CHAPTER-3 MATERIALS AND METHODS

3.1 Study area

Champaner-Pavagadh Archaeological Park is amongst the 33 World Heritage Sites of India which has been inscribed by UNESCO on World Heritage list on 7th July 2004. This place is an example of very short living capital, making the best use of its topography and natural features. This area represents a perfect blend of Hindu-Muslim architecture. Champaner-Pavagadh Archaeological Park is the gateway to Panchmahal district of Gujarat India.

It is located at a distance of approximately 50 kms north-east of The M. S. University of Baroda, Vadodara and 45 km south of Godhra. The area is spread in 1,329 hectares. It is a place of historic importance having palaces, temples, mosques, arches, step wells, forest, agricultural fields, garden, concrete structure, residential area, and hills.

Pavagadh hill is the highest point in the district, rising to a height of 830 m from sea level. At the top of the hill a famous temple of Kalimata is situated, which is a famous religious destination visited by lakhs of pilgrims throughout the year. This area is also surrounded by several small hillocks ranging from 200m-300m in height. The hill has five successive plateaus viz., Naulakhi, Mauliya, Bhadrakali, Machi and Atak plateau. This area has seven major rivers, amongst that the Mahi river is the longest river. The river Vishwamitri originates from Pavagadh hill and flows through Halol before entering Vadodara district.

The climate of Champner-Pavagadh remains dry throughout the year except in the monsoon season. The mean annual temperature in the area is 20° C, with a maximum of 37° C and minimum of 18° C (Annexure 2.). The year may be divided into four seasons; Summer Season (March to Mid June), Monsoon Season (Mid June to September), Post-Monsoon (October to November), winter (December to February). Rainfall is very irregular and erratic. The average annual rainfall ranges between 700 mm to 1024 mm. The relative humidity is high during monsoon; in July reaches up to 50% to 80%.

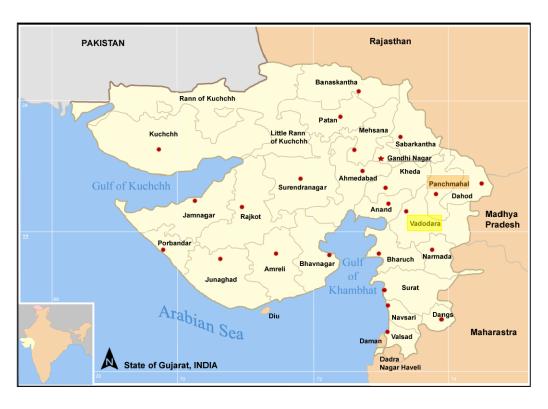



Figure 13: Study Area of Champaner-Pavagadh Archaeological Park

Map Source: Google Map

In the month of January to May humidity is around 30- 40 %. Climatic conditions affect the diversity and ecology of spiders. The study of spider diversity and ecology helps us to know the environmental changes and any type of disturbances in study area.

The composition of the soil varies in Champaner- Pavagadh Archaeological Park. It is chiefly sandy loam and deep black to medium black. The study area generally has very shallow, poor and rocky soils at many places.

3.1.1 Study Period

The study was carried out for a period of 3 years i.e. December, 2015 to December, 2018 in all the four seasons of the year. Spiders are mostly found in all habitats like, forest, garden, agricultural fields, under stone, in leaf litters and are mostly found active in day time. Thus for collection of spiders day time has been considered. The sampling was done in the morning from 7 a.m. to 11 a.m. and 1 p.m. to 5 p.m. under suitable weather conditions.

3.1.2 Sampling Sites

For the convenience of spider diversity study in Champaner-Pavagadh Archaeological Park the entire area was divided into different sub-sites along with slope of Pavagadh hill based on their habitat structure and vegetation types. The coordinates and elevation of each site were taken with the help of the Global positioning system (GPS: Garmin Oregon 550).

The total area of Pavagadh is 6356.98ha, covered under forest which legally constitute reserve forest. It starts from foothill of pavagadh to the top of hill. The total 50 % flora of the study area has mix type of vegetation like climbers, herbs and shrubs (Table 1). The leaf litter layer present in the forest is estimated to be about 2-3 cm thick because many trees and climbers drop their leaves in floor.

