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Chapter 1  

 

 

 Introduction 

 

 

1.1 Introduction 

 

    An inlier in a set of data is an observation or subset of observations not 

necessarily all zeros, which appears to be inconsistent with the remaining data set. 

For example: consider the following example as a natural occurrence of a physical 

phenomenon: 0, 0, 0, 0, 0.01, 0.05, 0.06, 0.71, 1.91, 1.2, 1.76, 2.54, 2.72, 3.07, 3.91 

and 3.99. Here the first four observations are instantaneous failures, next three 

observations may be treated as early failures (by specifying delta δ=0.06 or 0.08) and 

others may be treated as coming from any positive distribution F. The observations 

which are identified as instantaneous and early failures together are called inliers, 

introduced first time by Muralidharan and Kale (2002). In outlier’s concept, they may 

be termed as spurious observations, but unlike outlier concept, we don’t discard 

such observations from analysis and inferences. An outlying observation, or outlier, 

is one that appears to deviate markedly from other members of the sample in which 

it occurs. In many cases outliers exist in the form of errors of observation or mis-

recording due to human errors. Outliers are the surprisingly extreme values 

occurring on both sides of the distribution whereas inliers occur on left hand side of 

the distribution. Inliers are integral part of the data and cannot be neglected. For an 
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exhaustive survey and theory of outliers one may refer to Barnett and Lewis (1994) 

and Rousseeuw and Leroy (1987) the references contained therein. Outlier detection 

methods have been suggested for numerous applications, such as credit card fraud 

detection, clinical trials, voting irregularity analysis, data cleansing, network 

intrusion, severe weather prediction, geographic information systems, athlete 

performance analysis, and other data-mining tasks. Most of the earliest univariate 

methods for outlier detection rely on the assumption of an underlying known 

distribution of the data, which is assumed to be identically and independently 

distributed (i.i.d.). Moreover, many discordance tests for detecting univariate 

outliers further assume that the distribution parameters and the type of expected 

outliers are also known (Barnett and Lewis, 1994). In real world for data-mining 

applications these assumptions are often violated. In some of the examples 

discussed above, the inlier observation also becomes a part of outlier observations.  

  

In literature some authors have defined inliers as those observations which 

are not outliers (Barnett and Lewis, 1994). One can refer Akkaya and Tiku (2005) for 

this.  

 

 Some specific real life situations, where inlier observations are natural 

occurrences can be described by the following examples: 

 

� In auditing some population elements contain no errors, whereas other 

population elements contain errors of varying amounts. The distribution of 

errors can, therefore, be viewed as a mixture of two distinguishable 

distributions, one with a discrete probability mass at zero and the other a 

continuous distribution of non-zero positive and/or negative error amounts. 

The main statistical objective in this auditing problem is to provide a 

statistical bound for the total error amount in the population. 

 

� In the mass production of technological components of hardware, intended 

to function over a period of time, some components may fail on installation  
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and therefore have zero life lengths. A component that does not fail on 

installation will have a life length that is a positive random variable whose 

distribution may take different forms. Thus, the overall distribution of 

lifetimes, which includes the duds, is a nonstandard mixture. 

 

� In the study of tumor characteristics, two variates may be recorded. The first 

is the absence (0) or presence (1) of a tumor and the second is tumor size 

measured on a continuous scale. In this problem, it is sometimes of interest 

to consider a marginal tumor measurement that is 0 with nonzero probability 

and the other a continuous distribution. 

 

� In studies of genetic birth defects, children can be characterized by two 

variates, a discrete or categorical variable to indicate if one is not affected, 

affected and born dead, or affected and born alive and a continuous variable 

measuring the survival time of affected children born alive. The conditional 

distribution of survival time given, this first variable is undefined for children 

who are not affected and born dead, and nontrivial for children who are born 

alive. In some cases it may be necessary to consider the conditional survival 

time distribution for affected children as a mixture of a mass point at 0 and a 

nontrivial distribution. 

 

� In measurements of physical performances scores of patients with a 

debilitating disease such as multiple sclerosis, there will be frequent zero 

measurements from those giving no performance and many observations 

with graded positive performance. 

 

� In studies of methods for removing certain behaviors (e.g. predatory behavior 

or salt consumption), the amount of the behavior which is exhibited at a 

certain point in time may be measured. In this context, complete absence of 

the target behavior may represent a different result than would a reduction  
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from a baseline level of the behavior. Thus, one would model the distribution 

of activity levels as a mixture of a discrete value of zero and a continuous 

random level. 

 

� Time until remission is of interest in studies of drug effectiveness for 

treatment of certain diseases. Some patients respond and some do not. The 

distribution is a mixture of a mass point at 0 and a nontrivial continuous 

distribution of positive remission times.  The problem can be considered for 

instantaneous failure. 

 

� In a quite different context, important problems exist in time-series analysis 

in which there are mixed spectra containing both discrete and continuous 

components. 

 

� The data recorded for a rainy season can be seen as a combination of zeros 

(no rainfall) and positive observations (days having nominal or marginal rain 

reported) etc.  

 

From the above examples, it is seen that the values including zeroes and 

close to zeroes are important as well as significant in most of the cases. Thus inliers 

are more natural than the outliers, where most of the time after the detection of 

outlier(s), the observation(s) may not be considered for further analysis. As a 

consequence, the modeling of inliers distribution is more important than the 

detection. Below we discuss some possible models treated in this thesis for 

detection, estimation and testing.  

 

1.2 Models 

 

Various inlier prone models and their statistical significances are studied in 

this thesis`. We have considered the following models in various chapters. They are 

used for analysis of mixture distribution of inliers and target observations, and for 

estimating the parameters of mixture distribution.  Comparison of models are also 

been done to know which model fits well to the data. 
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1.2.1 Instantaneous failure model 

 

Consider a model ( ){ }, , 0, 0F x xℑ = θ ≥ θ >  where ( ),F x θ is a continuous 

failure time distribution function (df) with F(0)=0. To accommodate a real life 

situation, where instantaneous failures are observed at the origin, the model ℑ is 

modified to G ( ){ }, , , 0, ,0 1G x xθ α θ α= ≥ ∈Ω < <  by using a mixture in the 

proportion 1-α and α  respectively of a singular random variable Z at zero and with a 

random variable X with distribution function F∈ℑ. Thus the modified failure time 

distribution has the pdf 

 

( )
1 , 0

, ,
( , ), 0

x
g x

f x x

α
θ α

α θ

− =
= 

>
                                                             (1.2.1) 

 

This model has been studied by many authors. The problem of inference 

about (α,θ) has received considerable attention particularly when X is exponential 

with mean θ. Some of the early references are Aitchison (1955), Kleyle and Dahiya 

(1975), Jayade and Prasad (1990), Vannman (1991), Muralidharan (1999, 2000), Kale 

and Muralidharan (2000) and references contained therein.  

 

  Aitchson (1955) stated the problem of determining efficient estimates of the 

mean and variance of a distribution specified by (i) non zero probability that the 

variables assumes a zero value and (ii) a conditional distribution for the positive 

values of the variable. The estimation problem was analyzed and its implications for 

the Pearson type-III, exponential, lognormal and Poisson series conditional 

distribution were investigated.  Kleyle and Dahiya (1975) have considered estimation 

of parameters of mixture distribution of binomial and exponential population. The 

exact bias and mean square error (MSE) of the estimator is derived and computed 

for different values of parameters. They had also shown the exact MSE approaches 

to asymptotic MSE as n increases. Jayade and Prasad (1990) studied the problem of 

estimation of parameters of a mixture of degenerate and exponential distribution. A 

new sampling scheme was proposed and the exact bias and MSE of the MLE of the 

parameters was derived. Moment estimators and their approximate bias and MSE 
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were also obtained. Muralidharan (1999), (2000) obtained tests for the mixing 

proportion in the mixture of a degenerate rate and exponential distribution. The 

UMVUE and Bayes estimator of the reliability for some selective prior when the 

mixing proportion is known and unknown are derived. Muralidharan and Kale (2002) 

considered the case where F is a two parameter Gamma distribution with shape 

parameter β and scale parameter θ and obtained confidence interval for φ=αβθ 

assuming α known and unknown respectively. Singh (2008) obtained UMVUE for 

mixture of instantaneous and positive observation from exponential families.  

 

1.2.2 Early failure model 

 

 To accommodate early failures, the family ℑ is modified to new distribution         

G1 ( ){ }1
, , , 0, ,0 1G x xθ α θ α= ≥ ∈Ω < <  where the d.f. corresponding to g1∈ G1  is  

given by 

 

  
( ) ( ) ( ) ( )1

G , ,   1 ,x H x F xθ α α α θ= − +
 
 

where H(x) is a d.f. with H(δ)=1 for δ  sufficiently small and assumed known and 

specified in advance.  The corresponding pdf is then given by 

 

  

1

0,

( , , ) 1 ( , ),

( , ),

x

g x F x

f x x

< δ


α θ = − α + α δ θ = δ
α θ > δ

                                                               (1.2.2)

  

Some of the references which treat early failure analysis with exponential 

distributions are Kale and Muralidharan (2000), Kale (2001) and Muralidharan 

(2002), wherein they have treated early failures as inliers using the sample 

configurations. Muralidharan (2005) has presented in his paper, estimation of 

parameters in presence of early failures. Kale and Muralidharan (2007) obtained MLE 

for parameter θ  of the target distribution F and parameter φ  of the contaminating 

population G   assuming number of inliers is known. Muralidharan and Lathika (2008) 

studied analysis of instantaneous and early failures in Weibull distribution.            
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Kale and Muralidharan (2008) studied inlier detection using Schwarz information 

criterion. The estimation of mixture density of inliers and target observation can be 

viewed as special case of mixture distribution.  

 

1.2.3 Nearly instantaneous failure model 

 

As seen in the data set discussed above, if the observations are closed to 

zeroes, they can be termed as nearly instantaneous failures. Although the model 

described in (1.2.2) incorporates inliers for a specified value of δ, there are some 

drawbacks for the model (1.2.2). This is rectified in the following model as a 

complete mixture of two distributions.  Thus, the nearly instantaneous gives the 

modification, the density function is given by: 

                    

                          ( ) ( ) ( ) ( )1 2
1x p f x pf x− +f =                                                         (1.2.3) 

 
 

where  

          

                         ( ) ( ) 0 0
1 0

1
,

0,
d

x
x x x d

f x x d
otherwise

δ= ≤ ≤ +− =




                  

   

and ( )
2

xf  can be considered as any other lifetime distribution of target population. 

A mixture distribution involving two-parameter Weibull distributions has been 

thoroughly studied by Lai, Khoo, Muralidharan and Xie (2007). The importance of the 

model is that we can obtain the reliability function and hazard function in closed 

form. The characteristics of the model, such as survival rate, hazard rate and mean 

residual life, are studied for various distributions in various chapters for particular 

cases of ( )
2

.xf
 

 

1.2.4   Mk  inliers Models and Lk  inliers Models 

  

Suppose that n units are put on test and n0 units fail instantaneously and     

(n-n0) failure time are available. Out of these positive observations we have to 

determine which are inliers or early failures. Before the start of the experiment we 
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are unaware of which unit fail instantaneously or will produce early failures. These 

experimental conditions are to be modeled in Mk   inlier model for given k. Let us 

denote failure times of these (n-n0) unit as ( )1 2
0

, ,......
n n

X X X − . Then in Mk   inlier 

model, (n- n0 - k) are considered from target population with pdf f ∈ℑ  and k 

observations are from inlier population ∈g G. Thus the joint pdf of  ( )
01 2, ,......

n n
X X X −

 

can be written as 

 

( ) ( ) ( )
01 2, ,... | , , , , ,

n n i i

i v i v

L x x x f g v g x f x f v Vθ−
∈ ∉

  
= ∈ℑ ∈  
  
∏ ∏   and g ∈  G    (1.2.4) 

 

where v is the new parameter representing set of inliers and ranges over V, the set 

of integers ( )1 2
, ,......

k
i i i chosen out of [ ]( )0

1,2,.... n n− and therefore with cardinality 

( )0 .
n n

k

−
This is so far similar to the model Mk  for k outlier. The main difference in Mk  

inlier model is that ( )
( )
( )

g xG
x

F f x

∂
Ψ = =

∂
 

is assumed to be strictly decreasing function 

of  X.  The theorem stated below is used to write the likelihood function under Mk 

and Lk   reproduced from Muralidharan (2010), for continuity.  

 

Theorem 1.2.1: Let ( ) ( ) ( )( )1 2
0

......
n n

X X X
−

< < < be the order statistics observations and 

( )1 2
0

, ,....
n n

R R R − be the corresponding rank order statistics then ( )1 2
, ,....

k
Max r r rϕ =  

( )1,2,......kϕ and ( ) ( ) ( )1 2
, ......

k
x x x

 
have the maximum probability of being inliers.

 

Here we give only the important outline of the theorem. Assume that model 

contains   n-n0  positive observations. Then for one inlier model considered is 

 

Proof: Consider M1  and 
( ) ( )1 1 1

1 11

, | , .
ir irr

P R r X X x g rϕ = = =
  

 Then  

            

( ) ( ) ( ) ( )
1

1 0 10
1

1

1
1

1

r n n rn n
r F x F x dG x

r
ϕ

− − − − −
= −        − 

∫  

now  
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( )
( )
( )

g xG
x

F f x

∂
Ψ = =

∂
,  

therefore, 

              

( ) [ ] ( )1 10 0 11
1

1 0

1
1

1

n n rrn n
r y y F y dy

r
ϕ

∞
− −− − − −

 = − Ψ   − 
∫

 
 

                        ( )1

0

1
r

E y
n n

= Ψ  −
                                                                                 (1.2.5) 

 

Now yr is a beta random variable with parameters ( )1 0 1
, 1r n n r− − + .  Note 

that, 1 01,2,...r n n= −  is stochastically ordered sequence, since h is such that

( )
( )

1

1

r

r

h y y

h y y
α

+

−
  which is strictly increasing function of y over (0,1).  ( )1

F y
− Ψ    

is 

decreasing function of y by as per our assumption. Therefore, from the result of 

Lehman (1959) it follows that ( ) ( ) ( )1 2 ..... nϕ ϕ ϕ> > >   and ( )1
X  has maximum 

probability of being an inlier. Let ( )1 2
,r rϕ = Probability that 

( )1
r

X and 
( )2
r

X are inliers 

for 1 21 .r r n≤ ≤ ≤  for model M2, where  

 

       ( )
( )

( ) ( ) ( )
( ) ( ) ( )

1 110 2 1

1 2
0

1 2 1 0 2

2 !2!
,

1 ! 1 ! !

r r r

x y

n n
r r F x F y F x

r r r n n r
ϕ

− − −

< < <∞

− −
= −      − − − − − ∫ ∫  

                                                                 ( ) ( ) ( )0 21
n n r

F y dG x dG y
− −

−    

 

 

               

( )
( )

( ) ( )
( ) ( )

[ ] ( )
11 12 111

0 10 2

0 2 1 2 10 0

2 !2!
1

! 1 ! 1 !

r rr
v

n n ru v u F un n
du v F v dv

n n r r r r

− −− −
− − −

  − Ψ− −     = − Ψ  − − − − −  
∫ ∫  

 

 

              
Then one can show

  
( ) ( )1 2

1 2
, 1,2

r r
Max r rϕ ϕ< =  and ( )1

x  and ( )2
x  have 

maximum probability of being inliers. 

  

Generalizing the above result we can show that  

 

             
( ) ( )........ 1 2

1 2 0
, ,.... 1,2,......

r r r n n k
k

Max r r r kϕ ϕ≤ ≤ ≤ ≤ − =  and hence ( ) ( ) ( )1 2
, ......

k
x x x
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have the maximum probability of being inliers. 

 

For other detailed proof of the theorem, one may refer to the paper by 

Muralidharan (2010). Thus the generalized form of ( )ϕ i with k inliers is 

 

( )
( )

( ) ( ) ( )
[ ]{ 110 2 11

1 2 1 2 2
0 .... 1

1 21 2 1 0

! !
, ,.... ......

1 ! 1 !.....

r rr

k
w w w

k

n n k k
r r r w w w

r r r n n k
ϕ

− −−

< < < <

− −
= −

− − − − − ∫
 

                                        [ ] ( ) ( ) }1 1
0

1 1 2
.... 1 ...... .....

n n n
k

k k k
w F w F w dw dw dw

− −− −    − Ψ Ψ
   

 

 

Now fixing ( )2 3
, ,...,

k
r r r  and ( )2 3

, ,...,
k

w w w
 

we can show that ( )1 2
, , ...,

k
r r rφ as 

decreasing function of 1r  for 1 21 r r≤ ≤ .  

 

Thus the model for Mk inlier is 

 

            

( ) ( )( ) ( )( )
0

1 1

ˆ| , , , ,

n nk

i i

i i k

L x g f v g x f x f g

−

= = +

= ∈ℑ ∈∏ ∏ G,                                        (1.2.6) 

 

But ( )ˆ| , ,L x g f v  is likelihood and not joint pdf of   
( ) ( ) ( )1 2

0

, ...... .
n n

x x x
−

  

 

The model for Lk inlier is therefore 

 

  

( )
( )

( ) ( )( ) ( )( )
0

0

1 1

! !
| , , ,

,

n nk

i i

i i kk

n n k
L x g f g x f x f g

F Gφ

−

= = +

−
= ∈ℑ ∈∏ ∏  G,                          (1.2.7) 

 

where ( ) ( )1 2, , ,...,
k k

F G r r rϕ ϕ=  is the normalizing constant to make Lk  a pdf. The 

model is called as labeled slippage model and it can be derived as model from Mk 

with ( )1 2
, ,...,

k
Y Y Y  are i.i.d.as G, and ( )1 2

0
, ,...,

n n
V V V − as i.i.d from ℑ  and with the 

additional condition ( ) ( )1 2 1 2
0

, ,..., , ,..., .
k n n

Max Y Y Y Min V V V −≤   

 

1.3 Information criteria for inliers  

 

    The most important use of information criterion is, that it helps us in model 

selection, from the set of different models which all fit the data. These criterion are 
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suitable when the underlying distribution and inlier distribution are available. It is an 

exploratory data analysis approach as no formal statistical inference is performed. 

The Akaike information criterion is a measure of the relative goodness of fit of a 

statistical model. It was developed by Hirotsugu Akaike, under the name of "an 

information criterion" (AIC), and was first published by Akaike  (1974).  It is grounded 

in the concept of information entropy, in effect offering a relative measure of the 

information lost when a given model is used to describe reality. It can be said to 

describe the tradeoff between bias and variance in model construction, or loosely 

speaking between accuracy and complexity of the model. In statistics, the Bayesian 

information criterion (BIC) or Schwarz criterion (also SBC, SBIC) is a criterion for 

model selection among a class of parametric models with different numbers of 

parameters. Choosing a model to optimize BIC is a form of regularization. When 

estimating model parameters using maximum likelihood estimation, it is possible to 

increase the likelihood by adding parameters, which may result in overfitting. The 

BIC resolves this problem by introducing a penalty term for the number of 

parameters in the model. This penalty is larger in the BIC than in the related AIC. The 

BIC was developed by Gideon E. Schwarz (1978), who gave a Bayesian argument for 

adopting it. It is closely related to the Akaike information criterion (AIC). In fact, 

Akaike was so impressed with Schwarz's Bayesian formalism that he developed his 

own Bayesian formalism, now often referred to as the ABIC for "a Bayesian 

Information Criterion" or more casually "Akaike's Bayesian Information Criterion". 

The BIC is an asymptotic result derived under the assumptions that the data 

distribution is in the exponential family. 

 

Given any two estimated models, the model with the lower value of BIC is the 

one to be preferred. The BIC is an increasing function of 2

e
σ  (variance) and an 

increasing function of p, where p is number of parameters of population under 

study. That is, unexplained variation in the dependent variable and the number of 

explanatory variables increase the value of BIC. Hence, lower BIC implies either 

fewer explanatory variables, better fit, or both. The BIC generally penalizes free 

parameters more strongly than does the Akaike information criterion, though it 

depends on the size of n and relative magnitude of n and k. It is important to keep in 
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mind that the BIC can be used to compare estimated models only when the 

numerical values of the dependent variable are identical for all estimates being 

compared. The models being compared need not be nested, unlike the case when 

models are being compared using an F or likelihood ratio test. 

 

       The following information criteria are used in all the chapters. The Schwarz’s 

Information criterion as given by ( )ln lnSIC = -2 L Θ  + p  n,
 

Schwarz’s Bayesian 

Information criterion as obtained by ( )
( )ln

ln
n

0.5 p  n
BIC = - L Θ  +  and  Hannan-

Quinn criterion as given by ( ) ( )( )ln ln lnHQ= - L Θ  + p  n  to detect the inliers, where 

L(Θ) the maximum likelihood function and p is the number of free parameters that 

need to be estimated under the model.  

 

 Before discussing the tests of hypothesis we provide another theorem, again 

reproduced from Kale and Muralidharan (2007), which will help to understand the 

inlier distribution from among the other distributions.  If  F and G are respectively 

given by  

 

            
( ) ( ), 1 exp , 0, 0F x x xθ θ θ= − − > > ,  

 

and 

 

            
( ) ( ), 1 exp , 0, 0G x x xφ φ φ= − − > >  where , 0φ λθ λ= >  

 

Using theorem (1.2.1), the labeled slippage alternative of 1r ≥  are 

discordant observation Hr , the joint distribution of the ordered statistics is given by 

 

( ) ( ) ( )( ) ( )
( ) ( ) ( )1 2

1 1

! !
, ..... | exp

1,2,...

r r n

rn i i

i i k

n r r
f x x x H x x

r

λ
λ

ϕ = = +

−  
= − − 

 
∑ ∑                      (1.3.1) 

 

where the normalizing factor is given by 

 

             
( )1,2,... 1, , 0, 1.

n r n r
r B r rϕ λ

λ λ

− − 
= + > ≥    

 

Then we have the following theorem 
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Theorem 1.3.1: Under the labeled slippage alternative,
( )

( )

1

,
0P

r

i

x
H

x
→   as ,λ → ∞

for 1, 2,..... .i r r n= + +  
 

Proof: From (1.3.1) the joint density of ( )1
X  and ( )1r

X
+

 can be obtained as 

 

   
( ) ( )( ) ( )

( )
( ) ( ) ( ) ( )

1
11 1 1

1 1
,

1,2,.....

k n rxx x x
rr

r

n r r
f x x e e e e

r

λ λ λλ

ϕ

 − − −− − −  ++  
+

−  = −
  

                (1.3.2) 

                                                      where   ( ) ( )1 2
0 x x≤ ≤

 

 

                                    
( ) ( )

( )
( ) ( )( )

1

1 1

1,2,.....

n rx
r k

x x
rn r re

e e
k r

λ λ

ϕ

 
− − +  − −

+−
= −

 
 

             

( ) ( )( )
( )

( )

( ) ( )( )
( ) ( )( )

1
1 1

1

1 1
2 1

|
1,2,.....

k
x x

rx

r k
x x

r

e e
e

f x x
k r

e e

λ λ
λ

λ λ

λ

ϕ

−− −
+−

+ − −
+

−
=

−  

                                                                                            

 

 

hence for all ( )0,1a∈ , we get 

 

          

( )

( )

1

1

|
r

r

X
P a H

X
+

 
 < =
 
   

 

                
( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1
1

0

1

11,2,....
1 1 1 1

i r
r

i

i

n r r

r
r i n r i n r i

a

λ

ϕ
λ λ λ

−
−

=

−−

 
− − + − − − + − + +       

 

∑

 
 

One gets  
( )

( )

1

1

0
r

x

x
+

→

 

as .λ → ∞ which proves the theorem given the condition       

              

( )

( )

( )

( )
( ) ( )

1 1

1

1

0 , 2,.... .
r i

i r

x x
X X i r n

x x
+

+

≤ ≤ ⇒ < = +

 

 

1.4   Testing of hypothesis 

 

The main objective of this thesis is to detect (estimate) number of inliers in a 

given data. After detecting the number of inliers, using some model, we subjected 
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the finding to test whether our results are true in light of a random sample. For 

which we have used various test to do this. Some Traditionally used tests are 

discussed below: In most of the test procedure, our main objective is to test the 

hypothesis: 

  

( ) ( ) ( )0 1 2
: , ...

n
H X X X  are from F(x,θ ) and  

( ) ( ) ( )1 1 2
: , ...

r
H X X X  are from G(x,φ ) and ( ) ( ) ( )1 2

, ...
r r n

X X X
+ +

are from F(x,θ ),   (1.4.1) 

 

 For a hypothesis of the form in equation (1.4.1) one can construct likelihood 

ratio test for testing inliers in the usual way. For example the underlying density is 

exponential, then the likelihood ratio test for one inlier  by  Kale and Muralidharan 

(2007) is obtained as  

 

Reject H0  if 

                                 

( )1

T
c

x
>  ,                                                                                                 (1.4.2) 

where ( )
1

n

i

i

T X
=

=∑ . And the value of 

( )
1

1

1.

1 1 n

n
c

α −

= −

− −

  

 

Also the power of the test for one inlier is given by 

 

 ( )1

1
1

c n
P

c
λ

λ

− + 
= −  

+ 
   where  

θ
λ

φ
=                                                             (1.4.3) 

 

Specifically if 1 2, ,......
n

X X X   are independent and identically distributed r.v’s having 

mixture distribution with likelihood is   

 

              ( ) ( ) ( ) ( ){ }, , , 1
i i

L x p p g x pf xφ θ = − +∏                                                        (1.4.4) 

 

then the objective is to test 

  

              0 : 1H p =
  against   1 : 1H p <

 

 

for which we can have the following tests:  
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1.4.1   Locally most powerful test 

 

   The LMP test critical region for equation (1.4.4) is given by  

 

         
( )

0

, , ,
| |

L x p
x H C

p

φ θ∂ 
≤ 

∂ 
                                                                     (1.4.5) 

 

where C is such that   

 

                       
( )

0

, , ,
| | ,

L x p
P x H C

p

φ θ
α

 ∂  
≤ =  

∂   
  the size of test.      

