Appendix

Table A-I: Percentage of cultivable bacterial phyla (bacterial isolates) retrieved from the RDP database of 16S rRNA gene inventory (https://rdp.cme.msu.edu/hierarchy/hb_intro.jsp) with a search keyword of "subsurface".

	Counts	Percentage
Total bacteria	1637	100
Proteobacteria	941	57.483
Firmicutes	329	20.098
Actinobacteria	305	18.632
Bacteroidetes	34	2.077
Aquificae	11	0.672
unclassified_Bacteria	6	0.367
Thermotogae	4	0.244
Chloroflexi	2	0.122
Deinococcus-Thermus	2	0.122
Fusobacteria	1	0.061
Tenericutes	1	0.061
Verrucomicrobia	1	0.061

Note: The RDP database search with word "Subsurface" and data set options selected as follow: 1) Strain: Both (type and non-type) 2) Source: Isolates 3) Size: Both (≥1200, <1200) 4) Quality: Good. Data retrieved on date 15-06-2020.

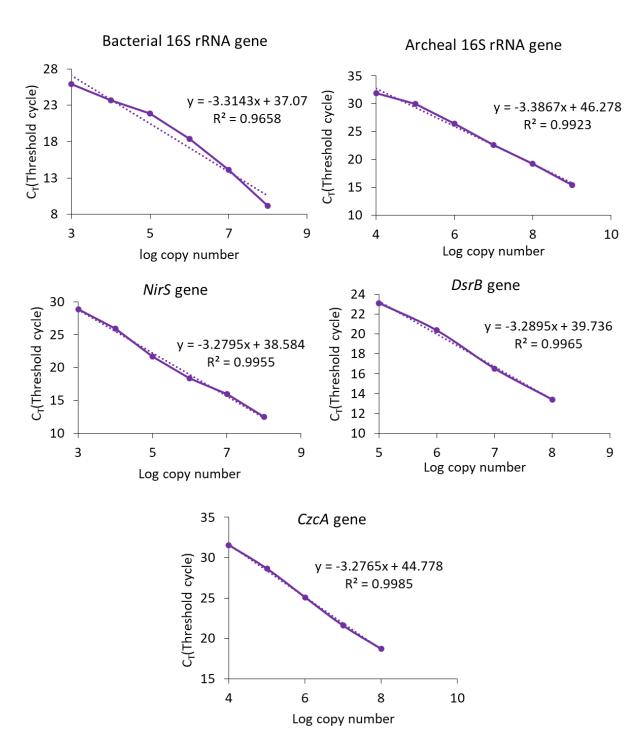
Table A-II: Percentage of unculturable bacterial phyla retrieved from the RDP database of 16S rRNA gene inventory (https://rdp.cme.msu.edu/hierarchy/hb_intro.jsp) with a search keyword of "subsurface".

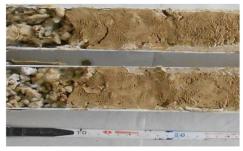
	Counts	Percentage		
Total bacteria	34119	100		
Bacteroidetes	16867	49.436		
Proteobacteria	9610	28.166		
Firmicutes	2549	7.471		
unclassified_Bacteria	1788	5.240		
Acidobacteria	847	2.482		
Actinobacteria	558	1.635		
Chloroflexi	522	1.530		
	347			
Planctomycetes Aquificae	45	1.017		
Thermotogae	9	0.132 0.026		
Deinococcus-Thermus	48	0.026		
Fusobacteria	9	0.141		
	12			
Tenericutes	100	0.035		
Verrucomicrobia		0.293		
Ignavibacteriae	130	0.381		
Nitrospirae	102	0.299 0.249		
Spirochaetes	85			
Gemmatimonadetes	75	0.220		
Aminicenantes	66	0.193		
Candidatus Saccharibacteria	54	0.158		
Cyanobacteria/Chloroplast	50	0.147		
Armatimonadetes	34	0.100		
Elusimicrobia	24	0.070		
Parcubacteria	24	0.070		
Synergistetes	20	0.059		
Latescibacteria	20	0.059		
Caldiserica	18	0.053		
SR1	16	0.047		
Lentisphaerae	13	0.038		
Deferribacteres	11	0.032		
Microgenomates	11	0.032		
Chlorobi	6	0.018		
BRC1	6	0.018		
Marinimicrobia	6	0.018		
Fibrobacteres	5	0.015		
Candidate division ZB3	5	0.015		
Thermodesulfobacteria	4	0.012		
Omnitrophica	4	0.012		
Candidate division WPS-1	4	0.012		
Acetothermia	3	0.009		
Cloacimonetes	3	0.009		
Chlamydiae	2	0.006		
Hydrogenedentes	2	0.006		
Nitrospinae	2	0.006		
Chrysiogenetes	1	0.003		
Atribacteria	1	0.003		
Candidate division WPS-2	1	0.003		
and with word "Cub surface" or	11.			