Agricultural fields are present at the base of the hill which is a major source of livelihood for the district. In the present study four different agricultural fields were selected for spider study which are economically important crops of Gujarat viz. Pigeonpea, Maize, Cotton and Castor fields (Table 2). The agricultural fields at the base of hill mostly depend on rainy season. Some Portion of agricultural fields is irrigated by man made sources of irrigation.

The garden selected for the study purpose is large with different varieties of plants and shrubs. The area is having ornamental plants like *Chrysanthemum*, *Creepers Ixora*

coccinea, Ocimum sanctum, Jasminum sambac, Vinca rosea, Nerium oleander. It is also surrounded by forest and has monuments and mosques.

3.1.3 Hilly Areas

The study of spider diversity along slope is an interesting topic.

Related to spider diversity along altitude not many detailed studies have been carried out focusing the relationship between species diversity and the height. We have investigated the spider diversity along the slope of Pavagadh hill for three years. The hills were divided into three altitudes i.e. lower altitude (230m to 430m), Middle altitude (430 to 630 m) and higher altitude (630 m to 830m). Selected at a distance of 200 m each on the basis of vegetation, altitude and topographic context.

3.2 Collection Methods

Using single sampling method was not enough. Spiders are found in different habitats. They are foliage weavers, ground weavers, foliage hunters and ground hunters. Therefore a systematic collection was done using different sampling methods as employed in (Koh and Ming, 2013). They were Pitfall sampling, Sweep netting, Vegetation beating, Ground hand collection, Arial hand collection, and Leaf litter method. Sampling was done in the same way in all study sites in all the four seasons. All the methods were done twice in each month except for pitfall traps because pitfalls were not laid in monsoon season due to water flooding issues.

3.2.1 Pitfall Trapping

This method was used to collect ground-active, surface active, leaf litter inhabiting spiders. The pitfall trap was made up of round plastic cup of 10 cm diameter and 11cm depth. Traps were set in the field with ethylene glycol, which retained the spider specimens in good condition before laboratory processing and identification. Maximum 50 traps were placed in study area for 3-15 nights and monitored every 24 hours interval. Specimens were removed from trap after two days to maintain in a good condition. The importance of this method is it allow both diurnal and nocturnal species to be caught in the samples. Number of traps and days varied over the habitat and season.

3.2.2 Sweep-Netting

Sweep nets are mainly used in areas having long grasses, small shrubs, and low herbaceous

and shrubby vegetation. The net was emptied at regular intervals (after three to five sweeps) to avoid loss and destruction of the specimens. For sweep netting, a round sweep net was made of mosquito net (1.5 mm) having a diameter of 28 cm (aluminum ring) and 1 m long handle was used. Each area was sampled by 30-40 sweeps separated by 2 meter interval and the sampling time was kept as one hour for each area.

3.2.3 Vegetation Beating

This method was used for spiders living in the shrub, high herb vegetation, bushes and small trees and branches. Spiders were collected by tapping the vegetation with a heavy stick while holding an umbrella placed under the trees to catch the spiders which were unable to reach or seen hanging above. While on disturbance all the spiders will jump from the vegetation and can be collected in the umbrella. This method was used for 30 minutes at each area (vegetation). All the spiders on the umbrella were collected and transferred to the sampling vials.

3.2.4 Ground Hand Collection

This sampling method was used for collection of spiders which is inhibiting on ground like leaf litter, plant surface, forest floor debris, under logs of wood and stones that were below knee level. Small spiders were collected with the help of a brush dipped in alcohol. Spiders found on the leaf blades and those on the webs were caught in the vial by holding it open beneath them and by tapping the spiders into it with the lid. All the spiders visible on the ground i.e. below knee level were collected in the vial. This method was used for one hour in each area. Ground hand collection method is important sampling method for ground spider.

3.2.5 Arial Hand Collection

The method was targeted for collection of web-building spiders and free-living foliage dwellers. Whenever spiders were encountered, they were carefully picked without injuring them and transferred to plastic vials containing alcohol. It is a sub-type of hand collection method done with the help of forceps, brush and vial. A total of 40-50 samples were taken from each habitat.