  

1.4.2  A Large sample test 

 

       A large sample test for the hypothesis (1.4.4) can be constructed using the 

asymptotic binomial distribution of the parameter of p: The large sample test for the 

hypothesis  

 

            0 0:H p p≥  against 1 0:H p p<  , 0p
 
specified. 

 

The test statistics is given by 

 

               
( )0

0 0

0 0

ˆ
, 1

cal

n p p
Z q p

p q

−
= = −                                                                 (1.4.6)

     

                                                       

and we  reject 0H  if  cal
Z Zα<  where  α  is level of significance. p denotes 

proportion of observations from target population. 

 

1.5    Inlier estimation through Sequential Probability Ratio Test (SPRT) 

                                               

 Here first we want to test the hypothesis whether an observation belongs to 

inliers population with pdf  ( ),g x φ
 
 against hypothesis that it belongs to target 

population with pdf  ( ), .f x θ  
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 That is if  ( )1

1

,
r

i

i

L f x θ
=

= ∏   and   ( )0

1

,
r

i

i

L g x φ
=

= ∏   denote likelihood function 

under target and inlier population respectively, then the SPRT is the likelihood ratio 

r
λ  is given by  

 

                        

1

0

r

L

L
λ =    

 

or equivalently  

 

             

( )( )
( )( ) ( )

1 1

,
ln ln 1,2,....

,

r r
i

r i

i i
i

f x
z r n

g x

θ
λ

φ= =

= = =∑ ∑                                       (1.5.1) 

 

For deciding number of inliers r we continue to take additional observations till we 

reject H0. That is 

 

            if ( )
1

ln
r

i

i

z B
=

≤∑ accept H0 and take the next observation. 

 

 and   

 

            if ( )
1

ln
r

i

i

z A
=

≥∑  reject H0 and stop.  

 

The corresponding r represents the first observation from ( )( ),
i

f x θ   and the 

previous   (r-1) observations from 
( )( ), .
i

g x φ   Thus the number of inliers will be r - 1.   

 

1.6        Most  powerful  test for detection of inliers when underlying parameters 

are specified 

 

 If we are interested in testing ( )( )0 : ,
i

H g x φ against ( )( )1 : ,
i

H f x θ  (i.e. whether 

data is from inlier population against data is from target population) a MPT can be 

constructed for ξ ,  the common parameter of interest, then the hypothesis can be 

equivalently written as  

                 0 :H ξ = φ
 
 against  1 : .H ξ = θ

  
                                                             (1.6.1) 
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In the above frame, both 0H  and 1H  are simple and hence the most powerful test 

according to NP lemma is 

( )

( )
( )

( )
( )

1

0

1

0

1,

0,

P x
C

P x
x

P x
C

P x

α

α

ψ


>


= 
 <



                                                                       (1.6.2) 

 

 where the constant Cα  can be obtained using the size condition. For specific 

distributional model, the value of Cα  can be numerically computed. 

  

 In chapters to follow, we have studied many other test procedures and 

interesting properties of the models. For situation specific, we have changed the 

notation and theoretical development to establish proper continuity. We now 

provide the chapter wise summary of the thesis, in brief.    

 

Chapter 1 gives a detailed introduction of the study and its need. An 

exhaustive literature survey on study of inliers is discussed. The utility and 

applicability of inlier distributions are also discussed in length and breadth. Various 

real life examples and their application areas are discussed in this chapter.  

 

Chapter 2 discusses Pareto distribution as a inlier model for file sizes on the 

internet, insurance losses, and financial behavior of the stock market and in 

telecommunication systems. The proposed study is a further look at suitability of 

Pareto distributions in the context of life testing experiments where data involves 

instantaneous and early failures. We provide the inferences on parameters of 

modified forms of Pareto type distributions involving one and two parameters. The 

methods are illustrated on simulated data sets and on a real life data. We have 

discussed different criteria for detection of inliers and studied the sensitivity of 

various distributions with respect to different hypothesis. Through many other 

characteristics, we have shown that the Pareto distribution is much better than that 

of the Weibull distribution, in identifying inliers, and inlier models 
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In Chapter 3, we study the estimation of inliers in Normal distribution. The 

masking effect problem for correctly identifying the inliers is discussed with respect 

to various test procedures. Test for detecting a single inlier, Ho against H1 is based on 

symmetric functions of observations or on functions of order statistics. In the k-inlier 

model,  the joint distribution of order statistics ( ) ( ) ( )1 2
, ,....

n
X X X  is same as that  under 

the exchangeable model introduced by Kale (1998) where it is assumed that any set 

1 2
, ,....

ki i i
X X X   has priori equal probability of being independent and identically 

distributed as Gλ  and the remaining (n-k) observation are distributed as F,  the 

distribution function of target population. 

 

The study of inliers in Weibull models is the content of chapter 4. Apart from 

the regular estimation of inliers, we have also discussed the model specific 

estimation when the total realizations are assumed to be from either Model-1 or 

Model-2.   If we assume, the data X=(x1, x2,…… xn) whose joint distribution is 

unknown, and  if we have two  competing models with parametric density 

( ); , , ,
j j j j

f x θ α θ ∈Θ where 
j

Θ is the Parametric  space. Model-1  is selected with 

inliers and target population both having Weibull distribution with same shape 

parameter whereas other model-2 has Weibull with same scale parameter. We have 

also used predictive approach to model selection using exponential model. The SPRT 

test is conducted to detect number of inliers in both the models. Conditional test 

and Predictive method are also incorporated to detect inliers in exponential models. 

 

In chapter 5 we study the usefulness of mixture distribution and modified 

distribution for inlier study. Mixture distributions have been extensively used in a 

wide variety of important practical situations where data can be viewed as arising 

from two or more populations mixed in varying proportions. Mixture of distribution 

refers to the situation in which i
th

 distribution out of k underlying distribution is 

chosen with probability pi ,i=1,2,….k. Mixture distribution having k=2 components 

are extensively studied in literature. For example a probability model for the life of a 

electronic product can be described as the mixture of two unimodel distribution, one 
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representing the life of inliers and other for target observations. We have listed 

down the methods which will be useful in detecting inliers present in the sample 

data. The graphs representing mixture of inliers and target populations, for 

exponential families are also plotted.  

 

The inlier detection in generalized distribution is included in chapter 6. A 

generalized treatment for estimation and detection of inliers is discussed in this 

chapter.  We also studied estimation of parameters of mixture distribution for 

particular cases.  Apart from this we have derived the test for one inlier in the data 

set.  

At the end we have given an exhaustive and extensive bibliography. As an 

output of the thesis, two articles have been published and couple of papers is on the 

way for publication. About three papers are ready for communication. 
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Chapter 2 
 

 

 

 

Inlier estimation in Pareto distribution 
 

 

 

 

 

 

2.1 Introduction 
 

 Pareto distribution has recently been used as a model for file sizes on the 

internet, insurance losses, and financial behavior of the stock market as well as in 

telecommunication systems. Many of the empirical studies also use Pareto’s law for 

representing long tail distributions. The proposed study is aimed to look further for the 

suitability of Pareto distributions in the context of life testing experiments where data 

involves instantaneous and early failures. The occurrence of instantaneous or early 

failures in life testing experiment is a phenomenon observed in electronic components 

as well as in clinical trials. These occurrences may be due to inferior quality or faulty 

construction or due to no response of the treatments. Such failures usually discard the 

assumption of a unimodal distribution and hence the usual method of modeling and 

inference procedures may not be accurate in practice. These situations can be handled 

by modifying used parametric model Pareto distribution. The modified model is then a 

non-standard mixture of distribution by mixing a singular distribution at zero to 

accommodate instantaneous failures.  
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Consider a model ( ){ }; , 0,F x xθ θℑ = ≥ ∈Ω  where F(x,θ) is a continuous failure 

time distribution function (df) with ( )F 0 0= . To accommodate a real life situation, where 

instantaneous failures are observed at the origin, the model ℑ is modified to G  = 

( ) ( ) ( ){ }; , 1 , ,0 1,G x f x Fα θ α α θ α= − + < < ∈ℑ
 
by using a mixture in the proportion 1-α  

and α  respectively of a singular random variable Z at zero and with a random variable X 

with df  F ∈ℑ . The df corresponding to G∈ G  is given by 

 

( ) ( ) ( )G , ,   1 F ,x xθ α α α θ= − +                                                                            (2.1.1) 

 

Thus the modified failure time distribution will have its corresponding probability 

density function (pdf) as 

 

   ( )
1 , 0

; ,
( , ), 0

x
g x

f x x

α
θ α

α θ

− =
= 

>
                    (2.1.2) 

 

The problem of inference about (α,θ) has received considerable attention 

particularly when X is exponential with mean θ. Some of the early works are by Aitchison 

(1955), Kleyle and Dahiya (1975), Jayade and Prasad (1990), Vannman (1991), 

Muralidharan (1999, 2000), Kale and Muralidharan (2000) and references contained 

therein. Vannman (1995) and Muralidharan and Kale (2002) considered the case where F 

is a two parameter Gamma distribution with shape parameter β and scale parameter θ 

and obtained confidence interval for φ α β θ=  assuming α known and unknown 

respectively.  

  

To accommodate early failures, the family ℑ is modified to G1 = {G1(x,θ,α),  x ≥ 0,  

θ∈Ω,  0 < α < 1} where the df corresponding to G1∈ G1 is given by 

 

 ( ) ( ) ( ) ( )G x x F x
1

,θ,α  = 1-α H +α ,θ      (2.1.3) 

 

where H(x) is a df with H(δ) = 1 for δ sufficiently small and assumed to be known and 

specified in advance. We also assume that the early failures are recorded as a class with 

notional failure time δ  so that the modified family G1 has a pdf with reference to 
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measure µ which is sum of Lebesgue measure on (δ, ∞) and a singular measure at δ. The 

corresponding pdf is then given by 

 

 1

0 ,

( , , ) 1 ( , ),

( , ),

x

g x F x

f x x

δ

α θ α α δ θ δ

α θ δ

<


= − + =
 >

                (2.1.4) 

 

Some of the references which treat early failure analysis with exponential 

distribution are Kale and Muralidharan (2000), Kale (2001), Kale and Muralidharan 

(2002), and Muralidharan and Lathika (2006), wherein they treat early failures as inliers 

using the sample configurations. 

 

  The objective is to consider the model G given by (2.1.1), G1 given by (2.1.3) and 

nearly instantaneous failures when F is Pareto and study the suitability of Pareto 

distribution in the context of life testing experiments. The Pareto distribution was 

originally derived in connection with studying income distribution. The Pareto 

distribution is a power-tailed distribution which is a special case of a heavy-tailed 

distribution whose tails go to zero more slowly than exponential. Many of the empirical 

studies also use Pareto’s law for representing long tail distributions. The distribution also 

comes in various forms and types. Hence modeling differences between one parameter, 

two parameters and three parameters Pareto will be a point of interest. Fisher, Masi, 

Gross and Shortle (2005) have studied the modeling difference of such different forms of 

Pareto distribution in connection with queuing systems. A three parameter Pareto type 

family has the survival function 

 

 ( ) , , 0, 0, 0F x x
x

φ
β

γ φ β γ
β γ

 
= ≥ > > > 

+ − 
                                  (2.1.5) 

 

 

or the more general form  

 

    
( ) , , 0, 0, 0

( )
F x x

x

φ

φ

β
γ φ β γ

β γ
= ≥ > > >

+ −
                                    (2.1.6) 
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A two parameter Pareto can be easily obtained as a particular case of the above 

distributions for γ = 0. The other forms of Pareto can be easily obtained for particular 

cases of β  and  φ.  

 

We study two types of Pareto distribution in the context of instantaneous 

failures and early failures. From the point of view of estimating equations, Kale and 

Muralidharan (2000) have shown that 
( )

( )
g

I
α θ , Fisher information about θ  ignoring α in 

the model G is less than ( )
f

I θ , the Fisher information about θ  in the original model ℑ. It 

is also shown that the parameter α is orthogonal to θ  in the case of model (2.1.1), 

whereas, the parameter α  is not orthogonal to θ  in the case of model (2.1.3). It is 

possible to show 
( )

( )
g

I
α θ < )(θfI  although Var (X|g) can be smaller than Var (X|f) in both 

the models. In the subsequent sections, different types of Pareto distributions have 

been used with different parameters for analysis. The general theory of estimating 

equations and Fisher information’s for instantaneous failures and early failures have 

been developed in the next two sections separately. We also discuss the importance of 

instantaneous and early failures in practical situations through a real life data set 

obtained by Vannman (1991). 

 

2.2  Analysis for instantaneous failures 

 

In this section we study inference regarding instantaneous failure. We have 

obtained UMVUE, Fishers information and MLE for the parameters of inlier and target 

population. 

 
2.2.1   Fisher information  

 

The pdf in (2.1.2) is with respect to the measure µ(x) which is the sum of 

Lebesgue measure over (0,∞) and a singular measure at {0}. If we assume ( )( )θ,
i

f x as a 

Cramer family, then ln [g(x,θ,α)] admits continuous partial derivatives with respect to

'
),( θα upto order two. Here θ can also be a vector of parameters. Further,   
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0

( , , ) 1g x dθ α µ
∞

=∫ , can be differentiated twice under integral sign with respect to 

( , ) '.α θ  Hence G  satisfies all the regularity conditions of Cramer (1966) and G is a 

Cramer family. Therefore from (2.1.2), 

 

lng

α

∂

∂
 = 

( )
1

, 0
1

1
, 0

x

x

α

α

−
= −


 >
  

 

 

  
lng

θ

∂

∂
 = 

0, 0

ln ( , )
, 0

x

f x
x

θ

θ

=


∂
> ∂

 

 

One can verify that 
ln

0
g

E
α

∂ 
= 

∂ 
 and 

ln
0

g
E

θ

∂ 
= 

∂ 
. The element of the Fisher 

information matrix, ( , )
g

I α θ  are 

 
2

2

ln 1

(1 )

g
I Eαα α α α

 ∂
= − = 

∂ − 
                                        (2.2.1) 

 
2

2

ln
( )

f

g
I E Iθθ α θ

θ

 ∂
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, which shows that α and θ are orthogonal 

parameters.  Using the definition of Fisher information for θ ignoring α in model g∈ G   

as given by Liang (1983), denoted by 
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α θ , we have  
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Since 0 <α <1, 
( )

( )
g

I
α θ < ( )

f
I θ  and there is less information about θ  ignoring  α in the 

model G than that in the model ℑ.  

 

2.2.2 Maximum likelihood estimation.   

 

Now let ( ),...,, 21 nXXX  be a random sample of size n from g∈ G  and define 
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z x n
=

=∑ , then the likelihood equations are given by 

 

 
lnL

α

∂

∂
 = 0 0

1

n n n

α α

− −
+

−
 = 0                                             (2.2.6) 
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then from (2.2.6), we have 
^
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−
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^

θ  will be the solution of (2.2.7). Using the 

standard results on MLE, we have    11 (1 ) 1
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The pdf of one parameter Pareto is defined as below  
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where the log likelihood is
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and the Fisher information’s are 
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 The pdf for two parameter Pareto is as given below 
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For some computations below, we use the following formulas: 
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and 
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The log likelihood is  
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and the Fisher information’s are 
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The above computations for both criteria’s are done for Vannman’s example given in 

section (2.8). 

 

2.2.3 Uniformly Minimum Variance Unbiased Estimator  (UMVUE )  

 

One can obtain UMVUE of mixture density of instantaneous and positive 

observation taken from Pareto distribution using the method discussed in Singh (2007). 

Based on above families we define a new family of df  

( ){ }; , : 0, ,0 1F x xθ α θ αℑ = ≥ ∈Ω < <  such that  
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Hence the pdf of mixture family is obtained as  
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which is a member of exponential family with ( ) ( ) ( )
1

, exp ,
1

a x h
x

θ θ
 

= = − 
+     

( )
1

g θ
θ

=   and ( ) ( )ln 1 .d x x= + We have ( ) ( )
0

1 ln 1
x

z xρ
>

= − +∑ and 
0

j

x

n r ρ
>

− =∑ which 
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has exponential 

distribution with parameter .θ  

 

The UMVUE of mixture density is given by 
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The above expression simplifies to 
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                                         (2.2.9) 

 

which is  UMVUE of mixture density of instantaneous  failure and positive observation 

taken from Pareto distribution. 

 

2.3  Analysis for early failures 
 

If early failures are nominally reported as X δ=  then the df of the modified 

model G1  is given as 
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The corresponding pdf is given as 
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The Fisher informations can be obtained as  
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where ( )
f

I θ  is the Fisher information about θ in the original pdf  f(x,θ). Again using 

(2.3.4), we get the Fisher information about θ   ignoring α as  

 

 
[ ]1

2 2

0( )

ln ( , )
( ) ( , )

( )
1 ( , ) 1 ( , )

f

g

f F
I f x dx

I
F F

δ

α

δ θ
α θ θ

θ θ
θ

α α δ θ δ θ

 ∂ ∂   
− −    

∂ ∂     =
− + −

∫
                (2.3.6) 

 

Here one can see that the parameters α  and θ are not orthogonal. Also as            

0 < α < 1,  
1
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If the n observations 1 2, ,...,
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X X X  are from 1g ∈ G 1 , then the 

likelihood is   
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Then the ML estimates are the solutions of the following likelihood equations: 
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Equation (2.3.8) does not depend on α and hence one can obtain θ̂  from (2.3.8). Using 

this θ̂  in (2.3.7) we can obtainα̂ .  Again, 
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   That is, the likelihood of the sample under  1g ∈G 1   is the product of the 

likelihoods of 0n  and the conditional likelihood of the sample given 0n  which is same as 

the likelihood of (n-
0n ) observations coming from the truncated version of  f∈ℑ  or               

( 1g ∈ G 1 ) restricted to (δ,∞). Now 0n  is binomial with probability of success given by     

1-α+α F(δ,θ). For fixed θ and α ∈ [0,1] this binomial family is complete. Therefore, the 

optimal estimating equation for θ ignoring α  is the conditional score function given 0n  
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or 0
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∏ . Hence optimal estimating equation for θ 

ignoring α is given by (2.3.8). Thus 0
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 or θ̂  is same as the estimator given by 

optimal estimating equation for θ  ignoring α.  

 

For some computations of one parameter Pareto family defined in section (2.1), 

we have the following formulas:  
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The log likelihood of early failure in one parameter Pareto model is  
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and the Fisher Information’s are  
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where .u
βδ=  

 

For two parameters Pareto family as defined in section (2.1) we have to use the 

following formulas:  
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 The log likelihood of early failures in two parameters Pareto model is 
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Then Fisher information equations corresponding to two parameters Pareto models are 

as given below 
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 The above information is used in illustration given in section (2.8) with comparative 

study of instantaneous failures and early failures are presented for different situations. 

 

2.4 Nearly instantaneous model  

 

 As already discussed in chapter 1 nearly instantaneous model incorporates inliers 

in better way than the above two models. 

 

2.4.1  Representation of the model 

 

  Let ( )xF
 
and ( ) ( )x xR =1-F denote the cumulative distribution function and the 

survival function of the mixture, respectively. We assume that F is continuous and its 

density be given by ( ) ( )x x′f =F . The component distribution functions and their survival 

functions are ( )i
xF and ( ) ( )i i

x xR =1- F  respectively, i=1, 2. The failure rate of a lifetime 

distribution is defined as ( ) ( ) ( )x x xh  = f / R   provided the density exists. 
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 We now represent this model as a mixture of the generalized Dirac delta function 

and the 2-parameter Pareto as opposed to a mixture of a singular distribution with 

Pareto, as 
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for sufficiently small d. Here p > 0 is the mixing proportion. Also note that  
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where ( )δ i  is the Dirac delta function. We may view the Dirac delta function as 

approximately normal distribution having a zero mean and standard deviation that tends 

to 1. For fixed value of d, equation (2.4.2) denotes a uniform distribution over an interval 

[x0, x0+ d] so the modified model is now effectively a mixture of a Pareto with a uniform 

distribution. Instead of including a possible instantaneous failure in the model (2.4.2) is 

allowed for a possible “nearly instantaneous” failure to occur uniformly over a very small 

time interval. Note that the case x0 = 0 corresponds to instantaneous failures, whereas 

0
0x ≠  (but small) corresponds to the case with early failures. Noting from (2.4.1) and 

(2.4.2), we see that the mixture density function is not continuous at x0 and x0+ d. 

However, both the distribution and survival functions are continuous. Writing 
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 can be written as 
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                   ( ) ( ) ( )1 2
F x pF x qF x= +                                                                                       (2.4.5) 

and         

 

    ( ) ( ) ( ) ( ) ( ) ( )1 2 1 21- –R x F x p q pF x q F x pR x qR x= = + + = +                       (2.4.6) 

 

Thus, the failure (hazard) rate function of the mixture distribution is 
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A mixture distribution involving two 2-parameter Weibull distribution has been 

thoroughly studied by Lai, Khoo, Murlidharan   (2007). The mixture considered was more 

complex in the sense that one of the mixing distributions has a finite range which poses 

some challenges. Simulated observations from this model are made by generating 

uniform variates and Pareto variates with proportions p  and 1q p= −  respectively. 

 

2.4.2  Survival function, failure rate and mean residual life function  of the  nearly 

           instantaneous model 
 

Recently, failure rates of mixtures are discussed quite extensively. The Reliability 

(survival) functions of the respective component distributions are given by  
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The failure rates are, respectively, 
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and 

             

( ) ( )
1

1

2 1 xh x x
α

α ααβ β

−

− −  
= + 

 
                                                                   (2.4.11) 

 

  It can be shown (2.4.4) and (2.4.6) that for any mixture of two continuous 

distributions the failure rate function can be expressed as  
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where  ( ) ( ) ( )1
/w x p R x R x=      for all x ≥ 0. In our case, 

 

0

0 0

0

1

0
( )

( )

( )

0

,

( ) ,

,

p

R x

p R x

R x

x x

w x x x x d

x x d


≤ <




= ≤ ≤ +

 ≥ +



                                                            (2.4.13) 

with  

      ( ) ( ) ( ) ( ) ( ){ }2 11w x w x w x h x h x′ = − −                                               (2.4.14) 

 

Also a simple differentiation shows that 
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Summarized expression for ( ) ( ),R x h x  and ( )m x are, respectively, given as 
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Recall that h(x) is discontinuous at both 0x x= and 0 .x x d= +  
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Then the Mean residual life of an r.v. X is defined for all x as   
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This is the expected additional time to failure given survival to x. 
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where 
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2.4.3   Nearly instantaneous failure case (x0 = 0) 

 

Consider a special case of model (2.4.1) whereby 
0

x = 0 . The model may be 

called the Pareto with “nearly instantaneous failure” model. In this case, (2.4.10) is 

simplified giving the failure rate of the uniform distribution as 
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and corresponding to (2.4.8) its survival rate function is given as 
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The Pareto model with “nearly instantaneous failure” occurring uniformly over [0, d] has 
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and 
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We now present some graphical plots of Survival, Density and Failure Rate 

Functions. Graphical plots are important for ageing distributions. Some graphs are 

plotted to identify whether the model is useful for specific datasets for which empirical 

plots are available. All plots are done when x0 = 0, the Pareto with “nearly” 

instantaneous failure model. A plot of density function, Survival function and MRL 

functions for various values of p are given below. 

 

 
Fig. 2.4.1.  Density function f(x): β =3, α =2, d = 0.5, x 0 = 0. 

 

 

Failure Rate Functions. The failure rate function is given in  fig. (2.4.7). Clearly, its shape 

is the same as the Pareto distribution after d. Thus we focus on the segment from 0 to d. 

The following four figures show that h(x) can be increasing, decreasing, or bathtub 

shaped for 0 ≤ x ≤ d. From the plots, it can be seen that the failure rate function of the 

model gives rise to several different shapes and bumps; this is expected as mixing with a 

component distribution that has a finite range often cause some problems. Although the 
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second part can be either increasing or decreasing, the first segment can achieve various 

shapes. This finding agrees with Block (2003). 

 

 

 
Figure 2.4.2  Density function f(x): β = 1,α =2, d = 0.2, x 0 = 0. 

 

 

 

Figure 2.4.3 Reliability function R(x): β =3, α =2, d = 0.5, x 0 = 0 
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Fig. 2.4.4. Reliability function R(x): β =1, α =2, d = 0.5, x0 = 0 

 

 

Fig. 2.4.5. Plot of mean residual m(x): β  =1, α =2, d = 0.5, x0 = 0 

 

 

 
Fig. 2.4.6.  Plot of mean residual m(x): β  =3,α =2, d = 0.5, t 0 = 0. 
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Figure (2.4.6) represents failure rate h(x) for different combinations of α, β , p and d. 

 

 

                         
        (a)   α=1.2, β=1.2,  p=0.3, d=0.5                              (b)    α=1.2, β=1,  p=0.08, d=0.5 

 

                       
     (c)  α=1.2, β=0.5,  p=0.5, d=0.5                                  (d)    α=2, β=3,  p=0.2, d=0.2 

 

Fig. 2.4.7. Failure rate 

 

 

 

2.5 Inlier estimation using Lk  and  Mk  models 

 

In this section we consider the situation where instantaneous (i.e. X = 0) failures 

can also occur by mixing a singular distribution at X = 0 with the above model of inliers. 
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2.5.1   Inlier estimation for labeled slippage (Lk) models 

 

 For  this model consider observations from inlier with pdf         
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and those from  target population with  pdf  
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Then the likelihood of the sample from population with observations from inliers with 

pdf ( )( )φ,
i

g x  and target pdf ( )( )θ,
i

f x  
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The likelihood function in (2.5.1) assumes that between the experiments when 

units are placed on test we do not know which of the units fail instantaneously. 