Note: The RDP database search with word "Subsurface" and data set options selected as follow: 1) Strain: Both (type and non-type) 2) Source: Unculturable 3) Size: Both (≥1200, <1200) 4) Quality: Good; data retrieved on date 15-06-2020.

Table A-III: Summary table of sequence similarity analysis of clones used in qPCR standard curve preparation

Insert (clone) sequence identity	Best match sequence from NCBI database (with accession number)	Query cover	E-value	Percentage identity
Archaeal 16S rRNA gene	Uncultured archaeon clone FAIR_SPR_A08E (KC437286.1)	100%	0.0	97.45%
NirS gene	Pseudomonas stutzeri strain SLG510A3- 8, complete genome- From 3832039 to 3832431 nucleotide [cytochrome cd1 nitrite reductase (nirS) gene Sequence] (CP011854.1)	92%	0.0	99.22%
DsrB gene	Uncultured bacterium clone SJ20-22 dissimilatory sulfite reductase beta subunit (dsrB) gene (MF068050.1)	98%	6e-174	99.13%
CzcA gene	Acidovorax sp. KKS102, complete genome; From 1265099 to 1265301 nucleotide (encode heavy metal efflux pump, czca family protein)(CP003872.1)	87%	8e-62	88.67%




Figure A-I: Standard plots used for absolute quantification of different genes by qPCR.

Estuarine sequence showing thin alternating silt and clay layers.

Core pipe showing fine sand with silt horizons.

Gravel deposit at the base of estuarine sequence and the underlying fluvial sediment deposits

The lower fluvial sequence showing the semicompacted nature of the sediments and palaeosol.

Figure A-II: Representative photographs of splited core liner showing the lithology of sediments present within CRD core.

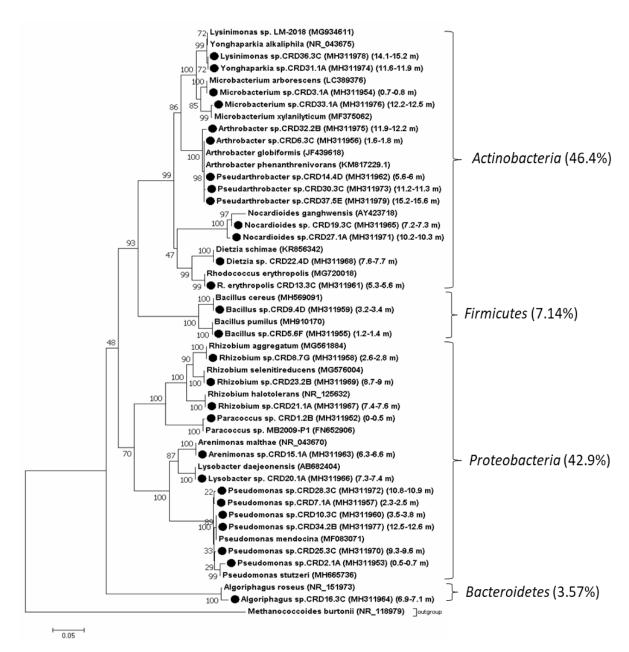


Figure A-III: The phylogenetic relatedness (based on 16S rRNA gene partial sequence) of heterotrophic isolates obtained from different subsurface horizons of the Chokari (CRD) core. The phylogenetic tree was contracted using the Neighbor-Joining method with the Jukes-Cantor algorithm. Isolates obtained in this study are shown in the black circle. Codes in left parentheses correspond to GenBank sequence accession numbers and codes in right parentheses correspond to depth intervals (cm) from which isolates were obtained. Numbers at nodes depict the bootstrap values analyzed with 1000 replicates. *Methanococcoides burtonii* (NR_ 118979) was used as an outgroup. Scale bar represents the number of base substitutions per site.

