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2.1 INTRODUCTION 

The most well-known square-root formula for Economic Order Quantity (EOQ) 

is such a fundamental result of inventory theory that it appears in almost every 

textbook on the subject. This fundamental result was developed by Harris 

(1913). Interestingly, this original work of Harris was lost from sight for many 

years until it was rediscovered by Erlenkotter (1989).  This classical EOQ 

model assumes that demand is continuous and arising at a constant rate. 

Because of the simplicity of the EOQ, it is often used, as an approximation, in 

practice even when demand is stochastic or also when demand is discrete. 

Even the context for which Harris developed this formula was that of 

manufacturing parts such as connectors, or studs which are essentially 

manufactured in discrete units. However, in numerical illustrations, Harris 

himself uses the fractional answer obtained by the square-root formula after 

rounding it to nearest feasible quantity. We investigate in this work, whether a 

model specifically developed for discrete items is more beneficial as 

compared to this approach of rounding the answers. At the time of this work, 

we are not aware of any such investigation reported in the literature.  

We consider a continuous review inventory system and assume zero lead 

time. Katy,Juliy & Udayabhanu (2012), and other authors referenced by them 

including , Cetinkaya & Lee (2000), Lee & Rosenblatt (1986), Thompstone & 

Silver (1975), assume negligible lead time. The assumption of negligible lead 

time is practically equivalent to zero load time, and is treated that way in 

above papers.   
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2.2 NOTATIONS  

Notations used in this Chapter are as given below. 

 ܶ: Cycle length 

 .଴: Ordering cost per orderܥ

௛ܥ  : Holding cost per unit per unit time. 

  Cost of inventory per unit  : ܥ

݊ : Initial inventory level, - a positive integer 

 Demand rate per unit time - a positive integer : ܦ

2.3 THE PROPOSED MODEL 

Following are the basic assumptions of the proposed model.  

1.  Demand is discrete at a constant rate of ܦ units per unit time. 

2.  Supply is instantaneous.  

3.  Reorder is placed as soon as inventory level reaches zero. 

4. Holding cost is incurred for the period during which the inventory item is in 

the stock. 

It is further assumed that the holding cost is not computed for a fraction of unit 

time. Thus, for example if the demand rate is 20 units per day, then for the 20 

units that are sold during the day, the holding cost is incurred for the full day. 

In our opinion, this is a very realistic assumption.  
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Determination of Optimum Inventory Level  

In the proposed inventory model, the demand is discrete, whereas in classical 

EOQ model the demand is assumed to be continuous and constant over the 

period. This assumption of the later model results in a linearly decreasing 

inventory level (as shown in figure 2.3(a)), until the reorder is placed. 

However, when the demand is discrete, the inventory levels decrease as 

shown in figure 2.3(b). 

 

                                     Figure 2.3(a)  

              Inventory Level v/s. Time for 

                  Continuous Demand 

 

Figure2.3(b)1 

           Inventory Level v/s. Time for 

                     Discrete Demand 

  

The total cost of maintaining inventory for one cycle is 

Total cost = Ordering cost + Inventory cost + Holding cost 

Ordering cost = ଴ܥ                                                                                                … (2.3.1) 

Cost of inventory = …                                                                                        ܥ݊ (2.3.2)  

                                                            
1 This figure shows inventory level over time when demand is discrete having rate of 20 units per 
unit time, and initial inventory level is 80. 
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Total holding cost = ௛ܥ݊ +  (݊ − ௛ܥ (ܦ  + (݊ − ௛ܥ(ܦ2  +  … … +   

                                       (݊ − (ܶ −   (௛ܥ(ܦ(1

         = ݊)௛ܥ + (݊ − (ܦ + (݊ − (ܦ2 + ⋯ +  (ܦ

Thus,  

ݐݏ݋ܿ ݈݃݊݅݀݋ℎ ݈ܽݐ݋ܶ = ௛ܶܥ
(݊ + (ܦ

2
                                                                        … (2.3.3) 

                                                                                       

 Equations (2.3.1) – (2.3.3) imply that total cost for one cycle of length ܶ is  

଴ܥ + ܥ݊ ௛ܶܥ +
(݊ + (ܦ

2
   

The total cost per unit time, with initial inventory level ݊, is 

(݊)ܥܶ =  
଴ܥ + ܥ݊ + ௛ܶܥ  (݊ + (ܦ

2  
ܶ

 

By substituting  ܶ =  ௡
஽
 , we get for n = 1, 2, … 

  

(݊)ܥܶ =  
ܦ଴ܥ

݊
ܥܦ + + ௛ܥ  

 (݊ + (ܦ
2

   

       

             =  
ܦ଴ܥ

݊
+ ܥܦ  + ݊

௛ܥ

2
+ ܦ

௛ܥ

2
                                                                       … (2.3.4)  

An optimal value of ݊  is the one that minimizes ܶܥ(݊). 

Note that  

݊)ܥܶ + 1) − (݊)ܥܶ =
௛ܥ

2
−

ܦ଴ܥ
݊(݊ + 1)
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 is an increasing function for all ݊.  Thus, the total cost function ܶܥ(݊) is a 

convex function of ݊. This further implies that the cost function has unique 

minima.                                                           

This unique optimal solution is the integer value of ݊  that satisfies  

(݊)ܥܶ ≤ ݊)ܥܶ − 1) as well as  

(݊)ܥܶ ≤ ݊)ܥܶ + 1) 

Here, we take ܶ(0)ܥ = ∞. 

Equivalently, optimal value of ݊ is the smallest integer value of ݊  that satisfies 

(݊)ܥܶ  ≤ ݊)ܥܶ + 1). 