Equivalently 
1 2

0

0,  X 0,  0
i i i

r
X X= = … =

 
which fail early i.e. those units whose failure 

time distribution is g(x(i),φ ) with failure rate much larger than that of the failure time 

distribution of the target population whose failure rate is considerably smaller. The log 

likelihood of the model is  
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and the likelihood equations are 



 - 44 -

( )
( )00

ln
0

1

n rL r

α α α

−∂ −
= + =

∂ −
                                                              (2.5.3) 

 

  
( ) ( )( )

1

1

1
1

ln
ln , ln 1

r

r i

i

L r
xϕ φ θ

φ φ φ =

∂ ∂
= − + − +

∂ ∂
∑                                                            (2.5.4) 

and 

 

( ) ( )( )0 1

1
1

1

ln
ln , ln 1

n

r i

i r

L n r r
xϕ φ θ

θ θ θ = +

∂ − −∂
= − + − +

∂ ∂
∑

    

                          (2.5.5) 

 

Here (2.5.3) can be solved to get the estimate of α as ( )0
ˆ / .n r nα = −  Solving (2.5.4) and 

(2.5.5) simultaneously we get the estimate of φ  and θ . The  parameter α is orthogonal  

to ( ),φ θ .  The second order derivatives are 
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Taking log on both sides we get 
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The second derivative of the likelihood functions are 
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Using results from Abramovitz and Stegun (1965) we get  
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Using the above results, we obtain the likelihood equations as 
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 The above equations may be solved simultaneously to get estimates for φ  and .θ  

The Fisher information’s are obtained as 
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The  graph of ( , )
r

G Fϕ  to detect inlier is represented on graph (2.5.2). 
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2.5.2 Identified Inliers Model (Mk model) 

 

 Here we assume that the failure times ( )1 2, ,......
n

X X X  of n units put on test are 

such that (n-r) of them are i.i.d. with FTD belonging to ℑ  characterizing target 

population and remaining r are i.i.d. with FTD from G  causing inlier observations where 

G Є G and F Є ℑ are such that 
G

F

∂

∂
 is decreasing in  X. As the indexing set v and the 

number of inliers are known we can relate ( )1 2, ,......
r

X X X  i.i.d. as G Є G  are 

independently distributed of ( )1 2, ,......
r r n

X X X+ + from F Є ℑ . Then the likelihood of the 

sample is given by 

 

                         ( ) ( ) ( )
1 1

| , , ,
r n

i i

i i r

L x v r g x f xφ θ
= = +

= ∏ ∏                                                           (2.5.14) 

 

 The MLE of parameter of G and F is a straight forward two sample problem. 

Suppose that the target population has FTD given by pareto distribution parameter  θ   

and the inliers are given by pareto distribution with parameter φ  where φ θ>  and the 

likelihood in the identified inlier model is given by 

 

( )
( )( ) ( )( )

1 1
1 1

| , , ,

1 1

r n

i i r
i i

L x v r

x x
φ θ

φ θ
φ θ

+ +
= = +

=
+ +

∏ ∏                                      (2.5.15) 

 

For each  r =1, 2,...n  we find maximum likelihood using equation (2.5.15), and then 

consider inlier r̂  being that value of r for which likelihood is maximum. 

 

2.5.3 Simulation study 

 

  To illustrate the method of identifying inliers model we have generated 15 

independent random samples, where five of them are coming from Pareto with 

parameter 20φ =   and remaining ten observations from Pareto distribution with 

parameter 0.8θ = . The samples are 0.01339, 0.02679, 0.03442, 0.05519, 0.09459, 

0.32854, 0.64367, 1.19427, 3.00276, 3.14612, 3.15643, 3.94635, 5.17659, 9.79405 and 

12.52736. The model under illustration is identified inliers model. The identification is 
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done as follows to evaluate for each fixed r the maximum likelihood equation ˆ
r

L  and 

then consider r̂  being that value of r for which likelihood is maximum. The estimates 

have been presented in table (2.5.1). 

 

 It is interesting to note that the  maximum likelihood corresponds to ˆ 5r = , which 

was expected. The corresponding estimates of the parameters are φ̂  = 22.96948 and       

θ̂  =0.704261. The graphical representations of the likelihood plot are given in figure 

(2.5.1). 

 

Table 2.5.1. The Likelihood and parameter estimates 

r φ̂  θ̂  ˆ
r

L  

1 75.18149 0.971976 8.46574E-12 

2 50.32893 0.904208 1.14685E-10 

3 40.77225 0.836623 1.33608E-09 

4 31.42176 0.769788 9.1914E-09 

5 22.96948 0.704261 3.21716E-08 

6 12.06675 0.646565 1.02195E-08 

7 7.041070 0.596001 2.28998E-09 

8 4.494340 0.553932 4.46583E-10 

9 2.841800 0.533335 4.66372E-11 

10 2.179040 0.508762 1.37914E-11 

11 1.829110 0.476013 6.59953E-12 

12 1.576350 0.440886 3.38237E-12 

13 1.378100 0.401308 1.74583E-12 

  

  

 

Fig. 2.5.1.  Likelihood plot 
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Figure 2.5.2.  The graph of ( , )

r
G Fϕ =

 )1()([ +< ii XXP ] 

 

Clearly the above graph also indicates the number of inliers is 5.  

 

 

2.6   Inliers detection using information criterion 

 

 The most important use of information criterion is, that it helps us in model 

selection, from the set of different models which all fit the data. These criteria are 

suitable when the underlying distribution and inlier distribution are available. It is an 

exploratory data analysis approach as no formal statistical inference is performed. Here  

three information criteria are discussed, to detect number of inliers in the data set, such 

as Schwarz’s Information criterion ( ( )ln lnSIC = 2 L Θ  + p  n ), Schawarz’s Bayesian 

Information criterion  ( ( )
( )ln

ln
n

0.5 p  n
BIC = - L Θ  +  )and Hannan-Quinn criterion : 

( ) ( )( )ln ln lnHQ = - L Θ  + p  n  where L(Θ) the maximum likelihood function and p is the 

number of free parameters that need to be estimated under the model.  Below we 

develop the procedure for SIC scheme: 

 

 Denoting the parameter of X by αi, i=1,2,...n.  The following model of no inliers 

where X is from one parameter Pareto distribution with pdf   

                     

                         
1
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Now let 

( )Model 0 : 1,2,......
i

i pα θ= =  ,                                                                   (2.6.1) 

 

And the model with r inliers as  

 

            

( )
, 1

Model r :     
, 1

i

i r

r i n

φ
α

θ

≤ <
= 

+ ≤ <                                                              

(2.6.2) 

 

where inliers have pdf 
1

( ) , 0, 0
(1 )

g x x
x

φ

φ
φ

+
= > >

+
 and r is such that 1 r n≤ ≤ , is the 

unknown index of the inliers. Model(0) may also be interpreted as having all 

observations from the target distribution  F with common parameter  .    

 

 Suppose that the life times of nXXX ,...,, 21  is sequence of independent random 

variables with Pareto distribution having unknown parameterθ . Our aim is to detect 

those information’s(inliers) from the n models given by equation (2.6.2).  

 

 According to the procedure, the model(0) is selected with no inliers if 

( ) ( )
1 1

0 min
r n

SIC SIC r
≤ ≤ −

< . And the model(r) is selected if ( ) ( )
1 1

0 min .
r n

SIC SIC r
≤ ≤ −

> For Pareto 

distribution, the model with 0 inlier is given by 

( ) ( ) ( )
1

0 2 ln 2 1 ln 1 ln
n

i

i

SIC n x p nθ θ
=

= − + + + +∑                                                          (2.6.3) 

and 

 

( ) ( ) ( ) ( ) ( ) ( )
1 1

2 ln 2 ln 2 1 ln 1 2 1 ln 1 ln
r n

i i

i i r

SIC r r n r x x p nφ θ φ θ
= = +

=− − − + + + + + + +∑ ∑        (2.6.4) 

 

where      

( )
1

ˆ

ln 1
r

i

i

r

x

φ

=

=

+∑
     

 and    
( )

( )
1

ˆ

ln 1
n

i

i r

n r

x

θ

= +

−
=

+∑
                                        (2.6.5) 

 

The estimate of inliers say r is such that ( ) ( )
1
min

r n
SIC r SIC r

≤ ≤
= . The illustration uses this 

method with the simulated example discussed in the previous section (2.5.1) and Table 

(2.6.1) presents the parameter estimates and the information criterion values.  
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Table 2.6.1. Parameter estimates and the information criterion values 

r̂  θ̂  φ̂  SIC(r) BIC(r) HQ(r) 

0 1.040442 ---------- 60.3520 29.82228 58.64077917 

1 0.971976 75.18149 53.6980 26.49499 51.98621518 

2 0.904208 50.32893 48.4857 23.88883 46.77389739 

3 0.836623 40.77225 43.5751 21.43353 41.86328438 

4 0.769788 31.42176 39.7180 19.50500 38.00622349 

5 0.704261 22.96948 37.2124 18.25218 35.50059008 

6 0.646565 12.06675 39.50599 19.39897 37.79417263 

7 0.596001 7.041079 42.4975 20.89472 40.78567634 

8 0.553932 4.494343 45.7668 22.52940 44.05502113 

9 0.533335 2.841807 50.2853 24.78862 48.57347388 

10 0.508762 2.179042 52.7220 26.00698 51.01018362 

11 0.476013 1.829118 54.1960 26.74402 52.48427275 

12 0.440886 1.576359 55.5329 27.41245 53.82112047 

13 0.401308 1.378105 56.8556 28.07379 55.14380810 

  

Clearly ( ) ( ) ( )
1

0 60.3526 5 min 37.21241
r n

SIC SIC SIC r
≤ ≤

= > = = . A similar conclusion can be 

drawn in the case of other information criterions: 

 

         
( )

1
BIC 0 29.82228 (5) min ( ) 18.25218

r n
BIC BIC r

≤ ≤
= > = =

  
 

         
( ) ( ) ( )

1
0 58.64077917  5 min 35.50059008.

r n
HQ HQ HQ r

≤ ≤
= > = =  

 

Above table clearly indicates  ˆ 5r = and the corresponding estimates for the parameters 

are φ̂  = 22.96948 and θ̂  =0.704261. 

    Next, we carried out an experiment with 1000 samples each of size 15 and 

number of inliers as 3,4,5 and 6 each with 0.8θ = and 4,2,1.0,1.33.φ = The following 

table entitled power of SIC procedure presents the number of times the SIC procedure 

correctly identified the number of inliers in proportion to total number of samples. The 

values clearly indicate the effectiveness of the method in detecting the inliers. One of 

the important problem while detecting the inliers is the masking effect, where masking 

effect is defined as the loss of power due to wrong detection of more than one inlier.  
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Table 2.6.2.  Power of SIC procedure 

/θ φ  

r 

0.2 0.4 0.6 0.8 

3 0.055 0.083 0.098 0.103 

4 0.084 0.116 0.136 0.128 

5 0.102 0.153 0.158 0.157 

6 0.128 0.168 0.170 0.175 

  

 

2.7        Inlier estimation through Sequential Probability Ratio Test (SPRT) 

    

          To test the hypothesis whether an observation belongs to inliers population
 

against hypothesis that it belongs to target population. The SPRT test is given as follows: 

 

Under H1 the pdf and likelihood function is given by 
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θ
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∏ ∏     

      

Under H0 the pdf and likelihood function is given by 

     

    ( ) ( )
1

, / 1g x x
φ

φ φ
+

= +
 

and 

      ( )0

1

,
m

m i

i

L g x φ
=

= ∏
( )

1
1 1

m

i x
φ

φ
+

=

=
+
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The likelihood ratio mλ  is given by 1

0

m

m

m

L

L
λ =  or equivalently  

( )( )
( )( ) ( )

1 1

,
ln ln 1,2,....

,

m m
i

m i

i i
i

f x
z m n

g x

θ
λ

φ= =

= = =∑ ∑                                              (2.7.1) 

 

 For deciding number of inliers r we continue to take additional observations till we 

reject H0. That is  

  if ( )
1

ln
m

i

i

z B
=

≤∑ accept H0 and take the next observation. 
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 and  

 if ( )
1

ln
m

i

i

z A
=

≥∑  reject H0 and stop. The corresponding m represents the first 

observation from ( )( ),
i

f x θ   and number of inliers r = m-1. 

 

       
1

,
1

B A
β β

α α

−
= =

−
                                                                              (2.7.2) 

 

where α   represents probability of type I error and β   represents probability of type II 

error. Hence 

 

( )( )
( )( )

( ) ( )( )( )
1 1

,
ln ln ln ln ln 1

,

m m
i

m i

i i
i

f x
m x

g x

θ
λ θ φ θ φ

φ= =

= = − + + −∑ ∑                             (2.7.3) 

 

Arrange ( ) ( ) ( )1 2
......

n
X X X≤ ≤ and apply SPRT process till the hypothesis H0 is rejected.  

 

Test criteria for rejection of   H0   is     

 

             ( )( ) ( )
( )1

ln ln ln
ln ln ln 1

m

m i

i

A m
A x

θ φ
λ

θ φ=

− −
> = + >

−
∑                                           (2.7.4) 

 

Corresponding value of m for which H0 was accepted last becomes number of inliers r. 

The above test is conducted for the example in next section.  

 

2.8 Illustrative Example 

 

           The main reason for detecting early failures is that the inclusion of these 

observations will result in underestimating life expectancy or the reliability of the item 

or system. This in turn may underestimate the true quality of the product. But there are 

situations in which instantaneous or early failures may be desirable. For example, 

consider the following experiment carried by Vannman (1991).  A batch of wooden 

boards is dried by a particular chemical process and the object of the experiment is to 

compare two processes as regards the extent of deformation of boards due to checking. 

The measure of damage to the board is the checking area x defined as 
0

100
l d

x
hl

= , 

where l is the length of the check, d  is the mean depth of the check, h is the thickness  
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of the board area and 0l  is the length of the board. Thus x is the check area measured as 

percentage of the board area. The boards are dried at the same time under different 

schedule and under some climatic conditions. When drying boards not all of them will 

get the checks and a typical sample of wood contain several observations with ix = 0 or 

ix
 
> 0 but relatively small compared to the rest of the checks. These observations will 

correspond to instantaneous failures or early failures. Note that the larger the number 

of instantaneous failures better is the process. Below is the reproduced data of Schedule 

1 and 2 of Experiment 3 conducted by Vannman (1991). In both the case n=37. For data 

refer appendix. 

 

First of all, we justify the Pareto model for the above data using the technique 

given in Meeker and Escobar(1998) and plotted log[-log(1-p)], p= F( ix ) against log( ix ) 

and obtained the one parameter Pareto plot and two parameter Pareto plot separately 

for Schedule 2. For early failure analysis, we assumed δ=0.2. With this the observation 

0.08 of Schedule 1 becomes an early failure and the observations 0.02 to 0.09 (total of 5) 

items of Schedule 2 become early failures.   

 

 
          Fig. 2.8.1. One parameter Pareto plot for Schedule-2 

 

 

The plots are given in figure (2.8.1) and (2.8.2) for one parameter and two 

parameters Pareto plot respectively for Schedule-2 of experiment 3.    
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Fig. 2.8.2.  Two parameter Pareto plot for Schedule-2 

 

 

Table 2.8.1.  Estimates of one parameter Pareto distribution 

 

 

 

Table 2.8.2.  Estimates of two parameter Pareto distribution 

Model Parameter Estimates 

Schedule-1 Schedule-2 

G 

(instantaneous 

failures) 

α 

 

β 

 

φ 

 0.64865 

(0.006160) 

       1.25299 

(0.421699) 

 2.77164 

(5.638073) 

0.54054 

(0.0067123) 

0.800943 

(0.139438) 

0.823577 

(0.393020) 

G1 
(early failures) 

α 

 

β 

 

φ 

   0.652919 

(0.007057) 

  1.22408 

(0.034035) 

  2.30727 

(0.226172) 

0.43217 

(0.007451) 

1.23621 

( 0.036314) 

1.79431 

(0.130620) 
Note: the values in the parenthesis represents variances of the estimates 
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 Model Parameter Estimates 

Schedule-1 Schedule-2 

G 

(instantaneous 

failures) 

α 

 

β 

     0.64865 

(0.006159) 

1.00541 

(0.029455)  

0.54054 

(0.006712) 

0.803645 

(0.022583) 

G1 
(early failures) 

α 

 

β 

0.86603 

(0.012723) 

0.577342 

(0.011761) 

0.65394 

(0.017035) 

0.305469 

(0.003649) 
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The above analysis shows that the results differ in the models G  and G1.  In G1, even if 

we keep δ=0.1 or any value in between 0.1 to 0.2 the results are similar. Further, if we 

ignore the value of α then the information loss of β are 0.064116 for Schedule 1 and 

0.048048 for Schedule 2 correspond to the one parameter Pareto distribution.  Similarly 

the information loss for two parameter distributions is 0.0036226 for β and 0.00015074 

for φ in Schedule 1 and 0.0023976 for β and 0.0004433 for φ in Schedule 2, respectively. 

Thus to retain the complete information the presence of α and δ are very much 

required. Moreover, from Tables 1 and 2 it is observed that the variance of the 

estimators of the parameters corresponds to early failures is less than the corresponding 

variance of instantaneous failures. Also the presence of more parameters makes the 

model more flexible to use. If in equation (2.1.3), the individual life times ),0( δ∈ix  are 

available and are not reported as δ, the problem becomes more complex.  

  

Table 2.8.3. Estimates for instantaneous failures 

Schedule  p̂  α̂  β̂  

I Estimates 0.351351 1.25299 2.77164 

 Standard  Error 2.094713 0.508146 0.154711 

II Estimates 0.459459 0.800943 0.823577 

 Standard  Error 2.006607 1.02006 0.380592 

 

 

     Table 2.8.4. Uniform spread of “nearly instantaneous” failure times . 

Schedule  p̂  α̂  β̂  

I Estimates 0.378378 1.3949 3.10361 

 Standard  Error 2.06793 0.527328 0.159483 

II Estimates 0.567568 1.23692 1.80127 

 Standard  Error 2.018516 0.728331 0.298683 

 

If we fit above data to one- parameter Pareto distribution, taking β=1, we get 

following estimates for the two schedules:  

 

 



 - 57 -

Table:2.8.5. Estimates for instantaneous and nearly instantaneous failure when β=1 

Schedule  p̂  α̂  

I Instantaneous 0.351351 (2.094713) 0.922071 (0.768719) 

 Nearly  0.378378 (2.06193) 0.969036 (0.759074) 

II Instantaneous 0.459459 (2.0006607) 0.703233 (1.152618) 

 Nearly  0.567568 (2.018516) 1.14447 (1.069799) 

Note: Figures in the bracket represents the standard error of the estimates. 

 

  

Table 2.8.6.    Estimates of parameters and r. 

r θ̂  φ̂  ˆ
r

L  ( )SIC r  ( )iZ   

1 0.654913 12.99359 1.5045E-29 135.9111 0.076961 

2 0.63143 5.640273 2.51883E-29 134.8804 0.354593 

3 0.608352 4.433435 4.99947E-29 133.5093 0.676676 

4 0.585805 3.791064 9.15284E-29 132.2999 1.055113 

5 0.5654 3.141481 1.17998E-28 131.7918 1.591606 

6 0.54536 2.739172 1.50475E-28 131.3056 2.190443 

7 0.527292 2.368137 1.5387E-28 131.2609 2.878949 

8 0.508935 2.128842 1.67179E-28 131.095 3.403319 

9 0.490793 1.942426 1.77838E-28 130.9714 3.956704 

10 0.479839 1.661219 1.07411E-28 131.9798 4.964562 

11 0.468734 1.47416 7.37023E-29 132.7331  

12 0.459438 1.321979 4.93023E-29 133.5372  

13 0.449527 1.212013 3.60868E-29 134.1613  

14 0.441077 1.117822 2.593E-29 134.8224  

15 0.43224 1.043523 1.95208E-29 135.3902  

16 0.424204 0.979354 1.46919E-29 135.9586  

17 0.416518 0.924409 1.11832E-29 136.5043  

18 0.410398 0.874798 8.41417E-30 137.0733  

19 0.403448 0.833225 6.52924E-30 137.5806  

20 0.394893 0.797868 5.19969E-30 138.036  

21 0.385706 0.765915 4.14956E-30 138.4872  

22 0.372682 0.737522 3.35093E-30 138.9147  

 

 

For inliers detection based on section (2.5) and (2.6) we have used only schedule 1 

data which are shown in table (2.8.6).Clearly, SIC(0) = 139.9487 > SIC(9) =  min SIC(r) = 

130.9714. Also the likelihood is maximum for r = 9.  The corresponding estimates of the 
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parameter are φ̂  = 1.942426 and θ̂  =0.490793. Using SPRT of section (2.7) the hypothesis 

0 : 2H φ =  against 
0 : 0.5H θ =  is also tested, for which 0.005, 0.065.α β= =

 
Hence   ln A  

= -13.4417 and ln B = -2.72836  and  H0  is rejected when ( ) ( )( )
1

ln 1 4.964562
m

i i

i

Z x
=

= + =∑
 

( )
( )

ln ln ln
4.340185.

A m θ φ

θ φ

− −
> =

−
 

SPRT also  gives number of inliers as  ˆ 9.r =  

 

The Pareto distribution has been used in many reliability fields. However one 

often finds that it does not fit well in the early part of lifespan for various reasons. In 

particular, in the cases where initial defects are present causing early failures, the Pareto 

distribution is found inadequate to model such phenomenon. The proposed model of a 

modified Pareto mixing with Uniform distribution to model the first phase of lifespan 

should provide a useful alternative. 
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Chapter 3  
 

 

 

 

 

Inliers estimation in normal models     

 

 

 
 

 

 

3.1     Introduction 

 

A normal distribution is a very important statistical data distribution pattern 

occurring in many natural phenomena, such as height, blood pressure of person, 

lengths of objects produced by machines, etc. Usually normal distributions are 

symmetrical with a single central peak at the mean (average) of the data. But many 

times we may get normal distribution as mixture of inlier and target groups. For 

example life time of a battery follows normal distribution, it is possible in the data 

set, we may get two sets of observations. The first set of data may have zero or small 

life time compared to another group with target life time. This may create two 

symmetrical curved graphs, where the mean of inlier group is much less than the 

mean of target group. Many authors have worked on mixture of normal 

distributions.  
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In this chapter the occurrence of instantaneous or early failures in life testing 

experiment, which is a phenomenon observed in electronic parts as well as in clinical 

trials is modeled as mixture of two normal distributions. These occurrences may be 

due to inferior quality or faulty construction or due to no response of the 

treatments. The modified model is then a non-standard distribution and we call such 

models as inlier(s) prone models. Normal mixture distributions are arguably the most 

important mixture models, and also the most technically challenging. The likelihood 

function of the normal mixture model is unbounded based on a set of random 

samples, unless an artificial bound is placed on its component variance parameter. 

Moreover, the model is not strongly identifiable so it is hard to differentiate 

between over dispersion caused by the presence of a mixture and that caused by a 

large variance, and it has infinite Fisher information with respect to mixing 

proportions. There has been extensive research on finite normal mixture models, but 

much of it addresses merely consistency of the point estimation or useful practical 

procedures, and many results require undesirable restrictions on the parameter 

space. 

 

In the developments below we consider ( )2,N θ σ as our target population, 

and the instantaneous and early failures are inlier components.  A two parameter 

Normal (target)  family has the probability density function 

 

   
( )

2
1 1

exp , , , 0
22

x
f x x

θ
θ σ

σπσ

− 
= − − ∞ < < + ∞ − ∞ < < +∞ > 

 
       (3.1.1) 

 

 

3.2     Inlier(s) prone models and estimation 

  

 Many times in real life data, we observe that data contains inliers. The data is 

mostly from normal population hence, we fit models which will incorporate mixture 

distribution of inlier and target observations with normal distributions. The 

assumption considered in this chapter is that the inlier and target population defer 

only in their mean values, where as population variances are same.   
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3.2.1   Normal with instantaneous failures 

 

   In a parametric model for FTD we start with a family of FTD ℑ={F(x, θ), x≥0,    

}
m

R∈Ω ⊂θ , where the form of the distribution function (df) is known except for 

labeling parameter, m-dimensional θ and F is absolutely continuous function with 

probability density function (pdf), f(x,θ) with respect to Lebesgue measure. The basic 

problem is to infer about unknown θ or a suitable function thereof say ψ(θ), on the 

basis of a random sample of size n on the observable random variable say,

1 2, ,....... .
n

X X X  The occurrence of instantaneous failures when some items are put on 

test giving 0
i

X =  is quite common in electronic component and some other 

situations. Note that because of the limited accuracy of measuring failure time it is 

possible that we record 0
i

X =  for some units although [ ]0| 0
i

P X = θ = . To 

accommodate such instantaneous failures, the model ℑ is modified to model            

G  = {G(x,θ, α), x≥0, θ∈Ω, 0 < α < 1}, where  

   

    

  ( )
( )

1 , 0
; ,

1 , , 0

x
G x

F x x

− =
= 

− + >

α
θ α

α α θ
                                               (3.2.1) 

 

and ( ) ( )
2

2

1 1
, exp

22

x

i
F x y dy

−∞

= − −∫θ θ
σπσ

 is df according to Normal distribution 

and α is the mixing proportion. The estimation of parameters in the above model is 

straight forward and depends on only the positive observations in the model. Thus 

 

                      
ˆ

n r

n
α

−
=                                                                                                      (3.2.2) 

 

  

0ˆ i

i

x

x

n r

>
=

−

∑
θ            and         

( )
2

02

0
ˆ i

i

x

x x

n r

>

−

=
−

∑
σ                                            (3.2.3)   

  

 

are easily obtainable.  r  denotes  number of units that fail instantaneously. As we 

are considering life times of an object we get non-negative observations.  
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3.2.2    Normal with early failures  

   

As we have already defined early failures in chapter 2, section (2.3), we can 

directly write the likelihood of this model as 

 

[ ] [ ]( )
δ

θ
α θ α α δ θ α δ θ

δ θ

−

>

= − + −
−

∏
( , )

( , , ) 1 ( , ) 1 ( , )
1 ( , )

i

n rr i

x

f x
L x F F

F
                  (3.2.4) 

 

where 

 

                      ( ) ( )
2

2

1 1
, exp

22
i

F x dx

δ

δ θ θ
σπσ −∞

= − −∫  

 

that is, the likelihood of the sample under g1∈ G
1
  is the product of the likelihoods  of  

r (inliers)  and the conditional likelihood of the sample given r which is same as the 

likelihood of (n-r) observations coming from the truncated version of f ∈ ℑ (or 

g1∈G
1
) restricted to (δ, ∞).  Now r is binomial with probability of success given by 

( )1 ,Fα α δ θ− + . For fixed θ and [ ]0,1α ∈  this binomial family is complete. 