Silty sand and red palaeosol horizons observed within RYD core

Gravelly layer observed within RYD core

Sand and silt as well as red palaeosol horizons observed within RMD core

Gravelly layer and clay silt horizons observed within RMD core

Figure A-IV: Representative photographs of splited core liner showing the lithology of sediments present within RYD and RMD cores.

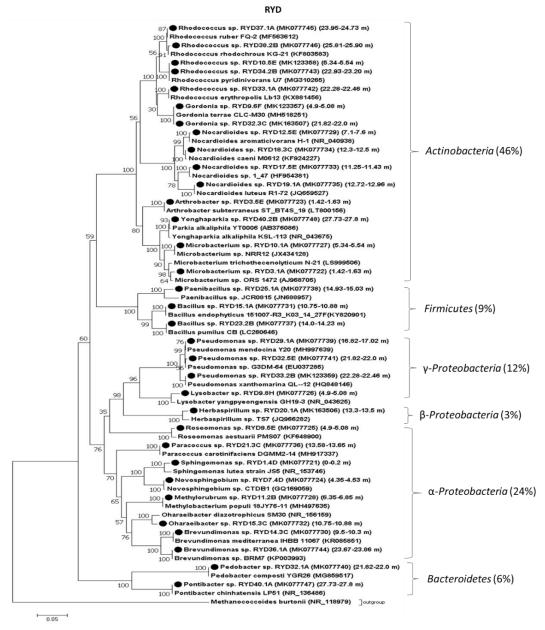


Figure A-V: The phylogenetic relatedness (based on 16S rRNA gene partial sequence) of heterotrophic isolates obtained from different subsurface horizons of the Rayka (RYD) core. The phylogenetic tree was contracted using the Neighbor-Joining method with the Jukes-Cantor algorithm. Isolates obtained in this study are shown in the black circle. Codes in left parentheses correspond to GenBank sequence accession numbers and codes in right parentheses correspond to the depth from which isolates were obtained. Numbers at nodes depict the bootstrap values analyzed with 1000 replicates. *Methanococcoides burtonii* (NR_ 118979) was used as an outgroup. Scale bar represents the number of base substitutions per site.

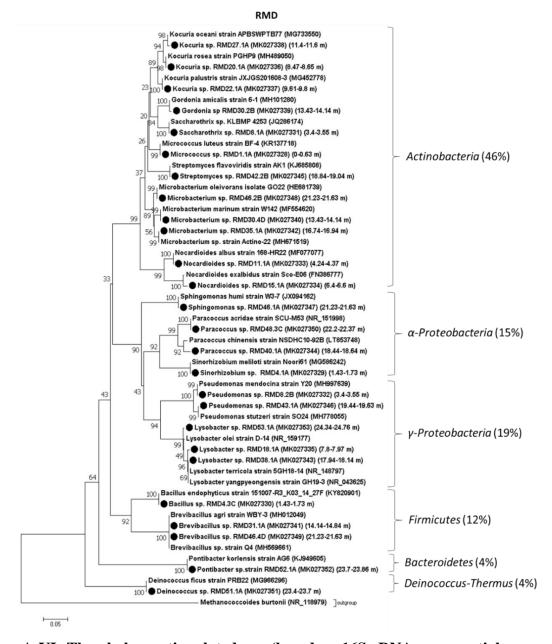


Figure A-VI: The phylogenetic relatedness (based on 16S rRNA gene partial sequence) of heterotrophic isolates obtained from different subsurface horizons of the Rampura (RMD)

core. The phylogenetic tree was contracted using the Neighbor-Joining method with the Jukes-Cantor algorithm. Isolates obtained in this study are shown in the black circle. Codes in left parentheses correspond to GenBank sequence accession numbers and codes in right parentheses correspond to the depth from which isolates were obtained. Numbers at nodes depict the bootstrap values analyzed with 1000 replicates. *Methanococcoides burtonii* (NR_ 118979) was used as an outgroup. Scale bar represents the number of base substitutions per site.