From equation 2.3.4, we have  

݊)ܥܶ + 1) =  
ܦ଴ܥ

݊ + 1
+ ܥܦ  +

(݊ + 1)C୦

2
+ ܦ 

௛ܥ

2
 

(݊)ܥܶ ≤ ݊)ܥܶ + 1) 

⇒
ܦ଴ܥ

݊
+  ݊

௛ܥ

2
+ ܦ 

௛ܥ

2
+ ≥ ܥܦ   

ܦ଴ܥ
݊ + 1

+ 
(݊ + ௛ܥ(1

2
+ ܦ 

௛ܥ

2
+  ܥܦ 

⇒   
ܦ଴ܥ

݊
 −  

ܦ଴ܥ
݊ + 1

  ≤   
௛ܥ

2
 

⇒   
  ܦ଴ܥ

݊(݊ + 1)
  ≤  

௛ܥ

2
 

⇒
ܦ଴ܥ2

௛ܥ
  ≤ ݊(݊ + 1)                                                                                                 … (2.3.5) 
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Therefore, for obtaining optimal value ݊∗, we solve 

݊(݊ + 1) =
଴ܥܦ2

௛ܥ
 

⇒ ݊ଶ + ݊ −
଴ܥܦ2

௛ܥ
=  0 

 

Comparing above equation with general quadratic equation ܽݔଶ + ݔܾ + ܿ = 0, 

we have  

ܽ = 1, ܾ = 1, ܿ = −
଴ܥܦ2

௛ܥ
  

 

⇒  ∆=  ܾଶ –  4ܽܿ =  1 –  4 ൬−
଴ܥܦ2

௛ܥ
 ൰  =  1 + 

଴ܥܦ8

௛ܥ
   

  

⇒  ݊ =   
−ܾ + √∆

2ܽ
 

 

as ݊ = ି௕ ି √∆
ଶ௔

 is not feasible, being a negative value.. 

 

∴ ݊ =
−ܾ + √∆

2ܽ
=

−1 + ට1 + ଴ܥܦ8
௛ܥ

2
 

  

Thus the optimal solution ݊∗is the smallest integer greater than or equal to the 

above solution.  
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Therefore,                

݊ ∗ =  

⎢
⎢
⎢
⎡−1 +  ට1 + ௢ܥܦ8   

௛ܥ
2

⎥
⎥
⎥
⎤
                                                                                      … (2.3.6) 

 

Since  ݊ ∗ = ܦ ∗ ܶ, the cycle length ܶ is given by 

      

ܶ =
݊ ∗

ܦ
 

        

∴ ܶ =
1
ܦ

 

⎢
⎢
⎢
⎡−1 +  ට1 + ௢ܥܦ8   

௛ܥ
2

⎥
⎥
⎥
⎤
                                                                              … (2.3.7)    

 

Next we compare above formula (2.3.6) with classical EOQ formula  

ܳ∗ = ඨ
଴ܥܦ2

௛ܥ
 

 Writing ݖ =  ଶ஽஼బ
஼೓

, we can write Q* = √ݖ, and 

 the optimal solution at (2.3.6) can be expressed as  

 

݊∗ = ቦ−0.5 + ඨ1
4

+
4 ∗ ݖ

4
 ቧ 

 

   = ඃ−0.5 + √. 25 +   ඇݖ



28 
 

For all  values of z  the difference between √ݖ and√0.25 +   is practically  ݖ

negligible. So the difference between Q* and  ݊* is approximately 0.5. 

Now, for any positive number x, the relationship round(x) = x - 0.5 is well-

known. We, therefore, have   

 ݊ * = round(Q*) 

 

Remark:  

1. In above, for rounding, we have assumed that the tie breaking is 

towards negative infinity. If instead, the tie breaking is to be towards 

positive infinity, we have the relationship, round(x) = x + 0.5. The 

corresponding formula for  ݊* is given by  

݊*   = උ0.5 + √. 25 +  ඏݖ

which is obtained as the largest value of n that satisfies the inequality  

(݊)ܥܶ ≤ ݊)ܥܶ − 1) . 

Thus, the identity stated above would still hold true. 

2. The equality stated above holds for all values of Q*  1. For the case of 

Q* < 1. However, in that case we note that rounding of Q* would lead 

to an infeasible solution, and in practice we need to use the value 1 for 

the solution, which again would be same as n*. 
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2.4 AN ILLUSTRATIVE EXAMPLE 

A company stocks an item that is consumed at the rate of θ = 0.05 per unit 

time. The holding cost per unit per unit time is Rs. 500, ordering cost is Rs. 

10000 per order. Suppose shortages are not occurring (no shortage is 

allowed) and the purchasing cost per unit is Rs. 12000. Determine expected 

total cost and optimal quantity. 

This example solved by taking  

 ௢= 10000ܥ 

 ௛ =500ܥ 

 12000 = ܥ 

a = 1/20 = 0.05 /1= ߠ 

Using the classical EOQ formula   ܳ∗   = 28.284  

And using the formula (2.3.6), ݊* = ⌈28.03⌉ = 28 

and E(TC(28))= 259144 

 

From This example, we can observe that although there is a difference 

between value of Q* and ݊*, the relationship n* = ROUND(Q*) prevails.  
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Figure 2.4 Expected total cost as a function of n  

 

The graph describes how expected total cost varies with the initial inventory 

level. The graph describes the relationship between expected total cost and 

initial inventory level. As it can be observed, the curve for E(TC(n)) is a 

convex function of n, with minimum cost achieved at n=28 units.  
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