Therefore, the optimal estimating equation for θ ignoring α is the conditional score 

function given r  or 
θ

∂
=

∂

ln
0r

L
, where 

( )

( )
δ

θ

δ θ
>=
−

∏ ,

1 ,

i

x

r

f x

L
F

. Hence optimal estimating 

equation for θ  is given by equation (3.2.7). Thus, it is same as the estimator given by 

optimal estimating θ̂  equation for θ ignoring α. ML equations correspond to two 

parameter Normal models are given as 

 

   ( )
( )

δ

θ
α δ θ α σ

σ>

−
 = − + − − −  ∑

2

1 2

1

1
ln ln 1 , ( )[ln ln ]

2

i

x
i

x
L r F n r                 (3.2.5) 

 

( )
( )

( )α δ θ σ

α α δ θ σ α

− −∂
= ⇒ + =

∂ −

1

1

, ,ln
0 0

1 , ,

r F n rL

F
                                                  (3.2.6)     

 

( )

( )

α δ θ σ
θθ

θ α δ θ σ σ+

∂
−  −∂ ∂= ⇒ + = 

∂ −  
∑

1

2
11 1

, ,
ln

0 0
1 , ,

n

i

r

r F
xL

F
                                    (3.2.7) 
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and 

 

( )

( )
( )

21

1

3
11 1 1 1

, ,
ln

0 0
1 , ,

n
i

r

r F
xL n r

F

α δ θ σ
θσ

σ α δ θ σ σ σ+

∂
−

− ∂∂ −
= ⇒ − + = 

∂ −  
∑                     (3.2.8) 

 

Here equations (3.2.7) and (3.2.8) may be solved simultaneously using 

Newton Raphson method. The above model gives reasonably good estimates of the 

parameters for δ fixed.  See the example in the section (3.8), at the end of the 

chapter. 

 

3.3     Normal with nearly instantaneous failures 

 

 With reference to equation (2.4.4) in chapter 2, normal with nearly 

instantaneous failures distribution can be written as  

 

( ) ( )
2

11

1 1
exp , 1, 0 1

22

x
x q p q p

θ

σπσ

  −
 + − + = < <    

d 0
f = pδ x - x            (3.3.1) 

                                                            σ θ> − ∞ < < +∞1 0,
 

where 

 

   

( )δ
 ≤ ≤ +

− = 


0 0

0

1
,

0 ,
d

x x x d
dx x

otherwise

       ,                                                   (3.3.2) 

  

for sufficiently small d.  Here the mixing proportion > 0p . Also note that  

 

( ) ( )0 0
0

- -limδ δ
→

= d
d

x x x x                                                                              (3.3.3) 

 

Since 

 

                  ( ) ( )1 0
-δ=

d
f x x x     

 

and  

 

                    

( )
θ

σ θ
σπσ

  −
 = − > − ∞ < < +∞    

2

2 1

11

1 1
exp , 0,

22

x
f x
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where ( )f x  is given by 

 

 
( ) ( ) ( )= +1 2f x p f x q f x    where 1, 0 1.+ = < <p q p                            (3.3.4) 

 

and the corresponding survival function and hazard function of the mixture 

distribution are       

 

                       ( ) ( ) ( )1 2= +R x pR x qR x                                                                             (3.3.5) 

 

and    

 

            ( )
( ) ( )
( ) ( )

+
=

+

1 2

1 2

pf x qf x
h x

pR x qR x
                                                                           (3.3.6) 

 

respectively. 

 

The components of ( )R x  and ( )h x  can be obtained as 

 

              

                                       

     

0

0
1 0 0

0

1, 0

( ) ,

0,

x x

d x x
R x x x x d

d

x x d

≤ <
 + −

= ≤ ≤ +


≥ +

                                           (3.3.7)  

 

and   

            

        
( )2 2 0

( ) 1R x F x x x d= − > +                                            (3.3.8) 
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1
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
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x x
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d x x

x x d

                                               (3.3.9) 

 

and 

 

( )
( )

θ

σπσ

  −
 −     =

−

2

11

2

2

1 1
exp

22

1

x

h x
F x

                                                 (3.3.10) 
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As a special case of the model, we obtain the Normal with “nearly 

instantaneous failure” model, when 0 0t =  in equation (3.3.2). Accordingly the 

simplified expressions of the components in the failure rate and survival functions 

are 

 

  

( )


≤ ≤
= −
∞ >

1

, 0

,

1
x d

h x d x

x d

                                                             (3.3.11) 

 

and its survival rate function  in equation (3.3.7) is given as 

 

                        

( )1

, 0

0 ,

− ≤ ≤
= 
 >

d x x d
dR x

x d

                                                            (3.3.12) 

  

Thus the Normal model with “nearly instantaneous failure” occurring uniformly over 

[0, d] has survival function 

 

( )
( )

( )

( )

2

2

1 , 0

1 ,

−
+ − ≤ ≤   = 

 − >  

p d x
q F x x d

dR x

q F x x d

                                    (3.3.13) 

and 

  ( )
( ) ( )( ) ( ) ( )( )

( )
( )

( )
( )

2

22 2

2

2

1 , 0
1 1

,

f xdpp
x d

R xp d x dq F x p d x dq F x
h x

qf x
x d

R x

  
− ≤ ≤  

− + − − + −   =


>


  (3.3.14) 

 

 

Nearly instantaneous calculations are performed for the example in section (3.8). 

  

3.3.1 Graphs 

 

          In various figures below we provide the graphs for ( )f x , ( )R x and ( )h x for left 

values of mixing proportions and parametric values.         
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Fig. 3.3.1.  Density function for µ = 4 and σ = 2 

 

 

 

 

 
Fig. 3.3 2. Reliability function µ = 4 and σ = 2 

 

 

Graph (3.3.4) and (3.3.5) are plotted on the basis of random sample 

generated from mixture of two normal distributions. From the graph (3.3.4) we can 

clearly identify two symmetrical curves, where  first curve has inlier distribution with 

mean 4 remarkably less than second curve which can be considered as target 

distribution with mean 20. Graph (3.3.5) is known as normal quantile-quantile (Q-Q) 

plot. A sample from single normal distribution should produce a linear plot on this 

graph, which is not in our case. Hence both the graph clearly represents the 

presence of two groups. 
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Fig. 3.3.3. Failure distribution for µ = 4 and σ = 2 

 

 

 
Fig 3.3.4. Density function of mixture of inliers and target distributions 

 

 

3.4 Inlier detection methods  

 

         Here we obtain number of inliers for different data set by various methods,  

viz identified inlier model, labeled slippage methods and information criteria.  

 

3.4.1    Identified inlier model (Mk) 

 

Referring to equation (2.5.14) of section (2.5.2) from chapter 2 the identified 

inliers model with ( )g x as inliers and ( )f x as target distribution is written as    

 

      ( ) ( ) ( )φ θ
= = +

= ∏ ∏
1 1
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φ θ

σ σπσ πσ= = +

   − −
= − −   
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∏ ∏

2 2

1 10 10 1

1 1 1 1
exp exp

2 22 2

r n

i i

i i r

x x

  

   (3.4.2) 

 

 

The likelihood function in (3.4.2) assumes that between the experiments when units 

are placed on test we do not know which of the units fail instantaneously. 

Equivalently = = =
1 2

0, 0,.... 0
i i i

r
X X X   which fail early i.e. those units whose failure 

time distribution is ( )φ( ) ,i
g x  with failure rate much larger than that of the failure 

time distribution of the target population whose failure rate is considerably smaller. 

The identification is done as follows: evaluate for each fixed r where r = 0,1,2,…n-1  

the maximum likelihood equation ˆ
r

L , and then consider r̂  being that value of r for 

which likelihood is maximum. The computation for example of detection of inliers is 

done in section (3.5) and (3.8). 

 

 

 
Fig. 3.3.5.  Normal Probability Plot for mixture of two distributions 

 

 

3.4.2     Inlier detection in Labeled slippage model (Lk) 

 

 With ( )g x and ( )f x as described in section (3.4.1), the likelihood under 

labeled slippage model referring to section (2.5) and substituting in equation (2.5.1), 

gives
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and the corresponding likelihood equations are 
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and 
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x x
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σ
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Here (3.4.4) can be solved to get the estimate of p as ( )0
ˆ / .p n r n= −  The equations 

(3.4.5) and (3.4.6) contains gamma and digamma functions. The function 
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where G(x) and F(x) are cumulative distribution functions of inlier and target 

population. The function ( )
1

,
r

ϕ φ θ  is difficult to evaluate and can only be evaluated 

using some numerical method. 
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3.4.3   Information criterion for detection of inliers 

 

  As defined in chapter 2, section (2.6) here for Normal distribution, we have 

SIC for model with no inliers as 

            

( )
2

1

1 1

0 2 log log
n

i

i

x
SIC n p n

θ
σ

σ=

 −
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∑                                                        (3.4.8) 

 

and model with r inliers is defined as 
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The estimate of inliers say r is such that ( ) ( )
1
min .

r n
SIC r SIC r

≤ ≤
=

 
 

 Here we use three information criteria such as SIC, BIC and HQ already 

defined in chapter 2. Hence SIC = ( )2ln +p ln n, L− Θ  BIC = ( )
( )0.5pln

ln
n

L
n

− Θ +  and     

HQ = ( ) ( ) ln  p ln lnL n− Θ +      can be used to detect the inliers, where ( )L Θ the 

maximum likelihood function and p is the number of free parameters that need to 

be estimated under the model. We now illustrate this method using the simulated 

example discussed in the next section. Table (3.5.2) also presents the parameter 

estimates and the information criterion values.  

          

3.5 Simulation study 

 

 To Illustrate the method of identifying inliers we have generated 15 

independent random samples, where 5 of them are coming from normal distribution 

with parameter mean 4φ =  and variance 2

0σ = 2 and remaining ten observations 

from Normal distribution with parameter  mean 20θ =  and variance 2

1
σ  = 2. The 

sample values are 1.44852, 3.667636, 3.949972, 5.548854, 6.017887, 17.61194, 

19.26654, 20.09814, 20.23482, 20.36071, 20.64048, 21.08915, 21.26954, 22.53701 

and 24.23439. We note that ( ) ( ) ( )
1

0 58.4562 > 5 min 34.85999
r n

SIC SIC SIC r
≤ ≤

= = = .  
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Table 3.5.1.  The Likelihood and Information criterions 

r L SIC BIC HQ 

2 -38.1951 69.82944 -3.46217 -2.64648 

3 -34.5019 62.44302 -3.36048 -2.54479 

4 -31.2064 55.85195 -3.26009 -2.44439 

5 -20.7104 34.85999 -2.8501 -2.03441 

6 -26.054 45.54709 -3.07963 -2.26394 

7 -28.546 50.53121 -3.17098 -2.35529 

8 -30.997 55.43326 -3.25336 -2.43766 

9 -33.0941 59.62746 -3.31882 -2.50313 

10 -34.9391 63.31742 -3.37307 -2.55738 

11 -36.6837 66.80655 -3.4218 -2.6061 

12 -38.4748 70.38878 -3.46947 -2.65377 

13 -39.6796 72.79842 -3.5003 -2.68461 

          

 

 
Fig. 3.5.1.  Likelihood plot 

 

 

 

 
Fig. 3.5.2. BIC plot  
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A similar conclusion can be drawn in the case of other information criterions BIC and 

HQ also. Hence 5r =  and the estimates are ˆ 4.126574φ = ,
0

ˆ 1.803727σ =   

ˆ 20.73427θ = , and 
1

ˆ 1.783219σ =  respectively. The graphical representations of the 

likelihood and BIC plots are given in figure (3.5.1) and (3.5.2). 

 

 Next, we carried out an experiment with 1000 samples each of size 15 and 

number of inliers as 3, 4, 5 and 6 each with 3φ = and 6, 9, 12θ = and 15. The table 

(3.5.2) entitled power of SIC procedure presents the number of times the SIC 

procedure correctly identified the number of inliers in proportion to total number of 

samples. The values clearly indicate the effectiveness of the method in detecting the 

inliers. One of the important problem while detecting the inliers is the masking 

effect, where masking effect is defined as the loss of power due to wrong detection 

of more than one inliers.  

 

Table 3.5.2. Power of SIC procedure 

/θ φ  

r 

2 3 4 5 

3 0.570 0.720 0.700 0.550 

4 0.460 0.480 0.490 0.440 

5 0.460 0.460 0.460 0.462 

6 0.410 0.420 0.430 0.410 

 

 

3.6 Testing of hypothesis for inliers 

 

           After detection of number of inliers, it is necessary to test whether the 

methods used for detection are valid or not. Hence different tests are applied to test 

whether data truly represents our model of mixture of inliers and target population.  

 

3.6.1 Sequential Probability Ratio Test (SPRT) to detect number of inliers 

 We want to test the hypothesis whether sample observations belong to 

inliers population from ( )2

0,N φ σ  against hypothesis that it belongs to target 

population   from ( )2

1
, ,N θ σ  assuming 0 1.σ σ σ= =    
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0H : sample observations are taken from normal population with mean φ  

1H : sample observations are taken from normal population with mean θ  

 

We use SPRT test given as follows: 

 The  likelihood ratio 
m

λ  is given by 1

0

m

m

m

L

L
λ =  or equivalently  

           

( )( )
( )( )1

,
ln ln

,

m
i

m

i
i

f x

g x

θ
λ

φ=

=∑        

                    

( ) ( ) ( )
2 2

1

2

2

, 1,2,....
2

m

i

i

m x

m n

φ θ θ φ

σ
=

− + −

= =
∑

                               (3.6.1) 

 

For deciding number of inliers r, first arrange the observations in ascending order 

and then we continue to take likelihood ratio for m= 1, 2…. ,n  by including 

observations one by one till we reject H0. That is  

           

           If   ( )
=

≤∑
1

ln
m

i

i

z B then accept H0 and take the next observation. 

 

 and    

 

           If    ( )
1

ln
m

i

i

z A
=

≥∑  reject H0 and stop.  

 

The corresponding value of m represents the first observation from target 

population and number of inliers ˆ 1= −r m .  A and B are given as 

 

1
,

1
B A

β β

α α

−
= =

−
                                                                              (3.6.2) 

 

where α   represents probability of type I error  and β   represents probability of 

type II error.   

 

Test criteria for rejection of   H0   is     

 

             ( ) ( )
( )

2

1

ln ln ln
2

m

m i

i

m
A x A

σ
λ φ θ

θ φ=

> ⇒ > + +
−

∑                                    (3.6.3) 



 - 74 -

 

Corresponding value of m for which H0 was accepted last becomes number of inliers 

r.  The criteria is applied in example in section (3.8). 

 

3.6.2   Modified likelihood ratio test 

 

The study of the modified likelihood approach to finite normal mixture 

models with a common and unknown variance in the mixing components and a test 

of the hypothesis of a homogeneous model versus a mixture on two or more 

components was done by Chen and Kalbfleisch (2005).  Here we use it to study the 

test for hypothesis  

 

0H : sample observations are taken from single target normal population with mean

θ  

1H : sample observations are taken from mixture of inliers with mean φ  and target 

distribution with mean .θ   

 

We define ( ) ( ){ }2

1 : ,M F x x N θ σ= ∼  i.e. all observations come from target 

population. ( ) ( ) ( ) ( ){ }2 1 2
1M F x p F x pF x= = − +

  
i.e. X comes from mixture of  two 

Normal distribution where F1(x) and F2(x) are distribution functions of inliers and 

target population, respectively, as defined in previous section. 

 

Then the null hypothesis proceeds with testing H0 : p = 1 against  H1 : p < 1  or 

in other words a test of the hypothesis 
1X M∈  versus 

2.X M∈  The usual likelihood 

(LRT) statistics is given by  

 

           

( ) ( )
, , ,

1 2

ln 2 sup ln , sup ln , ,
X M X M

X X
θ φ θ

λ θ φ θ
∈ ∈

 
= − 

                                            (3.6.4) 

 

 Due to non-regularity of the finite mixture models ln λ does not have usual 

chi-squared distribution.  Therefore we proceed with a modified likelihood approach 

where the quantity ( )ln , , Xφ θ is replaced as 

                                                                  
  

            
( ) ( ) ( ){ }ln , , ln , , ln 4 1m X X c p pφ θ φ θ= + −                                           (3.6.5) 
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where c is a positive constant. The purpose of the penalty term ( ){ }ln 4 1c p p−  is to 

restore regularity to the problem by avoiding estimate of p on or near the boundary. 

Let ( )1
ˆ ˆln , Xθ

 
maximizes ( )ln ,m Xθ

 
for 1X M∈

 
and ( )2

ˆ ˆ ˆln , , Xφ θ  maximizes 

( )ln , ,m Xφ θ for 
2X M∈ . Thus modified likelihood ratio statistic is 

 

 
( ) ( )1 2

ˆ ˆ ˆ ˆˆ ˆln 2 ln , ln , ,X Xλ θ φ θ = −
 

                                                    (3.6.6) 

 

The null hypothesis is rejected for values of  ˆln λ  that are sufficiently large. Here ˆlnλ   

follows 
( )
2

2
χ  distribution. 

 

3.6.3 Most  powerful  test for detection of inliers 

 

          The most powerful test for testing the hypothesis as given in (1.6.1) whether 

the sample is from single population, we frame the hypothesis with common 

parameter µ  

 

  0 :H µ = φ
 
 i.e sample observations are  from inliers normal population 

  1 :H µ = θ
  
i.e sample observations are  from target normal population  

 where μ  is the mean of normal population and .θ > φ    

 

Then the most powerful test is as given below 

 

( )

( )
( )

( )
( )

1

0

1

0

1,

0,

P x
C

P x
x

P x
C

P x

α

α

ψ


>


= 
 <



                                                                (3.6.7) 

 

which can be simplified as 

             

 

                     ( ) ( )
( )2

1

1,
2

0, .

n

i

i

nC
x

x

o w

α θ φσ

ψ θ φ=

 +
> +

= −



∑
                                               (3.6.8) 
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where Cα  is such that the test attains level of the test when H0 is true. Thus we 

reject H0 for large values of the 
1

n

i

i

x
=
∑  with  .C zα αφ σ= +

 

 

3.6.4 F- test to test whether data contains inlier observations 

 

 To test whether the data is taken from single normal population or from 

mixture of inlier and target (both normal) distributions, we proceed with the F-test 

as follows 

 

0 1 2: , ,.....
n

H x x x  are independent and follows ( )2,N θ σ  

( ) ( ) ( )1 1 2
: , ,.....

r
H x x x follows ( )2

0,N φ σ and   
( ) ( ) ( )1 2

, ,.....
r r n

x x x
+ +

follows ( )2

1,N θ σ  

        where  .φ θ<  

 

 Then test statistic obtained by Titterrington(1985) gives the maximum ratio 

of between sum of squares to within sum of squares as        

                                                                                                                                                                                                                               

 
        

( )
( ) ( ) ( )

2

1 2 1 2

max 2 2

1 1 2 2 1 2

max

1 1

n n x x
F

n s n s n n

−
=
 − + − + 

                                     (3.6.9) 

 

where the maximum is over all partitioning of data set into two groups..  

 

 For detection of inliers, we find Fmax   for all possible values of r =1, 2,...n-1.  

The number of inliers r will be detected for which  corresponding  value of Fmax  is 

maximum. 

 

 

 

 3.7 
  
  Masking effect on tests for inliers 

 

 Let 1 2, .... nX X X  be sequence of n independent random variables with some 

known FTD. Under the null hypothesis H0 these random variables are identically 

distributed with df F whereas under alternative hypothesis H1, discordant 
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observations (inliers) arise from population df G. The df of G is assumed to be of 

same form as that of F with a change in location or scale parameter by an unknown 

quantity λ. This parameter is called discordancy parameter, measuring the degree of 

discordancy. Under H1 it is assumed that one of the observation follows df G. Let T(x) 

be a test statistics to detect a single discordant observation with critical region 

A(n,α).  Due to lack of information about the number of discordant observations 

present in the sample, however, the true situation may not be specified by H1 and 

more than one discordant observation may be present in the sample. In such cases  

test statistics T(x) suggested for detection of a single discordant, may fail to detect a 

single inlier as discordant even when additional discordant observations are present 

in the sample. Such a phenomenon is called masking effect.  

 

 All tests for detecting a single inlier, H0 against H1 are based on symmetric 

functions of observations or on functions of order statistics. In the k-inlier model,  

the joint distribution of order statistics ( ) ( ) ( )1 2
, ,....

n
X X X  is same as that  under the 

exchangeable model introduced by Kale (1975) where it is assumed that any set 

1 2
, ,....

i i i
k

X X X has priori equal probability of being independent and identically 

distributed as Gλ  and the remaining (n-k) observations are distributed as F, the 

distribution function of target population.  

 

 In exchangeable model ( ) ( ) ( )1 2
, ,....

n
X X X  has minimum posterior probability of 

coming from Gλ  such that 
G

F

λ∂

∂
 is the decreasing function in X. The limiting masking 

effect by Bendre and Kale (1985) can be studied by assuming ( ) ( ) ( )1 2
, ,....

k
X X X   

correspond to observation coming from ( )2,N µ λσ σ−  and then taking limit as

λ →∞ . 

( ) ( ) ( )( ) ( )
( )

( ) ( )1 2

1 1

! !
, ....

1,2,3.......

k n

i in

i i k

k n k
h x x x g x f x

k
λ

λϕ = = +

−
= ∏ ∏   ,                              (3.7.1) 

                                                            ( ) ( ) ( )1 2
....

n
x x x−∞ < < < < ∞
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 Also f and gλ  are probability density functions of ( )2,N µ σ and 

( )2,N µ λσ σ−  respectively. Thus masking effect on any test statistics T(x) with 

critical region A(n,α), for Labelled slippage model Lsk  for k ≥ 1, is obtained as 

             

( ) ( ) ( ) ( ) ( )( ) ( )
( )

( )1 , 2 ,...... 1

,

lim , / lim .......sk n n

A n

P T x A n L h x x x dx dx
λ λ

α

α
→∞ →∞

∈ =   ∫           (3.7.2) 

 

 Under  Lsk as ( ) ( ) ( )1 2
, , ,.....

n k n k n
X X Xλ − + − +→ ∞  behave as order statistics of a 

sample of size (n-k) from ( )2,N µ σ  and ( ) ( ) ( )1 2
, ,.....

k
X X X  diverge to zero. However if  

( ) ( ) ( )( )1 2
, ,.....

k
T x x x  is a function whose distribution does not depend on λ then T 

converges in distribution to a proper random variable as λ →∞ . 

 

3.7.1. Limiting masking effect 

 

 For single inlier in left tail, that is to test whether ( )1
x  is an inliers, Grubbs 

proposed a test proposed by Bendre and Kale (1987). 

 

( )( )

( )( )

2

2

2

1

,

n

ni

i

n

i

i

x x

G

x x

=

=

−

=

−

∑

∑

                                                                    (3.7.3) 

 

where                    
( )

2

1

n

i

i
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x

x
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∑
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i
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x

x
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The maximum studentized residual T is given by  
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where the sum is over  i = 2,3……n. Since under 1s
L  corresponds to the one inlier 

observation coming from  ( )2,N µ λσ σ−  and 
( ) ( )( )
( ) ( )( )

2

2

1

0
i n

n

x x

x x

−
→

−
 in probability as 

λ →∞  for i =2,3,4……..n and therefore 

1
21n

T
n

− 
→   

 in probability as λ →∞ . 

Hence as λ →∞ ,  ( )1lim 1
G

P λ =  where ( )1

G
P λ  is the power function of Grubb’s 

test. To study  ( )2 ,lim lim |
G

n skP P T t Lαλ = <    as λ →∞ we write 
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22
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Y k

n n

−
=

 
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∑
∑

                                                                    (3.7.5) 

 

sums are over i =1, 2,…n and where  

 

( )

( ) ( )( )
( ) ( )( )1

1,2,......
i k

i

n k k

x x
Y i n

x x
− +

−
= =
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                                          (3.7.6) 

 

with ( )1n k
x

− +
′   is the mean of  

( ) ( ) ( )1 2
, ,.....

k k n
x x x

+ +
 and kx  is the mean of 

( ) ( ) ( )1 2
, ,.....

k
x x x  

Therefore ( ) 0
i

Y →  in probability for i =1, 2…..k because the numerator of  
( )i

Y  is a 

proper r.v., while denominator diverges to infinity. For i =1, 2,……k,  we observe that   

( )

( ) ( )( )
( ) ( )( )

1

1

1
i n k

i

n k k

x x
Y

x x

− +

− +

′−
− =

−
 is such that the numerator has a distribution independent of 

λ and therefore converges to a proper random variable, but denominator diverges to 

infinity and hence  
( ) 1
i

Y →
 
in probability as  .λ → ∞

 
Therefore under Lsk    as 

λ →∞ ,           

                         ( )
1
2n k

T
nk

− 
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 
  

and      
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        ( )
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 Thus Grubb’s test is free from the limiting masking effect for 
( )

1
2

,n

n k
t

nk
α

− 
≥ 

 
 

and the performance of the test depends on the sample size n and the number of 

inliers. In general 
,n

t α  is a decreasing function of the sample size and hence for large 

n with moderate k the test is free from the limiting masking effect. Table (3.7.1), 

presents the maximum number of inliers in a sample of size n upto which Grubb’s 

test is free from the limiting masking effect. 

