) / ! − − 1 ( − ) / !
+ − 1 ( − ) / !
+ − 1 ( − ) / ! + + 12 / !
+ + 12 / ! − + 12 / ! + + 12 / !
− 2 ( − ) / ! − 2 ( − ) ! + 2 ( − ) !
− 2 ( − ) / ! − 2 ( − ) ! + 2 ( − ) / !
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⇒ ( ) = +( − 1) − − 1 ( − ) + − 1 ( − ) / !
+ + 12 − + 12 ( − ) ! + + 12 ( − ) !
− 2 ( − ) / ! − 2 ( − ) / !

Thus,

( ) = +( − 1) − − 1 ( − ) + + 12
+ − 1 ( − ) ! − ( − )2 !
− ( − )2 ! . . . (5.3.7)

( ) = +( − 1) − − 1 ( − ) + + 12 + − 1 ( − ) ( )
− ( − )2 ( ( ) + ( ))

Where

( ) = / ! ( ) = / !
It may be noted here that the expected total cost does not directly depend on

C1 and C2, it rather depends on the difference (C2-C1). This difference is

precisely the cost of liquidating unsold items, the cost considered by Whitin

(1952). Thus our result is in agreement with Whitin’s assumption that holding

cost is not an important variable for determining optimal ordering quantity for
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value deteriorating items. However, since our model is different from that of

Whitin, the overall cost function obviously differs.

As moments of truncated above Poisson distribution are not available in a

closed form, obtaining the formula of E(TC(n)) and hence that of the optimal

value of n in a closed form is difficult. We, therefore, present an algorithm for

the calculation of optimal value of and the associated minimum cost.  An

implementation of the same in C++ is presented in the appendix.  The

algorithm is described in the next section.

5.4 ALGORITHM

Step 1: Enter the value of , , , , , .

Step 2: Compute = .

Step 3: Set = 2, ( (1)) = LARGE

Step 4: Compute

= !
Step 5: Compute

= +( − 1) , = − 1 ( − ), = + 12
Step 6: Compute

1 = 1 / ! 1 = (1 − !⁄ )
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Step 7: Compute

= ( − )− 1 1
= 12 ( − ) 1

Step 8: Compute sum2 = ∑ ! as

Sum2 = sum1 + 1 − 1 ( − 1)! − 1 !
Compute = 2
Step 9: Compute ( ) = + + − + +
Step 10: If ( ) > ( ( − 1)) then out put the value of − 1 as the

optimal solution and stop.

Else set = + 1. And go to step 4.
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5.5 AN ILLUSTRATIVE EXAMPLE

Suppose that demand for a product is 20 per month and customer arrival

process is a Poisson process with each customer having demand of one unit.

Holding cost per unit per unit time is Rs. 500 before time T0. Holding cost per

unit per unit time is Rs. 750 after time T0. Ordering cost is Rs.10000 per order.

Suppose shortages are not allowed and the purchasing cost per unit is

Rs.12000. Here we determine expected total cost and optimal quantity.

This example is solved with the help of program develop in C++ (see

Appendix-E)

C = 12000, C0 = 10000, C1 = 500, C2 = 750, T0 = 3, θ =0.05, 1 = 20

Using the program developed in Appendix – E, we get the optimal value of

n= 43 with E(TC)= 2,61,251.1 .
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Figure 5.5 Expected total cost as a function of n when Sale Price decreases with Time

The graph describes the relationship between expected total cost and initial

inventory level. As it can be observed, the curve for E(TC(n)) is a convex

function of n, with minimum cost achieved at n=43 units.
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