List of Tables & Figures

<u>Tables</u>		Page No.
Table 1:	Risk factors for atherosclerosis	5
Table 2:	Role of classical atherogenic risk factors as endothelial stressors	26
Table 3:	Non-canonical functions of endogenous HSP60	30
Table 4:	Primer sequences for quantitative PCR	51
<u>Figures</u>		Page No.
Figure 1:	Causes of death in India	3
Figure 2:	An artery showing progressive buildup of atherosclerotic plaque	4.
Figure 3:	LDL particle mainly consists of the cholesterol ester, triglycerides, phospholipids, free cholesterol and ApoB- 100	9
Figure 4:	Stepwise oxidation of LDL to minimally oxidized LDL (mmLDL) and extensively oxidized LDL (OxLDL)	9
Figure 5:	Formation of fatty streak in arterial intima involves LDL accumulation and oxidation, endothelial activation and foam cell formation	12
Figure 6:	Development of atheromatous plaque involves major contribution of VSMCs	15

Figure 7:Destabilization of plaque leading to rupture and thrombosis16

- Figure 8:HSP60 induced autoimmune reactions in atherosclerosis24
- Figure M1: Standardization of PMA induced THP-1 differentiation 40
- Figure M2:Physical map of pCMV-HSPD1-GFPSpark41
- Figure M3: Physical map of pcDNA3.1-HSP60-MycHis 41

<u>Figures</u>

Figure 1.1:	Flow chart of experimental protocol followed for studying HFHF induced atherosclerosis	58
Figure 1.2:	Weight gain and food intake in HFHF diet fed mice	61
Figure 1.3:	Serum lipid profile of HFHF diet fed mice	62
Figure 1.4:	Histological and morphometric analysis of thoracic aorta of HFHF diet fed mice	63
Figure 1.5:	Elastin derangement in thoracic aorta of HFHF diet fed mice	64
Figure 1.6:	Collagen content in thoracic aorta of HFHF diet fed mice	65
Figure 1.7:	Endothelial dysfunction and activation in thoracic aorta of HFHF diet fed mice	66
	Macrophage infiltration in thoracic aorta of HFHF diet fed mice	67
Figure 1.8:	HSP60 expression in thoracic aorta of HFHF diet fed mice	68
Figure 1.9:	HSP10 expression in thoracic aorta of HFHF diet fed mice	69
Figure 2.1:	Schematic representation of experimental protocol followed for studying atherogenic changes in endothelial cells	79
Figure 2.2:	OxLDL induced cytotoxicity in HUVEC	85
Figure 2.3:	HSP60 mRNA expression in OxLDL treated HUVEC	85
Figure 2.4:	HSP60 protein expression in OxLDL treated HUVEC	86
Figure 2.5:	HSP60 overexpression in HUVEC	87
Figure 2.6:	HSP60 secretion in HUVEC	88
Figure 2.7:	Extra-mitochondrial localization of HSP60 in HUVEC	89
Figure 2.8:	Surface localization of HSP60 in HUVEC	90
Figure 2.9:	HSP60 knockdown in HUVEC	91

Figures

Figure 2.10:	HSP60 mediated endothelial dysfunction in HUVEC	92
Figure 2.11:	THP-1 cell adhesion to HUVEC	93
Figure 2.12:	HSP60 mediated expression of adhesion molecules in HUVEC	94
Figure 2.13:	HSP10 expression in HUVEC	95
Figure 2.14:	HSF-1 expression in HUVEC	95
Figure 3.1:	Schematic representation of experimental protocol followed for studying atherogenic events in macrophages.	106
Figure 3.2:	Cytotoxicity of OxLDL in THP-1 MDMs	111
Figure 3.3:	HSP60 expression in OxLDL treated THP-1 MDMs	112
Figure 3.4:	HSP60 secretion in OxLDL treated THP-1 MDMs	113
Figure 3.5:	HSP60 knockdown in THP-1 MDMs	114
Figure 3.6:	OxLDL induced mitochondrial depolarization in THP-1 MDMs	115
Figure 3.7:	OxLDL induced mitochondrial depolarization in HSP60 knockdown MDMs	116
Figure 3.8:	OxLDL uptake in HSP60 knockdown MDMs	117
Figure 3.9:	Scavenger receptors expression in HSP60 knockdown MDMs	118
Figure 3.10:	OxLDL induced polarization of HSP60 knockdown MDMs	119
Figure 3.11:	HSP10 expression in OxLDL treated THP-1 MDMs	120
Figure 3.12:	HSF-1 expression in OxLDL treated THP-1 MDMs	120
Figure 4.1:	Schematic representation of normal and altered photoperiodic regime followed in the study	129

Figures

Figure 4.2:	Flow chart of the experimental protocol followed for studying chronodisruption induced atherosclerosis	131
Figure 4.3:	Weight gain and food intake in mice	135
Figure 4.4:	Serum lipid profile of mice	136
Figure 4.5:	Histology and morphometric analysis of thoracic aorta	137
Figure 4.6:	Elastin autofluorescence in thoracic aorta	138
Figure 4.7:	Collagen content in thoracic aorta	139
Figure 4.8:	Endothelial dysfunction and activation in thoracic aorta	140
Figure 4.9:	Macrophage infiltration in thoracic aorta	141
Figure 4.10:	HSP60 expression in thoracic aorta	142
Figure 4.11:	HSP10 expression in thoracic aorta	143
Figure S1:	An overview of high fat high fructose diet induced pro- atherogenic changes in thoracic aorta of C57BL/6J mice	150
Figure S2:	Summary of HSP60 mediated regulation of OxLDL induced atherogenic changes in HUVEC	153
Figure S3:	Summary of HSP60 mediated regulation of OxLDL induced atherogenic changes in THP-1 monocyte derived macrophages (MDMs)	155
Figure S4:	An overview of atherogenic changes in thoracic aorta of C57BL/6J mice fed with laboratory chow and subjected to photoperiodic manipulation induced chronodisruption (PMCD)	158