 

Table. 3.7.1 Maximum inliers accommodated by Grubb’s test 

α n =10 n = 15 n = 20 n = 25 

0.01 1 1 1 2 

0.05 1 2 2 2 

0.10 1 2 2 3 

 

3.8   Illustrations 

3.8.1   Vannman’s data 

 

    This example is based on a wood drying experiment.  The data of Schedule 1 

and 2 of Experiment 3 conducted by Vannman (1991). In both the case n=37.  For 

data refer appendix.   

 

 Table (3.8.1) presents the estimates of the parameters of target distribution 

under instantaneous failure, early failures and nearly instantaneous models.  
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Table 3.8.1 Estimation for instantaneous failure, early failures and nearly 

instantaneous failures 

Schedule Instantaneous Early failures Nearly  instantaneous 

 

 

1 

δ =1.5 

θ̂  4.867917 7.352 5.076087 

1σ̂  4.398309 3.745867 4.374601 

 

2 

δ =0.9 

θ̂  2.439 3.919167 3.0425 

1σ̂  2.606334 2.390099 2.581076 

 

 

3.8.2  Rainfall data 

 

 The data, collected by Amutha and Porchelvan (2009), represents average 

monthly rainfall (in mm) during year 2004 and 2006 for the estimation of surface 

runoff in Malattar Sub-watershed which is a major tributary of Palar river. The 

watershed experiences tropical monsoon climate with normal temperature, 

humidity and evaporation throughout the year. The data was published in Journal of 

the Indian Society of Remote Sensing. For our illustration’s purpose we reproduce 

two sets of data from the above paper.  

 

Set 1 (2004) : 3.40, 0.00, 0.00, 15.80, 232.80, 8.80, 123.20, 47.00, 154.00, 103.20,   

                       89.80 and 12.20. 

  

Set 2 (2006) :  0.00, 0.00, 21.40, 60.20, 53.86, 93.20, 27.80, 45.40, 205.40, 101.20,  

                         128.20 and 0.00.  

 

 We have combined the two sets together and arranged in ascending order to 

obtain inlier detection discussed in section (3.3), (3.4) and (3.6). Table (3.8.2), 

represents the value of  inlier numbers r, likelihood, SIC(r), BIC(r) HQ(r) and modified 

test statistics  for different values of  r.   
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Table 3.8.2.  Detection of number of inliers 

r Likelihood SIC BIC HQ 
ˆlnλ  

2 -39.796 85.9489 -3.5514 -2.5275 7.58094 

3 -36.174 78.7048 -3.4559 -2.4321 14.8250 

4 -32.756 71.8689 -3.3567 -2.3328 21.6609 

5 -30.897 68.1503 -3.2982 -2.2744 25.3795 

6 -28.634 63.6245 -3.2222 -2.1983 29.9053 

7 -27.532 61.4194 -3.1829 -2.1591 32.1104 

8 -25.643 57.6421 -3.1119 -2.0880 35.8877 

9 -23.759 53.8748 -3.0356 -2.0117 39.6550 

10 -27.474 61.3047 -3.1808 -2.1570 32.2251 

11 -28.165 62.6857 -3.2057 -2.1818 30.8441 

12 -29.31 64.9769 -3.2455 -2.2217 28.5529 

13 -29.606 65.5676 -3.2555 -2.2317 27.9622 

14 -30.516 67.3886 -3.2858 -2.2620 26.1412 

15 -31.102 68.5595 -3.3048 -2.2810 24.9702 

16 -32.072 70.5005 -3.3356 -2.3117 23.0293 

17 -33.225 72.8055 -3.3709 -2.3470 20.7243 

18 -35.026 76.4082 -3.4237 -2.3998 17.1216 

19 -36.531 79.4180 -3.4657 -2.4419 14.1118 

20 -37.807 81.9707 -3.5001 -2.4762 11.5591 

21 -39.347 85.0499 -3.5400 -2.5161 8.47988 

22 -40.865 88.0857 -3.5778 -2.5540 5.44412 

 

 Table (3.8.2) gives us SIC(0) = 99.45467 > SIC(9) = min SIC(r) = -23.759. The 

likelihood is maximum for r = 9.  The corresponding estimates of the parameter are 

φ̂  = 0.72778, σ0 = 0.45686 and θ̂  = 7.352 , σ1 = 3.74587.  For modified likelihood ratio 

test also maximum ˆlnλ  corresponds to r = 9. We observe that, SIC(0) = 183.2181 > 

SIC(6) =  min SIC(r) = 173.5757 . Also the likelihood is maximum for r = 6.  The 

corresponding estimates of the parameter are φ̂  = 14.9, σ0 = 8.78886 and θ̂  = 

111.182, σ1 = 58.0748.  For modified likelihood ratio test also maximum ˆlnλ  

corresponds to r = 6.  For  SPRT,  we  test   H0: 15φ =   against H0: 15.φ >  For which  

we considered  (α,  β) =(0.02, 0.05). Then ln A = -2.5647 and   ln B = -2.9755, and the 

computed statistics value is  
( )

( )
2

ln
2

m
A

σ
φ θ

θ φ
+ +

−
= 101.2454 . 
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Table 3.8.3 Estimates of parameters and detection of  r 

r Likelihood SIC BIC HQ 

 
ˆlnλ  ( )

1

m

i

i

x
=
∑  

2 -91.4964 188.8817 91.57392 91.49643 -5.663600 12.200 

3 -88.8329 183.5547 88.91039 88.83290 -0.336540 24.400 

4 -86.5127 178.9142 86.59016 86.51268 4.303914 40.200 

5 -84.9457 175.7802 85.02315 84.94566 7.437946 61.600 

6 -83.8434 173.5757 83.92090 83.84341 9.642444 89.400 

7 -85.0201 175.9291 85.09758 85.02010 7.289072 134.80 

8 -84.4475 174.7838 84.52495 84.44746 8.434343 181.80 

9 -83.9214 173.7317 83.99890 83.92141 9.486446 235.66 

10 -84.2590 174.4069 84.33647 84.25899 8.811291 303.66 

11 -85.9395 177.7679 86.01701 85.93953 5.450209 393.56 

12 -86.7336 179.3560 86.81104 86.73355 3.862165 486.76 

13 -87.4507 180.7903 87.52822 87.45073 2.427797 587.96 

14 -87.6541 181.1971 87.73158 87.65410 2.021071 691.16 

15 -88.6952 183.2794 88.77273 88.69525 -0.061230 814.36 

16 -89.1081 184.1052 89.18562 89.10814 -0.887010 942.56 

17 -89.4825 184.8538 89.55995 89.48247 -1.635670 1096.5 

 

 

 Hence we reject H0 for first time when inlier r is 7 and conclude that number of 

inliers in the above data set, see table (3.8.3) is   ˆ 6.r =  
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Chapter 4 

 
 

 

 

 

Inliers  estimation  in  Weibull  models  

  

 

 
 

4.1  Introduction 

 

 One of the most important and widely used distributions to study lifetime of 

any component is Weibull distribution. The Weibull distribution is appropriate to 

describe the variation in the lifetimes of many different types of components.  It has 

been used as model of lifetimes with diverse types of items such as Vacuum tubes, 

ball bearings and electrical insulation.  In survival analysis, the Weibull distribution is 

better suited than the Gaussian distribution, because, it is defined only for positive 

time (engines fail after assembly), the mathematical operations particular to 

reliability theory are simpler (e.g. the function is easy to integrate analytically) and 

the shape of the function is more flexible, it ranges from a close Gaussian 

resemblance, to a skewed Gaussian, to a pure exponential distribution. It is also 

widely used in biomedical applications for e.g. in studies on time to occurrence of 

tumors in human population or in laboratory animals etc. It includes exponential 

distribution as special case. Also exponential distribution has been widely used as 

model in areas ranging from studies on the lifetimes of manufactured items to 
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research involving survival or remission times in chronic diseases. In all the above 

examples we can get inliers and target observations as discussed in chapter 1.  

 

As discussed in the previous chapters, here also our objective is to study the 

inliers and their detection procedure in Weibull distributions. This chapter deals with 

competition between two Weibull mixture models representing inliers and the 

target distribution. 

 

If we denote ( )1 2, ....
n

X X X X=
 

as realizations of a life test, then  

( )I T
X X X= ∪  where I

X  is set of inlier observations (instantaneous and early 

failures) and T
X  is set of observations coming from a target population. Since failure 

pattern of this situations usually discard the assumption of unimodal distribution, 

the usual method of modeling and inference procedures may not be accurate in 

practice. The prior objective in such situations is to decide how many inliers are 

present in the underlying model, and then study their inferences.  

 

 This article is organized as follows: In section (4.2) and (4.3), discussion of the 

UMVUE and identified inliers model, assuming both inlier distribution and target 

distribution as Weibull distribution is considered. The inference procedures when 

some of the parameters are known and unknown are considered. Section (4.3.3) 

deals with the inlier detection for labeled slippage model. The detection using 

information criterion, goodness of fit and data analysis are given in the subsequent 

sections.  

 

4.2 Uniformly minimum variance unbiased estimator  (UMVUE ) 

 

The UMVUE of mixture density of instantaneous and positive observation 

taken from Weibull distribution is obtained in this section. Based on above families a 

new family of df  ( ){ }; , : 0, ,0 1F x p x pθ θℑ = ≥ ∈Ω < <  is defined, such that  

 

( )
( )

( )

1 ; , 0
; ,

; , 0

p pf x x
f x p

pf x x

θ
θ

θ

− + =
= 

>  
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Hence the pdf of mixture family of instantaneous and Weibull distribution is 

obtained as  

  ( ) ( ) ( )
( )1

1 1
; , 1 e

x
f x p p p x

δβδ δ β θθ βθ
−

− − − = −   
            

                       

               

( )
( )

( )
( ) ( )1 11 1

exp

1

x p
x

p

p

δ
βδ δββ θ

θ

θ

− −− − 
−    

 =
 
 
 

                                  (4.2.1) 

 

which is a member of exponential family with  ( ) ( ) ( )1 , exp ,a x x h
ββ θ θ−= = −

( )
1

g θ
θ

=   and ( )d x x
β= . We have ( )

0

1
x

z x
βδ

>

= −∑ and 
0

j

x

n r δ
>

− =∑ which are 

jointly complete sufficient statistics for (θ , p). Since x
β

 has exponential distribution 

with parameter .θ  The UMVUE of mixture density given by Singh (2007) is defined as 
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which simplifies in Weibull as  

 

( )
( )

21

, 0

, ,
1

1 , 0 , 1

rx

n r
x

n
z r n

r r x x
x z n

nz z

β β
β

ϕ
β

−−

−
=


= 

−   − < < >   

                      (4.2.2) 

 

If 1β =   in equation (4.2.2) one gets UMVUE of mixture density of 

instantaneous and positive observation from exponential distribution as  
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4.3  Weibull identified inliers model 

 

Weibull distribution is used medical studies dealing with fatal diseases, where 

one is interested in the survival time of individual with the disease, measured either 

from the date of diagnosis or some other starting point. It is possible that patient 

dies without getting treatment or has smaller survival rate than target group which 

has on average longer survival rate. The inlier detection is done for the following two 

models: 

 

Model-1: Shape parameter β  is same for both inliers and target distribution. 

Model-2: Scale parameter θ  is same for both inliers and target distribution. 

 

4.3.1    Inlier detection when the shape parameter is identical  

 

If we take the distribution function of inliers as 

 

( ) ( )1 exp , 0, 0, 0.G x x x
βφ φ β= − − > > >                               (4.3.1) 

 

and the distribution of target population is 

 

( ) ( )1 exp , 0, 0, 0.F x x x
βθ θ β= − − > > >                                         (4.3.2) 

 

 Then the likelihood of model can be written as 

 

( ) 1 1

1 1

| , ,
r n

x x

i i r

L x x e x e
β ββ φ β θφ θ β βφ βθ− − − −

= = +

= ∏ ∏
 

 

The estimates of the parameters are found by solving the following likelihood 

equations: 

 

1

ln
0 0

r

i

i

L r
x

β

φ φ =

∂
= ⇒ − =

∂
∑

 
 

1

ln
0 0

n

i

i r

L n r
x

β

θ θ = +

∂ −
= ⇒ − =

∂
∑   

and 
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1 1 1

ln
0 ln ln ln 0

r n n

i i i i i

i i r i

L n
x x x x x

β βφ θ
β β= = + =

∂
= ⇒ + − − =

∂
∑ ∑ ∑  

 

As discussed earlier, the instantaneous failures are already identified and 

hence the proportion of such observations is not considered in the model. Using 

Newton Raphson method the estimates of  ,φ θ  and β   can be found.  

 

4.3.2  Inlier detection when the scale parameters are identical  

 

Here we consider the detection of inliers when shape parameters of both 

inlier and target distribution as same. The failure distribution for inliers is assumed to 

be 

 

( ) ( )1 exp , 0, 0, 0.G x x x
βθ θ β= − − > > >                                     (4.3.3) 

 

and the distribution of target population is 

 

( ) ( )1 exp , 0 , 0.F x x xθ θ= − − > >                                                      (4.3.4) 

 

The likelihood estimates in this case are the solutions of  

 

1 1
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L n
x x

β

θ θ = = +

∂
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∂
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1 1

ln
0 ln ln 0
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i i i

i i

L r
x x x

β

β β= =

∂
= ⇒ − − =

∂
∑ ∑

 

    

 

Since all the likelihood equations are non linear, they may be solved using Newton 

Raphson method, to get estimates of  θ  and β .   

 

4.3.3   Labeled slippage inliers model for Model-1 

 

With ( )g x  and ( )f x
 

as described above, the likelihood under labeled 

slippage model referring to section (2.5) and substituting in equation (2.5.1), gives 
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and the corresponding likelihood equations are 
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and 
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r n n
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i i r i

L n
x x x x x

β βφ θ
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∂
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Here (4.3.5) can be solved to get the estimate of p as ( )0
ˆ / .p n r n= −  The equations 

(4.3.6) to (4.3.8) contains gamma and digamma functions. Solving (4.3.6) and (4.3.7) 

simultaneously we get the estimate of φ  and θ . The parameter p is orthogonal to

( ), .φ θ ′ Now 
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The result from Abramovitz and Stegun (1965)  is 
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Using the above results,  one obtain the likelihood equations as 
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Now (4.3.8), (4.3.10) and (4.3.11) can be solved using Newton-Raphson method to 

get the estimates of  φ , θ  and β . 

 

  4.4     Inliers detection using information criterion   

 

 Here three information criteria are used  to detect inliers, which are already 

discussed in chapters 2, section (2.5) such as Schawarz’s Information criterion                                

( ( )2ln lnSIC L p n= − Θ + ), the Schawarz’s Bayesian Information criterion                         

( ( )
  

ln +0.5 
p ln n

BIC L
n

= − Θ ) and the Hannan-Quinn criterion defined as                         

( ( ) ( )   HQ lnL p ln ln n= − Θ +     ). Here L(Θ) the maximum likelihood function and p is 

the number of free parameters that need to be estimated under the model. Below 

we develop the procedure for SIC scheme. The following model of no inliers for 

Model-1 is given by     
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n n
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SIC n n x x n
βθ β θ β

=

= − − + − − +∑ ∑                            (4.4.1) 

 

and the corresponding model with r inliers is 
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Similarly, for Model-2, the model with no inliers is    

 

  
( ) ( )

1

0 2 ln 2 ln
n

i
SIC n x nθ θ= − + +∑                                                                    (4.4.3) 

 

and corresponding model with r inliers is 
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i i i
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SIC r n r x x x n
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The estimate of inliers say r is such that ( ) ( )
1
min

r n
SIC r SIC r

≤ ≤
= , where , 1 1r r n≤ ≤ − , 

is the unknown index of the inliers. According to the procedure, the Model with no 
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inlier is selected  if ( ) ( )
1 1

0 min
r n

SIC SIC r
≤ ≤ −

< . And the Model with r inlier is selected if 

( ) ( )
1 1

0 min .
r n

SIC SIC r
≤ ≤ −

>   

 

4.4.1   Simulation study 

 

 To illustrate the method of identifying inliers model the random samples of 

size 15 have been generated from Weibull distribution. The data under two models 

are as follows: 

 

Model-1: Five observations are generated from Weibull with parameter 0.50φ =  

and 1.1β =  and remaining ten observations from Weibull distribution with 

parameter 0.25θ =  and 1.1β = . The ordered observations are 0.1475, 0.4076, 

0.5435, 0.676, 1.0885, 2.662, 2.662, 2.7381, 2.9781, 3.1589, 4.1746, 4.3598, 4.8724, 

9.5612 and 10.2065. 

 

Model-2: Here five observations are generated from Weibull with parameter 0.1θ =

and 3β = . The remaining ten observations from exponential distribution with 

parameter 0.1.θ =  The ordered observations are 0.7418, 1.3926, 1.4866, 1.5082, 

1.5279, 2.1699, 3.0111, 3.1058, 3.4249, 5.6212, 6.5393, 9.1629, 10.2165, 22.0727 

and 32.1888. 

 

  The identification is done as follows we evaluate for each fixed r the 

maximum likelihood equation ˆ
r

L , and then consider r̂  being that value of r for which 

likelihood is maximum. The estimates are presented in table( 4.4.1) and (4.4.2) for 

model-1 and model-2 respectively. The SIC(0) under Model-1 and Model-2 are 

74.22128 and 93.55538  respectively. BIC and HQ  are also found for both the models 

with the following values. 
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Table 4.4.1. The Likelihood, parameter estimates and information criterion for 

Model-1. 

r φ̂  θ̂  β̂  L SIC BIC HQ 

1 11.9537 0.171279 1.29631 -30.204 68.53215 30.47481 33.19269 

2 5.92071 0.123884 1.441 -28.4621 65.04835 28.73291 31.45079 

3 4.63278 0.081892 1.62678 -26.5204 61.16495 26.79121 29.50909 

4 3.87879 0.050043 1.84369 -24.4484 57.02095 24.71921 27.43709 

5 2.31486 0.039079 1.92499 -23.6473 55.41875 23.91811 26.63599 

6 0.864944 0.074318 1.55034 -26.8847 61.89355 27.15551 29.87339 

7 0.615074 0.070581 1.53585 -27.5234 63.17095 27.79421 30.51209 

8 0.48757 0.061317 1.56115 -27.6898 63.50375 27.96061 30.67849 

9 0.400866 0.052183 1.58932 -27.7814 63.68695 28.05221 30.77009 

10 0.336613 0.042551 1.62689 -27.7629 63.64995 28.03371 30.75159 

11 0.293833 0.042395 1.56627 -28.4133 64.95075 28.68411 31.40199 

12 0.260573 0.03771 1.53975 -28.8061 65.73635 29.07691 31.79479 

13 0.235881 0.031794 1.50512 -29.215 66.55415 29.48581 32.20369 

 

 

 

Table 4.4.2. The Likelihood, parameter estimates and information criterion for 

Model-2. 

r β̂  θ̂  L SIC BIC HQ 

2 6.25818 0.136196 -41.0662 87.5485 41.15647 42.06243 

3 6.25055 0.12443 -38.5097 82.4355 38.59997 39.50593 

4 6.32895 0.112701 -35.8889 77.1939 35.97917 36.88513 

5 6.44645 0.101003 -33.1883 71.7927 33.27857 34.18453 

6 4.47787 0.099347 -33.5527 72.5215 33.64297 34.54893 

7 3.25159 0.096469 -34.7522 74.9205 34.84247 35.74843 

8 3.03171 0.086918 -34.0851 73.5863 34.17537 35.08133 

9 2.8828 0.07774 -33.4219 72.2599 33.51217 34.41813 

10 2.28964 0.078485 -35.5625 76.5411 35.65277 36.55873 

11 2.06388 0.073388 -36.518 78.4521 36.60827 37.51423 

12 1.80399 0.072127 -38.2551 81.9263 38.34537 39.25133 

13 1.68415 0.067832 -39.2468 83.9097 39.33707 40.24303 

  

   

 One can observe  that the likelihood is maximum and ( )
1 1
min

r n
BIC r

≤ ≤ −

( ) ( ) ( )
1 1
min 5 0 ,

r n
SIC r SIC SIC

≤ ≤ −
= <  and ( )

1 1
min

r n
HQ r

≤ ≤ −
 corresponds to 5r = , which was 

expected. The corresponding estimates of the parameters are shown in the tables 

(4.4.1) and (4.4.2). The graphical representations of the likelihood plot are given in 

figure (4.4.1) and (4.4.2). 
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Fig. 4.4.1. The likelihood plot for Model-1  

 

 

 

 
Fig. 4.4.2. The likelihood plot for Model-2 

 

 

 

4.5 Data Example: 

 

 The example is based on Vanmann’s (1991) data on drying of woods under 

different experiments and schedules. It is the example given in appendix, numbered 

E-3 S-1. 
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Under model-1 : The computed value SIC(0) = 133.2468 > SIC(9) = min SIC (r) = 

98.46836. Also the likelihood is maximum for ˆ 9r = . The corresponding estimates of 

the parameters are  φ̂  =1.40087, β̂  = 1.96982 and  θ̂ =  0.015968 as given in the 

table (4.5.1) below. 

 

Under Model-2: The computed value SIC(0) = 130.3241 and > SIC (13) = min SIC (r) = 

125.7627. Hence value of  r̂ = 13. Similarly other information criteria and likelihood 

function gives us the same result. The estimates of the parameters are given in table 

(4.5.2). 

 

 

Table 4.5.1. Estimates of parameters, likelihood, information criterion under M1. 

r φ̂  θ̂  β̂  L SIC BIC HQ 

1 17.0411 0.15391 1.1227 -58.6091 126.7524 58.67531 59.76537 

2 6.62578 0.125022 1.20295 -56.8636 123.2614 56.92981 58.01987 

3 5.61105 0.092835 1.32332 -54.588 118.7102 54.65421 55.74427 

4 5.13406 0.06591 1.46092 -52.1563 113.8468 52.22251 53.31257 

5 3.87184 0.050274 1.5623 -50.4173 110.3688 50.48351 51.57357 

6 3.14867 0.036469 1.68353 -48.5128 106.5598 48.57901 49.66907 

7 2.24189 0.029789 1.74933 -47.4397 104.4136 47.50591 48.59597 

8 1.77073 0.021963 1.85802 -45.9382 101.4106 46.00441 47.09447 

9 1.40087 0.015968 1.96982 -44.4671 98.46836 44.53331 45.62337 

10 0.789435 0.029368 1.67797 -47.7531 105.0404 47.81931 48.90937 

11 0.583143 0.032049 1.61366 -49.0733 107.6808 49.13951 50.22957 

12 0.458334 0.036603 1.53082 -50.6362 110.8066 50.70241 51.79247 

13 0.383572 0.037393 1.49579 -51.5492 112.6326 51.61541 52.70547 

14 0.332632 0.040501 1.43709 -52.7273 114.9888 52.79351 53.88357 

15 0.296617 0.041975 1.39664 -53.6335 116.8012 53.69971 54.78977 

16 0.271311 0.04458 1.34706 -54.6304 118.795 54.69661 55.78667 

17 0.252993 0.047369 1.29805 -55.6037 120.7416 55.66991 56.75997 

18 0.240966 0.051993 1.23932 -56.7067 122.9476 56.77291 57.86297 

19 0.230694 0.054786 1.19563 -57.6047 124.7436 57.67091 58.76097 

20 0.221885 0.055836 1.16131 -58.3575 126.2492 58.42371 59.51377 

21 0.215411 0.05678 1.12541 -59.1278 127.7898 59.19401 60.28407 

22 0.210003 0.055551 1.09305 -59.8413 129.2168 59.90751 60.99757 
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Table 4.5.2. Estimates of parameters, likelihood, information criterion under M2. 

r β̂  θ̂  L SIC BIC HQ 

2 2.45514 4.85387 -65.4516 137.2593 65.51781 67.76414 

3 2.14020 4.84449 -64.8678 136.0917 64.93401 67.18034 

4 1.94013 4.83674 -64.2642 134.8845 64.33041 66.57674 

5 1.84068 4.83136 -63.5878 133.5317 63.65401 65.90034 

6 1.76655 4.82876 -62.9371 132.2303 63.00331 65.24964 

7 1.73299 4.83517 -62.2321 130.8203 62.29831 64.54464 

8 1.70401 4.84410 -61.5473 129.4507 61.61351 63.85984 

9 1.68347 4.85958 -60.8549 128.0659 60.92111 63.16744 

10 1.60145 4.97633 -60.3106 126.9773 60.37681 62.62314 

11 1.53127 5.07469 -59.8869 126.1299 59.95311 62.19944 

12 1.43583 5.16651 -59.7701 125.8963 59.83631 62.08264 

13 1.36456 5.22507 -59.7033 125.7627 59.76951 62.01584 

14 1.28113 5.24744 -59.9096 126.1753 59.97581 62.22214 

15 1.21049 5.23142 -60.1883 126.7327 60.25451 62.50084 

16 1.13620 5.16086 -60.6704 127.6969 60.73661 62.98294 

17 1.06222 5.02958 -61.3154 128.9869 61.38161 63.62794 

19 0.90209 4.52081 -63.2469 132.8499 63.31311 65.55944 

20 0.82158 4.16407 -64.5197 135.3955 64.58591 66.83224 

21 0.72684 3.69465 -66.283 138.9221 66.34921 68.59554 

22 0.61228 3.11046 -68.9122 144.1805 68.97841 71.22474 

 

    We can observe that, for mixture of two different distributions, we do not 

get same number of inliers. Now the next problem is to decide which of the model 

discussed above  is better ?  