3.2.6 Leaf litter Method

This method was employed for ground spiders. Leaf litter from one square meter area was

collected in a polythene bag and was dumped on a white surface to collect the spiders living in the microhabitat. In each habitat 10-15 times it was repeated from different areas. Leaf litter spiders were collected with paintbrush dipped in alcohol and the specimens were placed directly in 70% alcohol.

3.3 Guild Structure

Spider guild structure study was classified on the basis of their ecological characteristics associated with its foraging behavior, prey capturing behaviors, use of microhabitat and daily activity (Table 1). The guild classification of spider was done according to the behavior of collected families during the study period. Spider guild was designated on the basis of ecological characteristic of spiders as per Young & Edward, 1990.

3.4 Web Structure Study of Spiders

The web structure widely found in particular families of spiders was described by Lubin, 1978. The production of silk is a unique characteristic of spiders among other arachnids. Silk is produced from six silk glands which are located beneath the posterior part of abdomen. The web structures of spiders were different in different species to sustain in the environment. Most of the spiders make their web in the evening or at night for capturing their prey and consume their prey in the morning. At the time of collection of spiders the web patterns were also observed.

3.5 Specimen Preservation

After collection spider samples were brought to the laboratory for identification. The alcohol of the samples was changed to avoid contamination of microorganisms. All the samples were transferred to the glass petri plate with 70% alcohol and were sorted out with the help of paint brush and forceps. Spiders were then transferred to separate vial containing 70 % alcohol for further identification and measurements. The sample vials were labeled which includes the specific identity number, family, scientific name, sex, and date of collection, exact name of the habitat of collection and collector's name. All the specimens were deposited in the Entomology laboratory, of the Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 Gujarat.

3.6 Taxonomic Identification

Spider identification was done by observing specimens under stereo-zoom microscope (Leica MPS) with magnification from 20X to 75X in the lab. Spiders at all the stages were identified till genus level because their colour and abdomen patterns are almost same as adult. However species level identification was done in mature specimens because pedipalp and epigyne are well developed .In immature spiders epigyne and pedipalps were not well developed thus cannot be identified till species level. Mature pedipalp and epigyne structure are shown in Figure 10. All the mature female spider's epigynum were dissected and cleaned in lactic acid for 10–15 minutes. After that the structure of epigyne was compared with the available literature. These dissected epigyne were stored in 1 inch long glass microvials plugged with cotton and placed in the respective spider species vial number after identification.

Similarly in case of mature male spiders the pedipalp of left hand side were plucked and its structures were compared with the available literature. All the collected spider identification was done by me till species level and further confirmation was done by renowned Arachnologist Dr. Manju Siliwal, Women Scientist, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand. Standard literatures used for identification of spiders were:World Spider Catalog, 2019;Gajbe, 2008, 2007;Patel, 2003; Reddy & Patel, 1993 Majumdar & Tikader, 1991; Patel & Reddy, 1989; Sethi & Tikader, 1988; Tikader, 1982; Tikader& Biswas, 1981; 1980; Tikader& Patel, 1975;Tikader, 1974; Pocock, R. I., 1900; Pickard-Cambridge, 1870 and other relevant literature.

3.7 Photography

In field spider photography was done using Lumix Panasonic DMC- FZ60 with 24x optical zoom. In case of preserved specimens photography was done by SONY DSC-WX50 camera, which was attached to Stereomicroscope.