 

 
Fig. 4.4.3. The graph of )1()([ +< ii XXP ] under model-1 
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4.6 Inlier detection using conditional  distribution  of  total  lives 

 

 This test makes use of basic properties of Poisson process. If one observes 

Poisson process for a fixed time T and if say n events occur in [0,T] at times 

( ) ( ) ( )1 2
0 .....

n
x x x T≤ ≤ ≤ ≤  then these times can be considered as ordered observation 

on a random variable uniformly distributed over [0,T]. Let  ( )ix =  life time of i
th

 

ordered unit. Then 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2
, ........

n n n n
P x X x x x X x x x X x x ≤ ≤ + ∆ ≤ ≤ + ∆ ≤ ≤ + ∆  

                                   ( ) ]| 0,n eventsoccur T =
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i
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e
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λ

λ
λ
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−

−
=

∆
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( ) ( ) ( ) ( )1 2

1

!
, .....

n

i nn

i

n
x x x x

T =

= ∆ ≤ ≤∏                                       (4.6.1) 

 

 For large value of n, x  is approximately normal with mean 
2

T
 and variance 

2

12

T

n
. It can be used to test, for large sample, whether or not the data is drawn from 

Poisson process. One can also show that if one observes a Poisson Process until 

exactly n events occur, then (n-1) r.v. can be considered as uniformly distributed 

over ( )( )0, .
n

x   

 

        In context of life testing if the failed items are not placed then all we need to 

do is to use total lives Si where 
1

i

i j

j

S D
=

=∑  and ( ) ( ) ( )1
1

i i i
D n i x x

−
 = − + −  . Here '

i
D s

 

are known as normalized spacing. If i
S  is the total life observed in getting the i

th 

failure then 1 2......
n

S S S≤ ≤ .  
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 Here also one can show that the total lives 1 2, ......,
n

S S S
 
can be considered as 

being drawn from a density function which is uniform over ( )0, .T  If the life test 

ends as soon as the first n failures occur, then the (n-1) r.v. 1 2 1, ......,
n

S S S −  can be 

considered as being drawn from a density function which is uniform over ( )0, .
n

S
 

 

        The fact that the conditional distribution of total lives is uniform over suitable 

interval makes it quiet evident that one has a good tool for detecting whether the 

failure rate is indeed constant. Thus the contamination of a purely exponential 

distribution by early failure would manifest itself in the pronounced tendency to get 

too many clustering together in the early part of total life thus violating uniformity. If 

the failure rate changes, for example, it increases with time then this should result in 

a tendency for failures to cluster together as time goes on, again violating 

uniformity. If the amount of failure data observed is quiet small, then we can expect 

large changes from exponentiality. Otherwise one can use a chi-square to detect 

whether the conditional distribution of times to failure or total lives deviate 

excessively from being normal. 

 

4.6.1 A test for abnormally early failures (inliers) 

 

       Suppose that  ( ) ( ) ( )1 2
......

n
x x x≤ ≤   are the n ordered failures. If all the ( )ix  are 

drawn from a common exponential then 1S  the total life in ( )1
0,x 
   and 1n

S S− , the 

total life in ( ) ( )1
,

n
x x 
   are distributed independently of each other, where 

( )
21

2

2S
χ

θ
∼  

and 
( )

[ ]( )
1 2

2 1

2
n

n

S S
χ

θ −

−
∼    degrees of freedom each.  Hence the ratio  
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.
n

F
−                                                                  (4.6.4) 

 

If the ratio is too small then we assert that ( )1
x  is abnormally small. More precisely if 

α is the level of significance, we will say ( )1
x  is an inlier if 
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 Suppose one wants to detect ( )1
x  and ( )2

x  are inliers and if all the ( )ix  are 

drawn from a common exponential then 2 ,S the total life in ( )2
0, x 
   and 2nS S− , 

the total life in ( ) ( )1
,

n
x x 
   are distributed independently of each other. 

 

( )
( )
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2 2
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−
=

−
∼

n

n S
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S S
    F ( )4,4 4n −                                                              (4.6.6) 

 

            If this ratio R is too small then we can conclude  ( )1
x  and ( )2

x  are inliers. One       

can continue in similar manner, to detect whether ( ) ( ) ( )1 2
, .....

r
x x x are inliers, where 

3,4,.....r n=   till we get first ratio which is greater than tabulated value. Hence at 

this point one can conclude r observations, till which the hypothesis is accepted, are 

inliers and rest of the observations are from target population. 

 

4.7  Predictive approach to inlier model detection  

 

 The use of predictive distributions has been recognized as the correct 

Bayesian approach to model determination. In particular, Box(1980) notes the 

complementary roles of posterior and predictive distributions stating that posterior 

is used for  the “estimation of parameters conditional on the adequacy of the 

model” whereas the predictive distribution is used for “criticism of the entertained 

model in the light of the current data”. In examining two models, it is clear that the 

predictive distributions will be comparable whereas the posterior will not. 

 

 In this case there are n models, such as model with number of inliers r = 0, 1, 

2….n-1. M1 is considered model with 0 inliers. M2 can be considered model with r  

inliers and (n-r) target observations. The procedure is as follows:  
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 Let model M1 assume that the data X are samples from independent random 

variables having a target exponential distribution with density 

 

( )| , 0, 0x
f x e x

θθ θ θ−= > > .                                                         (4.7.1) 

 

The model M2 assume that there are two distinct labels so that data X=(X1,X2) where 

X1 and X2  are sampled from independent random variables having inliers and target 

exponential distribution, having  n1 = r and n2 = (n-r) observations respectively, with 

density function as 

 

( )| , 0 , 0, 1,2.
x

i
i i i

f x e x i
θ

θ θ θ
−

= > > =                                        (4.7.2) 

 

where   1θ φ=  the parameter of inliers distribution  and 2θ θ=  the parameter of 

target distribution. If assumption regarding the  vague prior density of the form 

under M1 is ( )
1

.g θ
θ

∝
 
 The likelihood under model M1 is as follows 
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Then predictive density of observation x under  M1 is given by 
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                                               (4.7.3) 

 

The model M2 assume that there are two distinct labels so that data        

X=(X1, X2) where Xi are sampled from independent random variables having a distinct 

exponential distribution with density 

 

( )| , 1,2, 0 , 0
x

i
i i i

f x e i x
θ

θ θ θ
−

= = > > .                                                  (4.7.4)      

                        

The vague prior densities of the form g( i
θ ) ∝ i

θ -1 
 for both the parameters are 

assumed, then  the respective  predictive densities under  M1 and M2 are 
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 The prior density yields the optimal estimate of the density, in the frequency 

sense, among all estimates that are invariant with regards to transformation of 

scale using Kullback- Leibler measure of divergence. 

 

 The Predictive sample reuse (PSR) quasi–bayes criterion chooses the Larger of  
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The Predictive sample reuse (PSR) quasi–bayes criterion used by Geisser and Eddy 

(1979) chooses the model with Larger of   
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Above mentioned both the criterions are asymptotically equivalent to Akaike’s 

criterion.  One can use any of the above given criteria to obtain number of inliers in a 

given set of data. 

 

4.8 Numerical illustration   

 

 The data represents ozone concentration in ppb monitored from morning 8 

a.m. to evening 8 p.m. at express highway of Anand in the month of July on hourly 

basis. The data is collected by Dr. Sukalyan Chakraborty as a part of air pollution 

status monitoring of Anand district for his research. The observations arranged in 

increasing order of their magnitude are 14.00, 14.50, 15.00, 15.00, 17.00, 17.00, 

19.00, 21.00, 21.80, 22.30, 23.00, 23.20 and 24.00. In table (4.8.1), r represents 

number of inliers observations to be considered. Level of significance is taken as 2.5 

%. 

 

Table 4.8.1.  Inlier detection using Likelihood and Conditional method 

r Likelihood 

 

2L̂  

For Conditional Method 

Conclusion Di Si Ratio F-tab 

1 -51.2223 --------- 182 182.0 1.5888 4.318725 Accept 

2 -51.1812 5.7383E-23 174 356.0 1.6308 3.066233 Accept 

3 -51.1434 5.9886E-23 165 521.0 1.6769 2.589498 Accept 

4 -51.0982 6.3160E-23 150 671.0 1.7047 2.327027 Accept 

5 -51.0853 6.3908E-23 153 824.0 1.7996 2.157011 Accept 

6 -51.0636 6.5672E-23 136 960.0 1.8773 2.036182 Accept 

7 -51.0712 6.5008E-23 133 1093.0 2.0208 1.944986 Reject 

8 -51.1041 6.2351E-23 126 1219.0 2.2567 1.873191  

9 -51.1387 5.9862E-23 109 1328.0 2.5818 1.814874  

10 -51.1712 5.7747E-23 89.2 1417.2 3.0499 1.766351  

11 -51.2051 5.5642E-23 69.0 1486.2 3.8383 1.725199  

12 -51.2345 3.5233E-21 46.4 1532.6 5.3215 1.689750  

13 -52.2672 ---------- 24.0 1556.6    
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       For conditional method null hypothesis is rejected when r = 7 implies that 

number of inlier in the data set is 6 as shown in table (4.8.1). The likelihood is also 

maximum at  r = 6.  Using Predictive Method we have obtained 1
ˆ 5.21825E 23L = −

and maximum 2
ˆ 6.5672E 23L = −

  
corresponds to r = 6. 

 

4.9   Goodness of fit 

 
   The  problem of testing of  goodness of fit to test whether the sample data is 

taken from modified mixture Weibull distribution against they are taken from single 

exponential or Weibull distribution is discussed in this section. 

 

4.9.1  To test whether target observations are from Exponential 

 

        Our first test is  

0 :H  the sample is from single population with exponential distribution i.e. ( ),f x θ     

1 :H   the sample is from population with Modified Weibull distribution,  

 

In terms of the MLE, the likelihood ratio test statistics for testing  0H  against 1H  is  
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Under null hypothesis ( ) 2

4
2ln

L
Y χ= − Λ ∼ .  Reject 0H  for appropriate value of level 

of significance when 
2

4,L
Y αχ> . 
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4.9.2    To test whether all observations are from single Weibull against they  

            are from mixture of two (inliers and target) Weibull distributions.  

         

Our second test is  

 

0 : 1H p =   the sample is from single (target) population from Weibull  distribution  

with  parameters   1≠β  and 0>θ .  

1 : 1H p <   the population distribution is  Modified Weibull with parameters 1,β ≠   

0φ >  and 0>θ .  

  

In terms of the MLE, the likelihood ratio test statistics for testing 0H  against 1H , as 

used in test 1, is  

        

[ ] ( ) ( ) ( ) [ ] ( )[ ]0 1

1 1

ln ln ln 1 ln ln ln ln ln
n n

i i

i i

n x x r n rβθ β β θ φ β θ β
= =

Λ = + + − − − + − − +∑ ∑  

                              ( ) ( ) ( ) ( ) ( ) ( )
0 1

0 1

1 1 1

1 ln 1 ln
r n r n

i i i i

i i r i i r

x x x x
β β

β β φ θ
= = = = +

− − − − + +∑ ∑ ∑ ∑          

(4.9.3)                                                         

 

 Under null hypothesis ( ) 2

2
2ln

L
Y χ= − Λ ∼ , then reject 0H  for appropriate 

value of level of significance when 
2

2,L
Y αχ> . 

 

4.9.3   Sequential Probability ratio test (SPRT) 

 

 SPRT is used to find number of inliers in given data set for both the models as 

shown in the following sub sections. 

 

Case 1 : SPRT for model-1 

 

  To test whether inliers and target population is from single Weibull 

distribtion against  they are from two different Weibull population, i.e with 

reference to section (1.5). The SPRT test is given as follows 

0H : Sample observations are taken from inlier population with interest parameter   

.ξ = φ  
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1H : Sample observations are taken from target population with interest parameter   

.ξ = θ .  

and likelihood ratio mλ  is given by 1

0

m

m

m

L

L
λ =  or equivalently  
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( )( )1

,
ln ln

,

m
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i
i

f x

g x

θ
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01
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(4.9.5) 

 

 For deciding number of inliers r, first arrange the observations in ascending 

order and then continue to take likelihood ratio for m = 1, 2….   by including 

observations one by one till we reject H0. That is 

             if ( )
1

ln
m

i

i

z B
=

≤∑ accept H0 and take the next observation. 

 and    

  if ( )
1

ln
m

i

i

z A
=

≥∑  reject H0 and stop. 

 

The corresponding  m represents the first observation from ( )( ),
i

f x θ   and number 

of inliers   ˆ 1.r m= −  Also 

1

1
B A

−
= =

−

γ γ

α α
                                                                              (4.9.6) 

 

where α  represents probability of type I error  and γ   represents probability of type 

II error. Arrange ( ) ( ) ( )1 2 n
X X ......X≤ ≤  and apply SPRT process till the hypothesis H0  is 

rejected.  

 

Case 2: SPRT  for model-2 

 

  To test whether observations follow Weibull distribution against they follow 

exponential distribution. The SPRT test is given as follows: 
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0H : Inlier observations are taken from Weibull population 

1H : Inlier observations from Weibull and target from exponential population 

and likelihood ratio mλ  is given by 1

0

m

m

m

L

L
λ =  or equivalently  
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where     1, 2,....m n=                                                                             (4.9.7) 

 

 For deciding number of inliers r, first arrange the observations in ascending 

order and then we continue to take likelihood ratio for m= 1, 2….n by including 

observations one by one till we reject H0. Arrange ( ) ( ) ( )1 2 n
X X ......X≤ ≤  and apply 

SPRT process till the hypothesis H0  is rejected.  

 

 Test criteria for rejection of   H0,  using ln mλ  as defined for case 1 and case 2  

in equations (4.9.6) and (4.9.7) is to reject H0, if 

 

             ln lnm Aλ >                                                                                                   (4.9.8) 

 

Corresponding value of m for which H0 was accepted last becomes number of inliers 

r.  

 

4.10 Conclusion 

 

 The Akaike information criterion is a measure of the relative goodness of fit 

of a statistical model.. It can be said to describe the tradeoff between bias and 

variance in model construction, or loosely speaking between accuracy and 

complexity of the model. 

 Given a data set, several candidate models may be ranked according to their 

AIC values. From the AIC values one may also infer that e.g. the top two models are 

roughly in a tie and the rest are far worse. Thus, AIC provides a means for 

comparison among models—a tool for model selection. In general  2 – 2  AIC k ln L= , 
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where k is the number of parameters in the statistical model, and L is the maximized 

value of the likelihood function for the estimated model. Given a set of candidate 

models for the data, the preferred model is the one with the minimum AIC value. 

Hence AIC not only rewards goodness of fit, but also includes a penalty that is an 

increasing function of the number of estimated parameters.  

 

          To compare above two models, defined in section (4.3.1) and (4.3.2),  obtained 

value of AIC for Model-1  is  94.9342 and for Model-2 is 123.4066. Clearly we can 

observe Model-1 is better than Model-2.  i.e. Model representing inliers and target 

observations as Weibull distribution with different scale parameters is better. For 

same example discussed in section (4.5), the Pareto distribution had also been 

applied in chapter 2. Hence comparing Weibull against Pareto model, it was noted 

that AIC for Weibull distribution is 127.7126 > AIC for Pareto distribution is 59.17455. 

Hence one can conclude for that example Pareto model is better than Weibull 

model. The Pareto distribution is a power-tailed distribution which is a special case 

of a heavy-tailed distribution whose tails go to zero more slowly than exponential.  In 

particular, in the cases where initial defects are present causing early failures, the 

Pareto distribution is found adequate to model such phenomenon. 

 Above result is supported by Jian-ming Mo and Zong-Fang (2008) who 

compared the sensitivity of aggregate operational value-at-risk in the Pareto 

distribution with that in the Weibull distribution to select an optimal model from the 

loss severity distributions of approximate goodness-of-fit. After the aggregate 

operational value-at-risk is obtained, the sensitivities of aggregate operational value-

at-risk are compared when the loss severity distribution are respectively the Pareto 

and Weibull. The authors have shown that the sensitivity of aggregate operational 

value-at-risk with the Pareto distribution is far better than that with the Weibull 

distribution.   

  Another paper that discussed the comparision of Pareto and Weibull model 

was by Li-Hua Lai, Khoo, Murlidharan  and Xie (2007) and Pei-Hsuan Wu (2008) and 

Wo-Chiang Lee (2009)  have shown that using extreme value theory, generalized 
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Pareto distribution (GPD) fits the heavy-tailed distribution better than the lognormal, 

gamma, Weibull and normal distributions. In an empirical study, they determine the 

thresholds of GPD through mean excess plot and Hill plot. 
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Chapter 5 

 

 

 Inliers estimation in complete mixtures  

 

 

5.1 Introduction 

 

Finite mixtures distributions have provided a mathematical-based approach 

to the statistical modeling of a wide variety of random phenomena. Because of their 

usefulness as an extremely flexible method of modeling, finite mixture models have 

continued to receive increasing attention over the years, from both practical and 

theoretical points of view. Indeed, in the past decade the extent and the potential of 

applications of finite mixture models have widened considerably. Fields in which 

mixture models have been successfully applied include astronomy, biology, genetics, 

medicine, psychiatry, economics, engineering, and marketing, among many other 

fields in the biological, physical and social sciences.  

 

Mixture distributions have been extensively used in a wide variety of 

important practical situations where data can be viewed as arising from two or more 

populations mixed in varying proportions. Mixture of distributions refers to the 

situation in which i
th

 distribution out of k underlying distribution is chosen with 

probability pi, i=1,2,….k. Mixture distribution having k=2 components are extensively 
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studied in literature. For example a probability model for the life of an electronic 

product can be described as the mixture of two uni-model distribution, one 

representing the life of inliers and other for target observations. A mixture model is 

able to model quite complex distributions through an appropriate choice of its 

components to represent accurately the local areas of support of the true 

distribution. The problem of central interest arises when data are not available for 

each distribution separately, but only for the overall mixture distribution. Often such 

situations arise because it is impossible to observe some underlying variable which 

splits the observations into groups then only the combined distribution can be 

studied. In these circumstances, interest often focuses on estimating the mixing                          

proportions and on estimation of the parameters in the conditional distributions. 

There is a remarkable variety of estimation methods that have been applied to finite 

mixture problems such as graphical methods, the method of moments, maximum 

likelihood, minimum chi-square, least squares approaches and Bayesian approaches.  

 

 Decomposing a finite mixture of a distribution is a very difficult problem as it 

can be observed looking at the solution based on method of moments put forward 

by Karl Pearson (1894) in the case of a mixture of two univariate normal distributions 

with unequal variances. However, Tan and Chang (1972) have shown that the 

method of moments is inferior to likelihood estimation for this problem. 

 

 Finite mixture models have been broadly developed and widely applied to 

classification, clustering, density estimation and pattern recognition problems, as 

shown by Titterington, Smith and Markov (1985), McLachlan and Basord (1988), 

Lindsay (1995), B¨ohning (1999) and Peel (2000), and the references therein. With 

the growing advances of computational methods, especially for the development of 

Markov chain Monte Carlo (MCMC) techniques, many works are also devoted to 

Bayesian mixture modeling issues, including and Diebolt and Robert (1994), Escobar 

and West(1995), Richardson and Green (1997) and Stephens (2000), among others. 

 

Because of their usefulness as an extremely flexible method of modeling, 

finite mixture models have continued to receive increasing attention over the years, 
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both from a practical and theoretical point of view. For multivariate data of a 

continuous nature, attention has been focused on the use of multivariate normal 

components because of their computational convenience. They can be easily fitted 

iteratively by maximum likelihood (ML) via the expectation maximization (EM)   

algorithm of Dempster, Lai, Khoo, Murlidharan  and Xierd and Rubin (1977) and 

McLachlan and Krishnan (1997). By adopting some parametric form for the density 

function in each underlying group, likelihood can be formed in terms of mixture 

distribution and unknown parameter estimated by consideration of the likelihood. 

The likelihood approach to fitting of mixture models in particular normal mixtures 

has been utilized by several authors, Dick and Bowden (1973)  and O’Neill (1978) .   

 

In the last two decades, the skew normal distribution has been shown 

beneficial in dealing with asymmetric data in various theoretic and applied problems. 

Authors took up the problem of analyzing a mixture of skew normal distributions 

from the likelihood-based and Bayesian perspectives, respectively. Computational 

techniques using EM-type algorithms are employed for iteratively computing 

maximum likelihood estimates done by Lin, Lee and Yens (2007). 

 

 Andersen(1996) introduced a modification of the mixture of distributions 

model based on microstructure arguments. Based on a small sample of five stocks, 

he infers that this modified mixture of distributions (MMD) model adequately 

captures the joint behavior of trading volume and volatility. He re-examine this cLai, 

Khoo, Murlidharan  and Xiem using a larger sample of twenty-two stocks and two 

sample periods. 

 

 Chen and Kalbfleisch (2005) and Chen et al. (2001, 2002) suggest a 

modification of the likelihood by incorporating a penalty term that forces certain 

estimates away from the boundary of the parameter space. The likelihood ratio 

statistic based on the modified estimators is shown, in many instances, to yield 

relatively simpler limiting distributions and hence simpler tests. 

Finite mixture models belong to a class of non-regular models and, as a 

consequence, many classical asymptotic results do not apply. Many researchers have 

tried to understand the large sample properties related to the analysis of finite 
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mixture models. Hartigan (1985) first demonstrated the peculiar behavior of the 

likelihood ratio statistic for mixture models. Ghosh and Sen (1985) obtained the 

limiting distribution under a separation condition. The separation condition turned 

out to be unnecessary, which was shown by Chernoff and Lander (1995) for binomial 

mixtures, and in general by Chen and Chen (2001, 2002), Dacunha and Gassiat (1999) 

and others. Even though the large sample behavior of the likelihood ratio statistic 

under a mixture model is now better understood, its implementation still poses a 

challenge. The main difficulty involves determining the critical value based on a 

limiting distribution that involves the supremum of a Gaussian process. Techniques 

given in Adler (1990) and Sun (1993) may be useful in this respect. An alternative, 

discussed in McLachlan (1987),  Chen (1998),  Chen and Chen (2001) and elsewhere, 

is to use re-sampling methods. Bayesian methods can also be applied in this context 

as done by Richardson and Green (1997). Additional recent work can be found in 

McLachlan and Peel (2000), Lo et al. (2001), Garel (2001) and Garel and Goussanou 

(2002).  

 

A popular way to account for unobserved heterogeneity is to assume that the 

data are drawn from a finite mixture distribution. A barrier to using finite mixture 

models is that parameters that could previously be estimated in stages must be 

estimated jointly because using mixture distributions destroys any additive 

separability of the log-likelihood function.  Arcidiacono and  Jones(2002) show, 

however, that an extension of the EM algorithm reintroduces additive separability, 

thus allowing one to estimate parameters sequentially during each maximization 

step. In establishing this result, the author developed a broad class of estimators for 

mixture models. Returning to the likelihood problem, relative to full information 

maximum likelihood, the sequential estimator can generate large computational 

savings with little loss of efficiency. 

 

Mixture models, in which a probability distribution is represented as a linear 

superposition of component distributions, are widely used in statistical modeling and 

pattern recognition. One of the key tasks in the application of mixture models is the 

determination of a suitable number of components. Conventional approaches based 
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on cross-validation are computationally expensive, are wasteful of data, and give 

noisy estimates for the optimal number of components. A fully Bayesian treatment, 

based on Markov chain Monte Carlo methods for instance, will return a posterior 

distribution over the number of components. However, in practical applications it is 

generally convenient, or even computationally essential, to select a single, most 

appropriate model. Recently it has been shown, in the context of linear latent 

variable models, that the use of hierarchical priors governed by continuous hyper-

parameters whose values are set by type-II maximum likelihood, can be used to 

optimize model complexity. Author extends a framework to mixture distributions by 

considering the classical task of density estimation using mixtures of Gaussians. They 

show that, by setting the mixing coefficients to maximize the marginal log-likelihood, 

unwanted components can be suppressed, and the appropriate number of 

components for the mixture can be determined in a single training run without 

recourse to cross validation. Their approach uses a variational treatment based on a 

factorized approximation to the posterior distribution by Corduneanu and Bishop 

(2001). 

 

Bayesian predictive density functions, which are necessary to obtain bounds 

for predictive intervals of future order statistics, are obtained when the population 

density is a finite mixture of general components. Such components include, among 

others, the Weibull (exponential and Rayleigh as special cases), compound Weibull 

(three-parameter Burr type XII), Pareto, beta, Gompertz and compound Gompertz 

distributions. The prior belief of the experimenter is measured by a general 

distribution that was suggested by AL-Hussaini (2003). Applications to finite mixtures 

of Weibull and Burr type XII components are illustrated and comparison is made, in 

the special cases of the exponential and Pareto type II components, with previous 

results. 

 

  Everitt and Bullmore (1999) report on a novel method of identifying brain 

regions activated by periodic experimental design in functional magnetic resonance 

imaging data. This involves fitting a mixture distribution with two components to a 

test statistic estimated at each voxel in an image. The two parameters of this 
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distribution, the proportion of nonactivated voxels (inliers) and the effect size can be 

estimated using maximum likelihood methods. Standard errors of the parameters 

can also be estimated. The fitted distribution can be used to derive brain activation 

maps and two examples are described, one involving a visual stimulation task, the 

other an auditory stimulation task. The method appears to have some advantages 

over direct use of the P-values corresponding to each voxel’s value of the test 

statistic. 

 

The merits and limitations of parametric and nonparametric methods and the 

value of historical floods and palaeoflood information are reviewed and discussed. A 

mixture density estimation procedure based on the Gumbel (EV1) distribution kernel 

is introduced and a modified maximum likelihood criteria is developed for estimation 

of model parameters by Guo Shen Lian (2009). Using the recorded data and pre-

gauging floods in China and a limited number of simulation experiments, the flood 

quantiles estimated by the proposed model are compared with those estimated by 

parametric and nonparametric methods. It is found that the mixture density 

estimation method can fit real data points more closely than its parametric 

counterparts, and that it is competitive with the other considered candidates. 

 

5.2 Inliers as mixture model 

 
     An inlier in a set of data is an observation or subset of observations not 

necessarily all zeros, which appears to be inconsistent with the remaining data set. 

Consider an example where the weights of new born 17 babies (in pounds) in a 

hospital is noted as 0, 0, 1.2, 1.4, 2, 3.5, 3.8, 4.2, 4.6, 5.5, 5.5, 5.8, 6, 6.2, 6.6, 6.6 and 

7. Observation 0 can be considered as child born dead. As we have already seen in 

chapter 1, by specifying δ = 4, first 6 observations can treated as inliers. The 

observations which are identified as instantaneous and early failures together are 

called inliers, introduced first time by  Muralidharan and Kale (2002). 

 

 Apart from the examples discussed in introduction chapter (chapter 1) the 

following examples also gives us the idea of inlier generation as a complete mixtures.  
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1. To study the growth in dog’s population, one may observe age of dogs.  We can 

observe there are some puppies with no life, some with short life span while rest of 

them live the average target life. The observations of no life or short life span can be 

considered as inliers. 

 

2. In the production of electronic components of air conditioner, some components 

may fail on installation and therefore have zero life lengths. A component that does 

not fail on installation will have a life length that is a positive random variable whose 

distribution may take different forms. We can take component which fail 

instantaneously or early as inliers. Thus, the overall distribution of lifetimes is a 

nonstandard mixture.  

 

3. Consider profit earned on a share during a long term. There will be times when 

we get no profit and times when profit is continuous distribution of positive value. 

The observation with zero profit and small values of profit can be considered to be 

as inliers.  

 

4. In a clinical trial laboratory a particular drug is designed and given to certain 

species of 100 hens so that the new chicks have weight greater than usual. The 

possible observations may be combination of inliers (i.e.  no gain or negligible gain of 

weight than usual) and target gain in weight. 

 

Inliers can be classified into discordant observations (those which appear 

“surprising or discrepant” very small to investigator) and contaminants mixture 

model of the form 

 

( ) ( ) ( ) ( )1h x p g x pf x= − +
 

 

Here one can consider ( )f x  as our target density function (pdf of interest) 

and ( )g x  as inlier density function. The objective is to estimate the proportion 

( )1 p− of observation coming from ( )g x  which is very small as compared to the 
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observations of ( ).f x
 
 This can be achieved by carrying out a test procedure for 

0 : 1H p =  against 1 : 1H p <  and decide whether samples are from ( )g x  or ( ).f x  

 

5.3  Methods to detect inliers 

 

 Over the past years, a variety of methods have been developed for 

estimating the parameters in finite mixture models. Four of them are widely used in 

practice and cited in the literature, they are graphical method, method of moments, 

minimum-distance method, maximum likelihood method and Bayesian method. The 

method of moments is the earliest method for estimating the parameters in finite 

mixture models. The estimation procedures for inlier observations are present in the 

model given below.  

 

5.3.1 Graphical methods based on probability model  

 

 It is the easiest way to find whether data is from mixed population. The two 

most common graphs which can give us idea whether the sample observations are 

from single population or are they taken from population which is mixture of two 

populations (one of them represents inliers and other is continuous life time 

distribution).  One can easily identify presence of mixture of two distributions, just 

looking at the graph.  

 

a. Density function graph 

 

            The graph represents mixture of two normal distributions. The graph (5.3.1) 

represents inlier and target observations taken from ( )7,9N and ( )27,9N , 

respectively. From the graph we can identify two symmetrical curves such that first 

curve has mean remarkably less than second curve which can be considered as 

inlier distribution.  Similarly we can have graph representing mixture of more than 

two distributions. From the graph (5.3.1) one can get rough idea about number of 
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components with approximate mean.  The density graph of mixture of inliers and 

target population for distribution other than normal is discussed in section (5.5).  

 

b. Cumulative distribution function 

 

  It is also known normal quantile quantile (Q-Q) plot.  This plot can be described  

as plot of an estimate of ( )1
F p

−
 against ( )1

pϕ−
, where ( )F ⋅

 
is the cumulative 

distribution function of the mixture distribution and ( )ϕ ⋅  is that of standard normal. 

A sample from single normal distribution should produce a linear plot. Refer graph 

(5.3.2) which indicates the presence of mixture of two distributions (data used is 

same as above section). 

 

 

 
Fig. 5.3.1. Density function of mixture distribution  

 

 

The graph (5.3.2) indicates deviation from linearity which is the characteristic of 

certain type of mixture of two populations. 
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c.  
Fig. 5.3.2.  Quantile-Quantile plot 

   

 

5.3.2   Method of moments 

 

 Suppose we have data set with n independent observations from a 

population whose probability model depends on v unknown parameter, .ξ  Let 

( )µ ξ denote vector of v functionally independent moments and that m denotes the 

corresponding set of sample moments. The method of moments estimator is the .ξ  

which satisfies 

 

      ( )ˆ mµ ξ =                                                                                                    (5.3.1)
 

       
 

 If ξ  denotes the mean of mixture distribution of inliers and target 

distribution, then we will get sample mean which will be a value approximately the 

average of the above two groups.  

 

There are many problems in using moment estimators, such as 

a. Explicit solution of (5.3.1) may not be easy or even possible. 

b. The solution to (5.3.1) may not be unique.  

c. They may not be asymptotically efficient. 

 

To answer these questions, we proceed with other estimation procedure.  
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5.3.3   Method of maximum likelihood  

 

 The data in the random sample are of the form 1 1 2 2, ,... ,
n n

X x X x X x= = =

where the distribution of each X is described by a parametric finite mixture density. 

Most statistical methods will then take their starting point the likelihood function as 

 

( ) ( ) ( ) ( ) ( )0

1 1

| 1
n n

i i i

i i

L P x p g x pf xξ ξ
= =

= = − +  ∏ ∏                                (5.3.2) 

 

Maximization of ( )0L ξ  with respect to ξ , for given data X, yields the maximum 

likelihood estimates of parameter ξ . Normally the quantity maximized is log- 

likelihood ( ) ( )0 0
lnLξ ξ=L .  

  

 Even in mixture models, maximum likelihood approach is very popular because  

a. It fits into the philosophy of likelihood-based inference. 

b. The existence of attractive asymptotic theory.  

c. The estimates are often easy to compute. 

d. They are also useful for calculating Bayesian posterior modes. 

 

 For inliers mixture model many times the asymptotic theory and 

computational aspects are not so straight forward. In such case one has to use 

iterative methods to obtain the estimates of the parameters of inliers mixture 

distribution. 

 

5.3.4     Minimum-distance method     

 

Another general method for estimating the mixing distribution in finite 

mixture model is to minimize the distance between the empirical distribution and 

the mixture distribution or the distance between the kernel density estimation and 

the mixture density. Titterington et al. (1985) gave a detailed review of the 

minimum-distance estimators. Maximum likelihood estimator can also be viewed as 

a special case of minimum-distance estimators, simply because it minimizes the 

Kullback-Leibler (1951) distance between the empirical distribution and the mixture 
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distribution. Due to the rapid improvement in computing power, finding numerical 

solutions of a likelihood equation becomes feasible. Likelihood-based inference has 

enjoyed fast development and plays an important role in the scope of finite mixture 

models.  

 

5.3.5  Bayesian method 

 

 One of the methods for estimating parameter of mixture distribution is the 

Bayesian method. Let ( )1 2
ln , ,.... |

n
x x x θ  be the likelihood function of θ . In the 

framework of the Bayesian approach, one needs to assume that a prior distribution 

( )P θ  when θ  is available. Using Bayes’ theorem, we can obtain the posterior 

density ( )1 2
| , ,....

n
P x x xθ  which is given by 

 

              ( ) ( ) ( )1 2 1 2| , ,.... ln , ,.... |
n n

P x x x x x x Pθ α θ θ                                           (5.3.3) 

 

  There are two main reasons why people may be interested in using the 

Bayesian method in finite mixture models. Firstly, including a suitable prior 

distribution for θ  in the framework of the Bayesian approach may avoid spurious 

modes when maximizing the log-likelihood function. Secondly, when the posterior 

distribution for the unknown parameters is available, the Bayesian method can yield 

valid inference without relying on the asymptotic normality. As warned by 

McLachlan and Peel (2000), the asymptotic theory of the MLE can apply only when 

the sample size n is very large. Hence the second advantage of the Bayesian method 

become obvious when the sample size n is small. 

 

 The iterative methods used for estimation of parameters in above method 

are discussed in next sub section. There are three well known iterative procedure to 

estimate the values of parameter of mixture distribution 
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5.3.6  Expectation Maximization (EM) 

 

 EM algorithm is an iterative method to obtain estimates of parameters which 

are not in an explicit form. EM algorithm works as follows: 

  

Suppose we have to find ˆξ = ξ  to maximize the likelihood  

 

                       
( ) ( )|L f xξ = ξ ,                                                                (5.3.4) 

 

where x is set of “inlier” data. Let y denote a typical “complete”  version of  x and let 

y(x) denote the set of all possible such y. In inlier mixture context of equation (5.3.4) 

the likelihood of y be denoted by ( )| .g y ξ  The EM algorithm generates, from some 

initial approximation, 
( )0

ξ , a sequence 
( ){ }m

ξ  of estimates. Each iteration consists of 

the following double step: 

 

E step : Evaluate ( ){ } ( ) ( )( )ln | | , , .
m m

E g y x Q ξ ξ = ξ ξ   

M step: Find 
( )1m+ξ = ξ  to maximize 

( )( ), .
m

Q ξ ξ
 

 

The Expectation-Maximization algorithm for the finite mixture problem 

proposed by Dempster, Lai, Khoo, Murlidharan  and Xie (2007), and Rubin (1977), 

popularly known as the EM algorithm, is a broadly applicable approach to the 

iterative computation of MLE’s, useful in a variety of incomplete-data problems, 

where algorithms such as the Newton-type methods may turn out to be more 

complicated. 

 

5.3.6.1  Inlier detection in normal distribution using EM algorithm  

 

          Let  ( )1 2, ,.....
n

X x x x=  be a sample of n independent observations from mixture 

of two inlier and target normal distributions and let ( )1 2
, ,.....

n
Z z z z= be latent 

variables that determines component from which observation originates. 

( )| 1
i i

X z = follows
 

( )1 1
,N µ σ  and  ( )| 2

i i
X z =   follows  ( )2 2

, ,N µ σ where 

( ) 11
i

P z p= =    and The aim is to estimate the unknown parameters representing the 

“mixing” values of  ( )1 2 1 2
, , , , .p=θ µ µ σ σ
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The likelihood function is given by 

 

          

( ) ( ) ( ) ( ) ( )1 2

1

, , , |
n

i i i

i

L x z P x z I Z j p g x p f x
=

= = = +  ∏θ θ
 

 

where I is an indicator function. 

 

E- step 

 

           
( )( )( )

| :
tt

ji i i i
T P z j X x= = = θ

 
 

                          

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1 1 2 2 2

; ,

; , ; ,

t t t

j j j

t tt t t t

p f x

p f x p f x
=

+

µ σ

µ σ µ σ
 

 

Thus E-step result in the function 

 

            
( )( )|
t

Q θ θ  ( ) ( )
( )

2
2

2
1 1

1 1 1
ln ln ln 2

2 2 2

n
i jt

ji j j

i j j

x
T p

= =

 −
 = − − −
 
 

∑∑
µ

σ π
σ

 
 

and 

 

M-step 

 

 The quadratic form  
( )( )|
t

Q θ θ  means that determining the maximizing 

values of θ  is relatively straight forward. Firstly note that ( ) ( )1 1 2 2
, , & ,p µ σ µ σ may 

be all maximized independently of each other since they all appear in separate linear 

terms. The estimates of θ  are as follows: 

 

               
( )

( )

( ) ( )( )
( )1 1

1

1 2

1

1
, 1,2

n
t

ji n
t ti

j jin
t t i

i i

i

T

p T j
n

T T

+ =

=

=

= = =

+

∑
∑

∑
                          (5.3.5) 

 

( )

( )

( )

1
1 1

1

1

1

n
t

i i
t i

n
t

i

i

T x

T

+ =

=

=
∑

∑
µ      and  

( )

( ) ( )( )
( )

1 1
1 1

1

1

1

n
t t

i i
t i

n
t

i

i

T x

T

+ =

=

−

=
∑

∑

µ

σ                                    (5.3.6) 
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and 

 

( )

( )

( )

2
1 1

2

2

1

n
t

i i
t i

n
t

i

i

T x

T

+ =

=

=
∑

∑
µ        and  

( )

( ) ( )( )
( )

2 2
1 1

2

2

1

n
t t

i i
t i

n
t

i

i

T x

T

+ =

=

−

=
∑

∑

µ

σ                                     (5.3.7)         

                                    

 

5.3.6.2  Numerical Example:  

 

   We have generated the 20 observations from ( )4,9N  and rest 20 

observations from ( )20,9N . We arranged all 40 observations in ascending order and 

then applied usual method and EM algorithm to estimate MLE of different 

parameters belonging to ( )1 2 1 2, , , , .p=θ µ µ σ σ
 

 

    
  The  proportions for inliers are considered as 0.2 and 0.8 taking other 

random samples. Random numbers for inliers and target are generated from 

( )10,9N  and ( )16,9N  for p = 0.2 whereas for p = 0.8 random numbers are 

generated from  ( )20,9N  and  the estimates for the same are presented in the table 

(5.3.1). 
 

 

Table 5.3.1. Estimates of parameters using usual method and EM algorithm 

Parameter Usual EM  Usual EM  Usual EM  

p̂  0.20 0.247891 0.5 0.51753 0.8 0.801655 

1
µ̂  10.3983 10.0831 5.114591 5.07216 20.7588 20.7477 

1
σ̂  2.1596 1.72969 2.542373 2.45262 2.04267 1.77783 

2
µ̂  16.7081 16.4453 19.93911 19.8436 30.3582 30.3412 

2
σ̂  0.66221 0.74314 3.500136 3.53658 2.3719 2.32364 

    

From above table the estimate of number of inliers ( )ˆ ˆ1 .r n p= −
 
We observe that 

estimates of usual method to obtain MLE and EM algorithm are very close for all 

values of p.  
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5.3.7   Newton Raphson (NR)    

 

 The purpose of NR method is same as that of EM method. This method 

usually requires less iteration than EM method. For NR the iterative step can be 

written as 

 

( ) ( ) ( )( ) ( )( )
1

1 2
, 0,1.........

m m m m

m
D L DL m

−
+  ξ = ξ − α ξ ξ =

 
                          (5.3.8) 

 

The estimation of parameters for mixture distribution is done by Newton raphson 

method in all chapters 2, 3 and 4 of this thesis. 

 

5.3.8   Method of Scoring (MS)      

    

 For MS the iterative steps to obtain estimates of parameters of mixture 

distribution can be written as 

 

( ) ( ) ( )( ) ( )( )
1

1
, 0,1.........

m m m m

m
I DL m

−
+  ξ = ξ + α ξ ξ =

 
                               (5.3.9) 

 

In above two cases, the non-negative constant mα  has been introduced to provide a 

slight increase in generality. Usually 
m

α =1, 
( )( )m

I ξ denotes Fisher information matrix 

and D and D
2
 represent differentiation, once and twice, with respectively, ξ . 

 

 We now carry out some tests of hypothesis to ascertain the model validity in 

the presence of inliers. We now carry out some tests of hypothesis to ascertain the 

model validity in the presence of inliers. 

 

5.4    Testing of hypothesis  

 
         Goodness of fit is required to test whether the proportion of inliers and target 

observations considered for the model really fits in the data. Various tests are 

discussed in following subsections. 
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5.4.1    Locally most powerful test 

 

 For testing the hypothesis as defined in equation (1.4.3)  we have 

 

                           
0

: 1H p = against 
1

: 1H p <  
 

Let 
1 2
, ,......

n
X X X  be a i.i.d. random variables having mixture distribution then 

likelihood is 

  

                            ( ) ( ) ( ) ( ){ }, , , 1
i i

L x p p g x pf xφ θ = − +∏    

 

Then LMP test critical region is given by  

 

                            
( )

0

, , ,
| |

L x p
x H C

p

φ θ∂ 
≤ 

∂ 
   

 

   where  C is such that 

 

               
( )

0

, , ,
| |

L x p
P x H C

p

φ θ
α

 ∂  
≤ =  

∂   
                                                        (5.4.1) 

 

Solving for C we get 

  

                            
( ) ( ) ( )

( ) ( ) ( )1

ln , , ,

1

n
i i

i i i

L x p f x g x

p p g x pf x=

∂ −
=

∂ − +
∑

φ θ
 

 

             
( ) ( ) ( )

( )
0

1

ln , , , | n
i i

i i

L x p H f x g x

p f x=

∂ −
=

∂
∑

φ θ
 

 

                                                  
( )
( )1

1
n

i

i i

g x

f x=

 
= − 

 
∑

 

                                                   ( )
1

n

i

i

n x
=

= −∑λ    

     

on simplification we get reject H0  if     
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                                 ( )
1

|
n

i

i

x n x Cλ
=

 
− ≤ 

 
∑ = ( )

1

|
n

i

i

x x Cλ
=

 
′≥ 

 
∑

 
 

where  C’ is such that  

 

                                  ( )
1

| .
n

i

i

P x x Cλ α
=

 
′≥ = 

 
∑

 
   

 

5.4.2   Large sample test 

 

           To test 
0 0:H p p≥  against 

0 0:H p p<  for specified 
0p , the proportion of target 

observations. Test statistics is given by 

 

                                  
( )0

0 0

0 0

ˆ
, 1

cal

n p p
Z q p

p q

−
= = −

 

 

 and we  reject 0H  if  
cal

Z Z< α  .   

 

5.5    Graphs representing mixture of inliers and target distributions 
          

 In figure (5.5.1) and figure (5.5.2) we represent the graphs of density function 

and survival functions of mixture of two exponential distributions respectively. Here 

the target and inliers distribution both are exponential distribution. 
 

 

 
Fig. 5.5.1.  Density function of exponential inliers and target distribution  
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Fig. 5.5.2.  Survival function of inliers and target in exponential distribution  

 

For both the graphs we generated random sample from inliers and target population 

in different proportion. Here p = 0.2, 0.5 and 0.8 represents the proportion of sample 

from target population.
 

 

  In figure (5.5.3) and (5.5.4) we have considered a random sample from a single 

exponential population with mean 10. Then we arranged these observations in 

ascending order of the magnitude. Hence we divided the observations in two parts 

i.e. inliers and target in different proportion and obtained the following graphs 

(5.5.3), (5.5.4)  and estimates of the parameters with their confidence intervals in 

table (5.5.1).  

 

 
Fig. 5.5.3.  Density function of exponential inliers and target distribution  
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Fig. 5.5.4.  Survival function of exponential inliers and target distribution                  

 

  

Table 5.5.1.  Estimates of the parameters 

p φ̂  θ̂  confidence interval of φ̂  confidence interval of θ̂  

0.2 1.23823 14.67034 (1.123822, 1.287276) (13.95386, 15.38681) 

0.5 3.649312 20.77614 (3.569648, 3.709192) (20.54426, 21.01385) 

0.8 7.014626 31.04246 (6.908973, 7.096944) (30.89754, 31.62216) 

 

 

 
Fig. 5.5.5.  Density function of Weibull inliers and target distribution  
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Fig. 5.5.6.  Survival function of Weibull  inliers and target distribution  

 

 

In figure (5.5.5) and (5.5.6) we have considered  generated random samples of inliers 

and target population from Weibull distribution. It is clear from survival function 

graph (5.5.2) and (5.5.6) that exponential graph has greater survival rate for target 

population than Weibull. Survival rate decreases more rapidly in case of Weibull 

distribution. 

 

 

 
Fig. 5.5.7.  Density function of Weibull  inliers and target distribution  
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Fig. 5.5.8.  Survival function of Weibull  inliers and target distribution  

 

 

             Table 5.5.2. Estimates of the parameters(Weibull distribution) 

p 0
β̂  φ̂  1

β̂  θ̂  

0.2 1.22271 13.4815 3.07561 27153.6 

0.5 1.43788 8.49143 1.95866 372.093 

0.8 1.68314 3.25269 1.38857 43.6578 

 

  

 Rayleigh distribution for inliers and exponential for target population is 

considered in remaining graphs. The objective was to see how the mixture of two 

different distribution work. For Figure [5.5.9] and [5.5.10] the random sample of 

different proportion of inliers with different parameters and target observations 

with same parameter.   

 

 For figures [5.5.11] and [5.5.12] we have drawn two samples from Rayleigh 

i.e Weibull(1,2) and exponential distribution i.e exp(1). Then we took all the 

observation together and divided in two parts inliers and target values. From these 

we estimated the parameters ,φ θ  and their confidence interval for p = 0.0, 0.5 and 

1.0.  
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Fig. 5.5.9.  Density function of Rayleigh  inliers and exponential target population 

  

 

  

 
Fig. 5.5.10. Survival function of Rayleigh  inliers and exponential target population 

  

 

The estimates are 

Table 5.5.3. Estimates of parameters 

p φ̂  θ̂  Confidence interval forφ  Confidence interval for θ  

0.0 1.673036 ____ (1.645404, 1.700668) _______ 

0.5 0.167334 1.479144 (0.155571, 0.179097) (1.416527,1.541762) 

1.0 ______ 0.973552 ________ (0.94592,0.94592) 
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Fig. 5.5.11.  Density function of Rayleigh  inliers and exponential target population

 

 

 

 
Fig. 5.5.12.  Survival function of Rayleigh  inliers and exponential target  

 

 

Conclusion: 

 

 The discussion of mixture of two same distribution with different parameters 

has been studied extensively. One can also think of mixtures of two totally different 

distributions for inliers and target population. For example the combination of 

Pareto-Weibull or  Normal – exponential etc., for inliers and target population, 

respectively. 
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Chapter-6 

 

 

Inliers estimation in generalized failure 

distributions 

 

 

6.1 Introduction 

 Generalized distributions are not frequently used for modeling life data as the 

life testing distribution but they have the ability to mimic the attributes of other 

distributions such as the exponential, Weibull or lognormal, based on the values of 

the distribution's parameters. Generalized exponential distribution has a right 

skewed unimodal density function and monotone hazard function similar to the 

density functions and hazard functions of the gamma and Weibull distributions. It is 

observed that the bivariate generalized exponential distribution provides a better fit 

than the bivariate exponential distribution. While the generalized gamma 

distribution is not often used to model life data by itself, its ability to behave like 

other more commonly-used life distributions is sometimes used to determine which 

of those life distributions should be used to model a particular set of data. It is 

observed that it can be used quite effectively to analyze lifetime data in place of 

gamma, Weibull and log-normal distributions. The genesis of this model is different 
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estimation procedures and their properties, estimation of the stress-strength 

parameter, closeness of this distribution to some of the well known distribution 

functions, etc will be studied in this chapter from the inlier observations perspective.  

 

6.2      Instantaneous  Failures 

 

 As usual to accommodate the possibility of instantaneous failures, the class 

of generalized failure time distribution (GFTD) ( ){ }, ,F x θ θℑ = ∈Ω  is modified to a 

new distribution G
 

( ) ( ) ( ){ }, , 1 , , , 0,0 1G x p p pF x F x pθ θ= = − + ∈ℑ ≥ < <  where 

( ),f x θ  is of the form 

 

 ( )
( ) ( )

( )
( )

( )
1

, , exp , 0 , , 0
x x x

f x x
x

  ′   
= − > >      
      

β
φ φ φ

θ β φ θ β
θ φ θβ

    (6.2.1) 

  

One may refer to Johnson and Kotz, Johnson and Balakrishnan (1970) etc. for other 

version of generalized densities. The above density is studied by Chaturvedi and 

Usha (2008). 

 

6.2.1 Maximum likelihood estimation in instantaneous failures 

 

 The modified general failure time density function is given as 

 

 

( )

( )

( ) ( )
( )

( )
( )

1 , 0

, , ,
exp , 0

p x

g x p x x xp
x

x

β

φ

θ β φ φ φ
φ

θ φ θβ

− =


=   ′    
− >      

       

           (6.2.2) 

  

Let  1 2, ,...... nX X X , be a random sample of size n from g ∈G. 

  ( ) ( )
1

, , , , , ,
n

i

i

L x p g x p
=

= ∏θ β θ β  

Define 

  ( )
1, 0

0, 0

x
Z x

x

=
= 

>  
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Then the likelihood is given by 

 

     
( ) ( ) ( ) ( )

( )1

1

; , , 1 , ,
n

z xz x ii
i

i

L x p p pf x
−

=

= −   ∏θ β θ β  

                          ( ) ( )
( )

( ){ }
( )
( )

( )
( )1

0

1 exp

z xn z x ii
z x

i

x
i

x xp
p x

x

−−

∑

>

∑    ′   
= − −         

        
∏

β

β

φ φ
φ

φ θθ β
 

 

 It is possible to show that (6.2.2) is a member of three parameter exponential 

family with ( ) ( ) ( ){ } ( ) ( ){ }
1

, 1 ln , 1
n

i i i i i

i

z x z x x z x x
=

 
− −       

 
∑ ∑ ∑φ φ are jointly 

complete sufficient for ( ), ,p β θ , provided ( )xφ  is real valued and strictly increasing 

function of x with ( )0 0=φ  and its inverse function exists. 

 

The estimating equations are constructed from the log likelihood and are given by 

 

         

( ) ( )ln
0

1

i i
z x n z xL

p p p

−∂
= − + =

∂ −

∑ ∑
                                                                           (6.2.3) 

 

( )
( )

( ) ( ){ }
lnln

ln 1 ln 0i i i

L
n z x z x x

β
θ φ

β β

 ∂∂   = − − + + − =    ∂ ∂
 

∑ ∑             (6.2.4) 

 

( ) ( ) ( )2

ln 1
1 0i i i

L n
z x z x x

∂
= − + − =  ∂
∑ ∑

β β
φ

θ θ θ θ
                                             (6.2.5) 

 

 Since the equation (6.2.3) is independent of θ  and β , one can solve and get 

ˆ ,
n r

p
n

−
=  if ( ) .

i
z x r=∑  The estimates  θ̂  and β̂  are obtained by solving (6.2.4) 

and (6.2.5) which are the conditional likelihood equations given (n-r) positive 

observations. One can also obtain the Fisher information as the expectation of 

second derivative of the likelihood equations above once the form of ( )xφ  is known.  
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6.3 Early failures 

 

 To accommodate the possibility of instantaneous and early failures the class 

of generalized failure time distribution (GFTD) ( ){ }ℑ = ∈Ωθ θ, ,F x  is modified to  

distribution G1 ( ) ( ) ( ) ( ){ }1
, , 1 , , , , 0,0 1 .G x p p pF pf x F x pθ δ θ θ= = − + + ∈ℑ ≥ < <  The 

failure time correspond to early failures which are reported as δ which is very very 

small and hence the modified model will be a mixture in the  proportion 1-p and p. 