Dyer's oleanderCoral SwirlHoomWoolly Dyeing RosebayWild Caper BushOleanderSugar AppleSacred FigIndian GooseberryTamarindBedda Nut Tree
Coral Swirl Hoom Woolly Dyeing Rosebay Wild Caper Bush Oleander Sugar Apple Sacred Fig Indian Gooseberry Tamarind
HoomWoolly Dyeing RosebayWild Caper BushOleanderSugar AppleSacred FigIndian GooseberryTamarind
Woolly Dyeing RosebayWild Caper BushOleanderSugar AppleSacred FigIndian GooseberryTamarind
Wild Caper Bush Oleander Sugar Apple Sacred Fig Indian Gooseberry Tamarind
Oleander Sugar Apple Sacred Fig Indian Gooseberry Tamarind
Sugar Apple Sacred Fig Indian Gooseberry Tamarind
Sacred Fig Indian Gooseberry Tamarind
Indian Gooseberry Tamarind
Tamarind
Bedda Nut Tree
Teak Tree
Golden Rain Tree
Sage Leaved Alangium
Ik. F. Maddimara
Lebbek Tree
Indian Silk Cotton Tree
ou Thorny Staff Tree
. Indian Elm
Ironwood
Manilla Tamarind
Indian Jujube
Bengal Currant
Java Plum
Gatty Gum
Madagascar Plum
Indian Tragacanth
Bidi Leaf Tree

Table 1. Checklist of flora found in study sites of Champaner- Pavagadh Archaeological Park

29	Combretaceae	<i>Terminalia arjuna</i> (Roxb.) W. & A.	Arjun Tree
30	Ehretiaceaea	Cordia dichotoma Frost. F. Prodr.	Indian Cherry
31	Moraceae	Ficus racemosa L.	Cluster Fig
32	Mimosaceae	Albizia odoratissima (L. f.) Bth.	Black Siris
33	Verbenaceae	Vitex negundo L.	Nirgundi
34	Mimosaceae	Acacia auriculiformis A. Cunn.	Earleaf Acacia
35	Ulmaceae	Trema orientalis (L.) Bl.	Indian Charcoal Tree
36	Combretaceae	Terminalia catappa L.	Indian Almond
37	Moraceae	Ficus benghalensis L.	Banyan Tree
38	Caesalpiniaceae	Peltophorum pterocaroum (DC.) K. Heyne	Copperpod
39	Combretaceae	Terminalia crenulata Roth.	Asan
40	Ebenaceae	Diospyros melanoxylon Roxb.	Black Ebony
41	Burseraceae	Garuga pinnata Roxb.	Grey downy balsam
42	Meliaceae	Azadirachta indica A.Juss	Neem Tree
43	Rubiaceae	Mitragyna parvifolia (Roxb.) Korth.	Kaim
44	Anacardiaceae	Buchanania lanzan Spreng.	Almondette
45	Mimosaceae	Acacia leucophloea Willd.	White Bark Acacia
46	Meliaceae	Soymida febrifuga (Roxb.) A. Juss.	Indian Redwood
47	Mimosaceae	Acacia nilotica (L.) Del. Sub sp indica	Babul Bark
48	Verbenaceae	Gmelina arborea L.	Beechwood/ White Teak
49	Rhamnaceae	Zizyphus xylopyra (Retz.) Willd.	Jujab
50	Anacardiaceae	Lannea coromandelica (Houtt.) Herrill.	Indian Ash Tree
51	Rhamnaceae	Zizyphus mauritiana Lam.	Indian Jujube
52	Mimosaceae	Acacia chundra (Roxb. ExRottl.) Willd.	Cutch Tree
53	Sapotaceae	Madhuca indica J. F. Gmel	Indian Butter Tree
54	Rubiaceae	Mitragyna parvifolia (Roxb.) Korth.	Kaim
55	Papillionaceae	Butea monosperma (Lam.)	Flame of the Forest,
56	Bursuraceae	Boswellia serrate Triana & Planch.	Indian Olibanum
57	Caesalpiniaceae	Parkinsonia aculeate L.	Jerusalem Thorn
58	Mimosaceae	Prosopis juliflora Swartz. DC.	Algaroba
59	Myrtaceae	Eucalyptus hybrid (Cittidoraglobulus)	Eucalyptus

60	Rhamnaceae	Zizyphus	Jujube	
61	Papillionaceae	Pongamia pinnata	Indian Beech Tree	
62	Malvaceae	Sida acuta Burm.f.	Wireweed	
63	Umbelifereae	Trachyspermum stictocarpum Wolff.	Bishop's Weed	
64	Tiliaceae	Triumfetta annua L.Mant.	Bur Weed	
65	Euphorbiaceae	Acalypha indica L.	Indian Copperleaf	
66	Malvaceae	Sida veronicaefolia Lam.	Country Mallow	
67	Malvaceae	Sida orientalis Cav.	Prickly Mallow	
68	Asteraceae	Eclipta prostrata (L.)L.Mant.	False Daisy	
69	Asteraceae	Vernonia anthelmintica (L.) Willd.	Purple fleabane	
70	Caesalpiniaceae	Cassia occidentalis L.	Coffee Senna	
71	Araceae	Amorphophallus commutatus (Schott)	Dragon Stalk Yam	
72	Amaranthaceae	Achyranthus aspera L.	Prickly Chaff Flower	
73	Euphorbiaceae	Phyllanthus niruri L.	Gulf Leaf-Flower	
74	Asteraceae	Blumea bifoliata DC.	Blumea	
75	Commelinaceae	Commelina benghalensis L.	Benghal Dayflower	
76	Sterculiaceae	Helictreres isora L.	Indian Screw Tree	
77	Caesalpiniaceae	Cassia tora (L.) Roxb.	Sickle Senna	
78	Cucurbitaceae	Cucumis setosus Cogn.	Cucumber	
79	Convolvulaceae	<i>Ipomea nil</i> (L.) Roth	Ivy Morning Glory	
80	Combretaceae	Combretum ovalifolium Roxb.	Oval-leaved Wheel	
			Creeper	
81	Acanthaceae	Hygrophylla auriculata (Schumach.)	Marsh Barbel	
82	Acanthaceae	Carvia callosa (Wall.) Bremek.	Karvi	
83	Convolvulaceae	Evolvulus alsinoides (Linn.) Linn.	Slender Morning Glory	
84	Musaceae	Ensete superbum Roxb.	Rock Banana/ Wild	
			Plantain	
85	Boraginaceae	Trichodesma indicum (L.) R.Br.	Indian Borage	
86	Malvaceae	Urena lobata L.	Caesar Weed	
87	Caesalpiniaceae	Cassia auriculata L.	Tanner's Cassia	
88	Cucurbitaceae	Luffa acutangula (L.) Roxb.	Ridged Gourd	
r		I		

89	Poaceae	Dendrocalamus strictus	Calcutta Bamboo
90	Liliaceae	Aloe vera (L.) Burm.f.	Aloe Vera
91	Plumbaginaceae	Plumbago zeylanica Linn.	White leadwort
92	Euphorbiaceae	Euphorbia hirta L.	Asthma Weed
93	Poaceae	Dicanthium annulatum Forsk.	Marvel Grass
94	Asteraceae	Sphaeranthus indicus L.	Indian sphaeranthus
95	Acanthaceae	Haplanthus verticillatus Roxb.	Spiny Bottle Bush
96	Umbelifereae	Pimpinella sp.	Hairy Hogweed
97	Acanthaceae	Barleria prionitis L.	Porcupine Flower
98	Molluginaceae	Glinus oppositifolius (L.)Aug.DC.	Jima
99	Asteraceae	Eclipta alba (L.)Hassk.	False Daisy
100	Acanthaceae	Senecio dalzellii Cl.	Daisy

Source: Alpana, V. R. (2015)

Table 2Major crops of the Agricultural fields

Name of the Crop	Month of cultivation	Month of Harvesting
Pigeonpea	June – October	November- March
Maize	June – July	September- October
Cotton	June – August	November- December
Castor	July - August	December -January

STUDY SITE

Figure 14 View of Pavagadh hill area

Figure 15 Pavagadh

Figure 16 Pavagadh hill and forest area

Figure 17 Forest area of Champaner-Pavagadh Archaeological Park

Figure 18 Thick vegetation in forest

Figure 19 Accumulation of leaf litters in the forest

Figure 20 Pigeonpea agricultural field in Champaner-Pavagdh

Figure 21 Agricultural field in the forest area

Figure 22 Garden in Pavagadh

COLLECTION METHODS

Figure 23 Active searching method

Figure 24 Pitfall trap method

Figure 25 Stereo Microscope