The estimation procedure for the parameters involved in the model. The modified 

generalized failure time distribution is given by distribution function 

 

G1 ( ) ( )

( )

0

, , 1 , ,

, ,

x

x p p pF x

pf x x

δ

θ δ θ δ

θ δ

 <


= − + =


>

                                                   (6.3.1)

 

 

which can be simplified as 

 

 ( ) ( )

( )
1

0

, , 1 , ,

, ,

x

g x p pF x

pf x x

δ

θ δ θ δ

θ δ

 <


= − =


>

                                                         (6.3.2) 

 

6.3.2    Maximum likelihood estimation in early failures 

 

 On substituting the modified general failure time distribution is given as 

 

( )

( ) ( )

( ) ( )
( )

( )
( )

1

1 , , ,

, , ,
exp ,

pF x

g x p x x xp
x

x

β

δ θ β φ δ

θ β φ φ φ
φ δ

θ φ θβ

− =


=   ′    
− >      

       

             (6.3.3) 

 

Let 1 2, ,...... nX X X , be a random sample of size n from 1 ∈g G1 

 ( ) ( )1

1

, , , , , ,
n

i

i

L x p g x pθ β θ β
=

= ∏  
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 then define 
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 Here again it is possible to show that (6.3.3) is a member of three parameter 

exponential family with ( ) ( ) ( ){ } ( ) ( ){ }
1

, 1 ln , 1
n

i i i i i

i

z x z x x z x x
=

 
− −       

 
∑ ∑ ∑φ φ are 

jointly complete sufficient  for ( ), ,p β θ , provided ( )xφ  is real valued and strictly 

increasing function of x with ( ) 0=φ δ and its inverse function exists. The estimating 

equations are constructed from the log likelihood and are given by 
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p p F p

−∂
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                                       ( ) ( ){ }ln 1 ln 0
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                                            ( ) ( )2

1
1 0

i i
z x xφ

θ
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(6.3.6)

 
 

Solving (6.3.4) one gets 

 

      

( )
( )

ˆ
, ,

n r
p

nF

−
=

δ θ β
                                                                                                (6.3.7) 
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 Equation (6.3.5) and (6.3.6)  have to be solved simultaneously using 

numerical iterative method to obtain the estimation of parameters under study . 

 

6.4     Nearly instantaneous failure 

 

 Let ( )xF and ( ) ( )x xR = 1- F denote the cumulative distribution function 

and the survival function of the mixture, respectively. F is continuous and its density 

be given by ( ) ( )x x′f = F .The component distribution functions and their survival 

functions are ( )i xF and ( ) ( )i i
x xR = 1- F  respectively, i=1,2. The hazard rate of a 

lifetime distribution is defined as ( ) ( ) ( )x x xh  = f / R  provided the density exists. 

Instead of assuming an instant or an early failures to occur at a particular point, as in 

the original model as above, we now represent this model as a mixture of the 

generalized Dirac delta function and the generalized failure time. Thus the resulting 

modification gives rise to a density function: 
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( )
( )

1 exp ,
x x xp

x p
x x

β
φ φ φ

θ φβ

  ′   
− + −      

      
d 0

f = δ x - x     

          
 where 

                              ( )1, 0 1, 0, 0.p q p x+ = < < > >φ β
                                                     

(6.4.1)
 

and 

 

                     

( ) 0 0
0

,

0 ,

1
d

x x x d
x x

otherwise
d

≤ < +
− =





δ    ,                                                 (6.4.2) 

 

for sufficiently small d.  Here 0p >  is the mixing proportion. Also note that  

 

( ) ( )δ
→

=0 0
0

- -lim d
d

x x x xδ                                                                         (6.4.3) 

 

where ( )iδ  is the Dirac delta function as given in section (2.4)  of chapter 2. Both the 

distribution and survival functions are continuous. 

Writing 
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( ) ( )x

1 d 0
f = δ x - x  and ( )

( ) ( )
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x x x
f x

x x

  ′   
= −      
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β
φ φ φ

θ φβ
 

 

 Then (6.4.1) can be written as 

 

( ) ( ) ( )1 2f x q f x p f x= +     where    1, 0 1p q p+ = < <                          (6.4.4) 

so that 

( ) ( ) ( )1 2
F x qF x pF x= +                                                                                (6.4.5) 

 

the corresponding survival function is  

 

 
( ) ( ) ( ) ( ) ( ) ( )= = + = +

1 2 1 2
1- – -R x F x q p qF x p F x qR x pR x                      (6.4.6) 

 

and the hazard function of the mixture distribution is 

 

( )
( ) ( )
( ) ( )

1 2

1 2

qf x pf x
h x

qR x pR x

+
=

+
                                                                     (6.4.7) 

 

Now using above results, in terms of density function of particular distribution, given 

in equation (6.2.2) one can obtain various characteristics. 

 

6.4.1 Characteristics of the model 

 

 The life time models are generally characterised in terms of its hazard rate 

function, survival function and the mean residual life functions. Below we obtain 

these characteristics and obtain some useful relationship between them. The 

reliability (survival) functions of the respective component distributions are given by  
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                                        (6.4.8) 

 and   

               ( )2 2( )R x F x=                                                                                  (6.4.9) 
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The hazard rates are, respectively, 

0
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1
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h x x x x d
d x x

x x d
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                                                (6.4.10) 

and 
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2

2

2

f x
h x

F x
=                                                                                          (6.4.11) 

 

It can be shown (6.4.10) and (6.4.11) that for any mixture of two continuous 

distributions the hazard rate function can be expressed as  

1 2
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( ) ( ) ( ) [1 ( )] ( )

( )
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h x w x h x w x h x
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= = + −                                            (6.4.12) 
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/w x q R x R x      for all 0x ≥ . In our case, 
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                                            (6.4.13) 

Establishing some interesting relationship between the survival function and hazard 

function through w(x) as follows:   

Since   

 ( ) ( ) ( )=
1

/w x q R x R x     
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( ) ( ) ( ) ( )
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1 1

2

q R x R x R x R x
w x

R x

′ ′−  ′ =
    

 

upon substituting the value of 
 
R(x) from above and simplifying, we get 
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If  the terms, are rearranged one gets  
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Now recall, 
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hence 
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in a similar way, one can show that 

      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 21h x w x h x w x h x w x h x w x h x′ ′ ′ ′ ′= + − +  −         (6.4.15) 

also, since 1 1( ) ( )f x R x= − , one gets 
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which shows that, (6.4.12) is well defined for all x > 0. Thus the summarized 

expression for ( ) ( ),R x h x  and ( )m x , are respectively, given as 
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The mean residual life (MRL) of a random variable X defined for all x as  

                    ( ) ( )
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/

X

X

X

R y dy

xm x E X x X x
R x

∞
∫

= − > =

 

This is the expected additional time to failure given survival to x, which can also be 

expressed in terms of mixture of two MRL’s as  

 

( ) ( ) ( )= +
1 2

m x qm x pm x                                                                              (6.4.18) 

 

where 

 

( )

0
0

0
1 0 0

0

, 0
2

,
2

0,

x x
x x

x d x
m x x x x d

x x d

−
≤ <


+ −

= ≤ < +


> +


                                                             (6.4.19) 

and 

( )
( )

( )

2

2

2

,x

F y dy

m x y d
F x

∞

= >
∫

                                                                        (6.4.20) 

 

6.4.2   Particular Case When (X0 = 0) 

 

 Consider a special case of model (6.4.1) whereby x0 = 0. The model may be 

called the model with “nearly instantaneous failure”.  In this case, (6.4.3) is simplified 

giving the hazard rate of the uniform distribution as 
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( )
1

1

, 0

,

x d
d xh x

x d

≤ ≤ −= 
∞ >

                                                                          (6.4.21) 

 

and its survival rate function is given as 

 

( )1

, 0

0,

d x x d
dR x

x d

− ≤ ≤
= 
 >

                                                                       (6.4.22) 

 

Thus the generalized model with “nearly instantaneous failure” occurring uniformly 

over [0, d] has the survival function 

 

( )
( )

( )

( )

2

2

, 0

,

q d x
pF x x d

R x d

pF x x d

−
+ ≤ ≤

= 
 >

                                                   (6.4.23) 

 

and the hazard function as  

 

( )
( )

( )

( )

2

0

2 0

, 0
-

,

q dpf x
x x d

q d x dph x

f x x x d

+
≤ ≤ +

+= 
 > +

                                                        (6.4.24) 

 

One can study the above characteristics by plotting graphs, with various 

combinations of values of parameters. 

 

6.5   Testing of hypothesis 

 

 Here the interest is to test the hypothesis, whether sample observations 

belong to inliers population against hypothesis that it belongs to target population. 

Refer equation (1.6.1), the hypothesis can be written as  

 

0 :H ξ = φ   versus 0 :H ξ ≠ φ .                                                           (6.5.1) 

 

where ξ  is the common population parameter under study. Below we discuss 

various computationally simple test procedures to detect inliers in a model. 
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6.5.1 Sequential Probability Ratio Test (SPRT)  to detect inliers in the model 

 

 SPRT to test the hypothesis whether a observation belongs to inlier population 

with p.d.f. ( ),g x φ  against hypothesis that it belongs to target population with   p.d.f. 

( ), .f x θ  i.e. equation (6.5.1).  

 

 The likelihood when H1 is true , is given by  

  ( )1

1

,
r

i

i

L f x θ
=

= ∏  

     

  and  under  H0, it is  

 

  ( )φ
=

= ∏0

1

,
r

i

i

L g x

 
 

And likelihood ratio rλ  is given by 1

0

r

L

L
λ =  or equivalently  

 

( )
( )1 1

,
ln ln

,

r r
i

r i

i ii

f x
z

g x

θ
λ

φ= =

= =∑ ∑                                                                   (6.5.2) 

 

For deciding number of inliers we continue to take ordered observations one by one   

till we reject H0. That is 

                    if 
1

log
r

i

i

z B
=

≤∑ accept H0 and take the next observation. 

and 

                   if 
1

log
r

i

i

z A
=

≥∑  reject H0 and stop.    

The corresponding m represents the first observation from target observation and 

hence ˆ 1r r= −
 

are the number of inliers. And 
1

, ,
1

B A
γ γ

α α

−
= =

−
 where α  

represents probability of type I error and γ  represents probability of type II error. Now 

the SPRT procedure is investigated for following special cases. 

 

Case 1: Testing for scale parameter when shape parameter 0 1 .bβ β= =
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 To test: 0 0:H θ θ=   against   1 1:H θ θ=    

0θ
 

and 1θ are the scale parameters of inlier distribution and target distribution 

respectively. 

The test statistics is  

 

[ ] ( )0 0 1

1 0 1

1 1
ln ln ln

r

r

i

r xθλ β θ θ φ
θ θ=

 
= − + − 

 
∑                                         (6.5.3) 

 

Reject  0H  when   

 

( )
[ ]0 0 1

1

0 1

ln ln ln

1 1

r

i

A r
x

β θ θ
φ

θ θ

=

− −
>

 
− 

 

∑                                                              (6.5.4) 

 

 

Case 2: Testing for shape parameter when scale parameter 0 1θ θ θ= = . 

 

 To test  : 0 0:H β β=   against   1 1:H β β=    

0β  and 1β   are the shape parameters of inliers distribution and target distributions 

respectively.  

The test statistics is  

 

[ ] ( )0 1 0 1

1

ln ln ln ln ln
r

r

i

r r x rβλ β β θ φ β β
=

   = − − + −    
∑                       (6.5.5) 

 

Reject  0H  when  

 

 ( )
[ ]

0 1

1 1 0

ln ln ln
ln ln

r

i

A r
x

r

β β
φ θ

β β=

 − − > +
−

∑                                                   (6.5.6) 

 

6.5.2 Most Powerful Test 

 

 For the hypothesis as defined in equation (6.5.1), the most powerful test to 

reject H0  is given by 
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                                                                    (6.5.7) 

Where )(1 xP  and )(0 xP
 

are likelihood functions under distribution of target 

population ℑ  and inlier population  G  respectively Cα  is such that test attains level 

of the test when H0 is true. We reject H0 for large values of the ratio 
( )
( )

1

0

P x

P x
.  

 

Case 1: Testing for scale parameter when shape parameter 0 1 .β β= = b
 

 

 To test   0 0:H θ θ=   against   1 1:H θ θ=   where the parameters are as defined 

before in section (6.5.1). 

The most powerful test is given by    

 

( )
( )

[ ]0 1

1

0 1

log log
1,

1 1

0, .

n

i

C n
x

x

otherwise

α β θ θ
φ

ψ
θ θ
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 − −
>

 
−=   

 


∑
                                                      (6.5.8) 

 

Case 2: Testing for shape parameter when scale parameter 0 1θ θ θ= = . 

 

 To test  : 0 0:H β β=   against   1 1:H β β=    

The most powerful test is given by  

( ) ( )
[ ]

0 1

1 1 0

log log
1, log log

0, .

n

i

C n
x

x n

otherwise

α β β
φ θ

ψ β β=

  − −  > +
=  −



∑                                (6.5.9) 

αC  is such that test attains level of the test when H0 is true. Once αC  is obtained we 

can find power function under alternative hypothesis. 
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6.6   Information  Criterion 

Again three information criteria which are already discussed in section (2.5) are used 

such as Schwarz’s Information criterion (SIC= -2lnL(Θ) + p ln n), Schawarz’s Bayesian 

Information criterion (BIC= -lnL(Θ) + 0.5( p ln n)/n ) and  Hannan-Quinn criterion 

(HQ= -lnL(Θ) + p ln[ln(n)] ) to detect number of inliers. L(Θ) represents the maximum 

likelihood function and p is the number of free parameters that need to be 

estimated under the model.  

 Below we develop the procedure for SIC scheme. We consider the model of 

no inliers as Model SIC(0), where all the observations are from target population. 

Model SIC(r) will denote r observations are inlier and remaining   (n-r) observations 

are from target population. Our aim is to obtain number of inliers in the sample. For 

density in equation (6.2.2) the model with zero inlier is given by 

 

( ) ( ) ( )
( )

1
1 1 1 1

1 1

2

0 2 ln 2 1 ln 2 ln 2ln

n

in
i

i

i

x

SIC n x n n

φ
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=

=

= − − + + +
∑

∑              (6.6.1) 

 
and the model with r inliers is as  
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( ) ( ) ( )
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n

in
i r

i

i r

x

x n r n

φ

β φ β
θ
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= +

− − + − + +
∑

∑                  (6.6.2)

 

 According to the procedure, the model(0) is selected with no inliers if 

( ) ( )
1 1

0 min
r n

SIC SIC r
≤ ≤ −

< . And the model(r) is selected if ( ) ( )
1 1

0 min .
r n

SIC SIC r
≤ ≤ −

>
 
Similarly 

we can find criteria for BIC and HQ. 

 

6.7 Estimation and test for specific distributions 

 
 One can obtain, life distribution, such as, exponential, gamma, Weibull and 

Rayleigh distribution by substituting appropriate form of the parameters. 



- 148 - 

 

 

6.7.1 Exponential model 

 

 If  ( )x xφ =  and 1β =  then (6.2.2) reduces to a one parameter exponential 

distribution with  the MLE under instantaneous failure model for  p and θ  is given as 

 

                ˆ
n r

p
n

−
=        and       

0ˆ
i

x
i

x

n r

>
θ =

−

∑
.                                                      (6.7.1) 

                                                                                        

The MLE under early failure model for  p and θ  is given as 

 

                                ˆ
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−
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−
=  ,    and        ˆ .
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x
i
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δ
θ δ

>
= −

−

∑
                                              (6.7.2) 

The test criteria to test  H0 :   There are no inliers in data set against a single inlier is 

present in the data from exponential distribution is given by  

Reject  H0 

    if       
( )

( )

1

1
i

n

i

x
C

x
=

<

∑
                                                                                           (6.7.3) 

 

where  C  is to be chosen such that  

 

            

( )

( )

1

1
i

n

i

x
P C

x

α

=

 
 
 < =
 
 
 
∑

,  

 

where α  is the size of the test. 

 

6.7.2 Rayleigh model  

 

 If ( ) 2x xφ =  and 1β =  then (6.2.2) reduces to a one parameter Rayleigh 

distribution , and the MLE under instantaneous failure model for p and θ  is given as 
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                               ˆ
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∑
                                                          (6.7.4) 

 

The MLE under early failure model for p̂ and θ̂  is given as 
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p e
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2

2ˆ
i
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δ
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                                           (6.7.5)  

 

To test H0 : all observations are from Rayleigh distribution with parameter θ  against 

a single inlier is present in the data,  is given by  

Reject  H0 

    if       
( )

( )

2

1

2

1
i

n

i

x
C

x
=

<

∑
                                                                                           (6.7.6) 

 

where  C  is to be chosen such that we attain the size of the test under null 

hypothesis. 

 

6.7.3  Weibull model  

 

 If ( ) bx xφ =  and 1β =  then (6.2.2) reduces to a two parameter Weibull 

distribution. The MLE under instantaneous failure model for  p, b and θ  is given as 
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p
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−
=     and      

0ˆ .i
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∑
                                                               (6.7.7)

 
 

and for the estimate of b one has  to solve the following equation       
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                                                (6.7.8)
    

 

similarly the MLE under early failure model for  p and θ  is given as 
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and  for parameter b one has to solve the following equation        
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                                           (6.7.10) 

 

                   The test for presence of single inlier in Weibull family is derived in section 

(6.7.4.1).          
                                       

 

6.7.4  Gamma model  

 

 If  ( )x xφ =  then (6.2.2) reduces to a two parameter Gamma distribution with 

the MLE under instantaneous failure model for  p, β  and θ  is given as 
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        (6.7.11) 
 

 

where  for β  one has to solve the equation 
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The MLE under early failure model for p and θ  is given as 
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ˆ

, ,

n r
p

nF

−
=

δ θ β
                                                                                             (6.7.13) 

 

For getting the estimates of θ β,  the following two equations are obtained, which 

are to be solved simultaneously 
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where 
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δ θ β
θ β

  
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  = −
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The test for single inlier in Gamma distribution is equivalent to that of exponential 

distribution.  
             

 

6.7.4.1   Testing for one inlier in Weibull family  

 

              

 Consider the problem of 
0 : 0H r =

 
(i.e. no inliers ) versus  

0 : 1H r = (i.e. one 

inlier) in data with Weibull  distribution.  The joint pdf under H0 is given by L0 and 

under H1 is given by   L1. Hence  
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and 
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We already know that  
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i
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∑

 under H0 where as under  H1  
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( )
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1

n

i
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∑
 and 

( )1
ˆ .xφ =  

Substituting the above values in equations (6.7.12) and (6.7.13), one can obtain 

likelihood ratio test as      
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The test is to reject H0 if 
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where  C is to be chosen such that  

 

            

( )1
x

P C
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β

α
 
 < =
 
 

,  

 

and α  is the size of the test. For the simulated data from Weibull (0.02, 5) the 

values of C for various size of the test are obtained in table (6.7.1). Using these C 

values power of the test have been obtained in table (6.7.2). For computation of 

power  the data is simulated from Weibull (0.001, 1).  
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Table 6.7.1. Values of C 

α n 

10 30 50 100 

0.01 0.00065 0.00023 0.00015 7.64E-05 

0.025 0.00095 0.00027 0.00016 8.14E-05 

0.05 0.00149 0.00029 0.00017 8.44E-05 

0.10 0.00290 0.00051 0.0002 9.09E-05 

0.25 0.00670 0.00089 0.00038 0.0001 

0.95 0.02343 0.00324 0.00119 0.00036 

0.99 0.03555 0.00499 0.00189 0.00051 

 

 

Table 6.7.2. Power of the test 

n 

10 30 50 100 

0.004 0.005 0.007 0.008 

0.036 0.035 0.046 0.047 

0.083 0.073 0.095 0.098 

0.197 0.234 0.242 0.245 

0.423 0.467 0.492 0.494 

0.888 0.934 0.945 0.947 

0.978 0.991 0.989 0.99 

 

 The  power in above table are found using C  values obtained in table (6.7.1).  

 

6.8   Application 

 

 The data, collected by Amutha and Porchelvan (2009), represents monthly 

rainfall (in mm) during year 2004 and 2006 for the estimation of surface runoff in 
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Malattar Sub-watershed in Andhra Pradesh. The watershed experiences tropical 

monsoon climate with normal temperature, humidity and evaporation throughout 

the year. Runoff is one of the important hydrologic variables used in water resources 

applications and management planning. For gauged watershed accuracy of 

estimation of runoff on land surface and river requires much time and effort.   

 

Set 1 (2004) : 3.40, 0.00, 0.00, 15.80, 232.80, 8.80, 123.20, 47.00, 154.00, 103.20,   

                       89.80 and 12.20. 

 

Set 2 (2006) :  0.00, 0.00, 21.40, 60.20, 53.86, 93.20, 27.80, 45.40, 205.40, 101.20,  

                         128.20 and 0.00.  

 

 Using Kolmogorov-Smirnov test, we have come to the conclusion that 

exponential distribution fits well to above set 1 and set 2. Hence the analysis for the 

data set 1 and 2 is conducted for Exponential and Rayleigh distribution. Estimates of 

parameters with their standard error are calculated for instantaneous failure, early 

failures and nearly instantaneous model shown in the tables below. 

 

 

Table 6.8.1. Instantaneous Failures 

 

Distribution 

 

Parameter 

Set 1 Set 2 

Estimates Standard Error Estimates Standard Error 

 p̂  0.83333 2.68328 0.75 0.012217 

Exponential θ̂  0.01265 0.00400 2.30941 0.003863 

Rayleigh θ̂  
0.000166 5.24224E-05 0.000103011 3.43E-05 
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Table 6.8.2. Early Failures 

 

 

Distribution 

 

 

 

Parameter 

Set 1 

20δ =  

Set 2 

30δ =  

Estimates Standard Error Estimates Standard Error 

 p̂  0.50000 2.00000 0.58333 2.02837 

 

Exponential 

φ̂  0.09950 0.04062 0.04065 0.016595 

θ̂  0.00799 0.00325 0.010182 0.004157 

 

Rayleigh 

φ̂  0.008205 0.00259 0.001624 0.001149 

θ̂  0.00010 3.170E-05 8.126E-05 3.071E-05 

 

 

Table 6.8.3.  Nearly Instantaneous Failures 

 

 

Distribution 

 

 

Parameter 

Set 1 

 δ=20 

Set 2 

δ=21.4 

Estimates Standard Error Estimates Standard Error 

Exponential θ̂  0.01481 0.00428 0.01583 0.00457 

Rayleigh θ̂  
0.000104 3.3E-05 0.000136 3.95E-05 

 

 

 

From above table we can clearly observe that Rayleigh distribution fits better to 

above data sets. 
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6.9     Future Prospects 

 

We have considered the Bayesian approach to inliers problem only for 

exponential model in this chapter. Also considered in this chapter is the inlier 

estimation of mixture of two different distributions from exponential family. This is 

further extended for mixture of any two life testing distributions when inliers are 

encountered. Bayesian method for estimation of parameters of mixture distribution 

of inliers and target population, assuming distribution other than exponential is also   

explored. It is possible to have observations as inliers, target and outliers, thus 

leading to mixture of three densities. The estimation procedure for such a model is 

challenging. We will be pursuing this study in future.  
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Appendix 

Example 1: 

The main reason for detecting early failures is that the inclusion of these 

observations will result in underestimating life expectancy or the reliability of the 

item or system. This in turn may underestimate the true quality of the product. But 

there are situations in which instantaneous or early failures may be desirable. For 

example, consider the following experiment carried by Vannman (1991).  A batch of 

wooden boards is dried by a particular chemical process and the object of the 

experiment is to compare two processes as regards the extent of deformation of 

boards due to checking. The measure of damage to the board is the checking area x 

defined as 100
0hl

dl
x = , where l is the length of the check, d  is the mean depth of 

the check, h is the thickness of the board area and 0l  is the length of the board. Thus 

x is the check area measured as percentage of the board area. The boards are dried 

at the same time under different schedule and under some climatic conditions. 

When drying boards not all of them will get the checks and a typical sample of wood 

contain several observations with 
ix = 0 or 

ix
 
> 0 but relatively small compared to 

the rest of the checks. These observations will correspond to instantaneous failures 

or early failures. Note that the larger the number of instantaneous failures better is 

the process. Below is the reproduced data of Schedule 1 and 2 of Experiment 3 

conducted by Vannman (1991). In both the case n=37. 

 

E-3, S-1: 0=ix , i=1,2,…,13 and the other positive observations arranged in 

increasing order are 0.08, 0.32, 0.38, 0.46, 0.71, 0.82, 1.15,1.23, 1.40, 3.00, 3.23, 

4.03, 4.20, 5.04, 5.36, 6.12, 6.79, 7.90, 8.27, 8.62, 9.50, 10.15, 10.58 and 17.49. 

 

E-3, S-2: 0=ix , i=1,2,…,17 and the other 20 positive observations arranged in 

increasing order are 0.02, 0.02, 0.02, 0.04, 0.09, 0.23, 0.26, 0.37, 0.93, 0.94, 1.02, 

2.23, 2.79, 3.93, 4.47, 5.12, 5.19, 5.39, 6.83 and 8.22. 
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