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4.1 Introduction

It is well known that the Konhauser polynomial:

o Lirm+a+1) « ™
Zotn) = N S () gy 0 >

n=0

is the biorthogonal polynomial for the distribution function of the Laguerre
polynomial which was introduced by J. D. E. Konhauser [66, Eq.(5), p. 304].
This polynomial was generalized in the form [78, Eq.(5), p.640]:

| 3

[—]
~ T'lam+ B +1)

— m!

(=m)gn 2"
T(an+ G+ 1) n!’

(4.1.1)

[M]=

Il
=)

n

m m
where «, 5 € C,m,q € N,R(8) > —1 and [—] denotes the integral part of —.

q 4q
The objective here is to provide a matrix extension to this polynomial and derive

certain properties.

4.2 Generalized Konhauser Matrix Polynomial

We propose the extension in matrix form of (4.1.1) as follows.

Definition 4.2.1. For a matriz A in CP*P,

Lm/s]
‘ D(A4+rmI+1) _ (AzF)m
Z4N (g ) = g > (=mI) I A+l +1) (42
n=0

where r, A\, u € C; k € Rug, s € N, m e NU{0}, R(A) >0, R(u) > —1 for all
eigen values p1 € o(A) and the floor function |u| = floor u, represents the

greatest integer < u.

It may be seen that when » = k € N and s = 1, then this polynomial reduces to

ZE (k) = T(kml + A+ 1) Zm: w

n=

knl + A+ T
m —n)n! (knl + A+1)
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which was studied by Varma, Cekim, and Tagdelen [108]. Further if £ = 1, then

this reduces to the Laguerre matrix polynomial [52]:
LN () = Zm: i (A+ 1)y [(A+1),]71 (A2)™
" n! n

For the polynomial (4.2.1), we derive the differential equation, inverse series
relation, the generating function relations, mixed relation etc.

If B; 4+ nl are invertible for all n = 0,1,2,..., then the generalized
hypergeometric matrix function [94, Eq. (2.2), p. 608]:

F(A17A27" ApaBlvBZ7"-7Bq;Z)

> k
_ _ 42
Z (A (B B (B (4.22)
satisfies the matrix differential equation [94, Eq. (2.10), p. 610]:
q p
O1J01+B;— 1) = 2] [0 + A)) | ,Fy(2) = O, (4.2.3)
=1 i=1

where § = zd/dz and O is the zero matrix of order same as the order of the
matrices Ajs and Bjs. Here, if we express the polynomial (4.2.1) in ,F; form
then the equation (4.2.3) will readily yield the differential equation
corresponding to the polynomial (4.2.1). In fact, for r, s € N the polynomial is

expressible in the desired form as below.

[m/s]
(AN k.  TA+rmI+1) (—=mI)gu(A+ 1)1 (AxF)?
Z5 () = - I (A+1) nz% ol

X{E <A4;ﬂ>n }ﬁ (A::%)

Hence, in (4.2.2), setting
p=s,q=r, Ai=(—m+i—1)I/s, Bj=(A+jI)/r, 2= As*z"/r", the

lm/s] (s
FA+rmI+1) m+i—
- M D ST ()

1=

equation immediately leads us to the differential equation for (4.2.1) of order
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mazx.{r+1, s}. It is stated in

d
Theorem 4.2.1. Ifr;s € N and the operator © is defined by O f(x) = %Ef(m)

then U = Zr(,ﬁ’k)(azk; ) satisfies the equation

[{@Q(@ 1+Atﬂ—1>}
—(f—) A P {11 (@ I+#I>}

4.3 Inverse Series Relation

For deriving the inverse series of the matrix polynomial (4.2.1), the following

lemma will be used.

Lemma 4.3.1. If {P,} and {Q.} are finite sequences of matrices in CP*P then

Proof. Let us denote the right hand side of second series by the matrix 7,,, then

substituting the series for ), we get

Using the double series relation (1.3.31), we further get
n n n—j n— j
SO ()
n—1 n n—j n —j
= P, —1)* P;.
2 ) 5 ()

k=0
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Thus, T, = P, and hence, first series implies the second series. The converse part
follows by just interchanging P, and (), in this proof. Hence it is omitted for the
sake of brevity. O

Using this lemma, we now establish the inverse series relation in

Theorem 4.3.1. For a matric A € C**?, r A€ C, s € N, m € NU{0},

[m/s] i
T(A+rml+1 Azk)
24N gk, gy = LA Ml £ 1) E:(—mf)sjf_l(A+rjI+])( ) (431)
m! = 4!

if and only if

(Azk)™
m)!

I= —msI); DY (A + il + 1) Z{) (2% r), (4.3.2)

0

and for m # sl, | € N,
Z —ml); T"YA+ril +1) Z*’ Nk =0, (4.3.3)
7=0

where O 1is the zero matrix of order p.

Proof. We first show that the series (4.3.1) implies both (4.3.2) and (4.3.3). The

proof of (4.3.1) implies (4.3.2) runs as follows.
Denoting the right hand side of (4.3.2) by the matrix =,,, and substituting for

ZJ(»f"A)(Jzk; r) from (4.3.1) and then using the double series relation (1.3.28), we get
En = DA+ rml+ 1) i‘*’: —msl);, L (A+rjl + 1) Z(A”\)(Jck'r)
—m (mS) j 7* )

ms 'L]/SJ k\i
_ A4+ rmlI+1) Z ms[)J Z (—jD)u T-Y A+ ril + 1) ()\:17 )

(ms)! g il
B ms |j/s] F(A+rm[ —+ [) (_1)j+si F_I(A+TZI+ I) (/\xky
- j=0 i=0 (ms — ) (5 — si)! !
B Xm: "R DA+ rmI 4 1) (<1) T A+ il +1) Oty

(ms — si — j)! 5!
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m—1

ZPA+rmI+I) DY A+ril+1)

— g7\ 4!
- ms — si)! !
<ms - 52)

Here the inner sum in the second term on the right hand side vanishes,
(Azk)™
I.
m!
To show further that (4.3.1) also implies (4.3.3), let us substitute for ZJ(»*A”\) (zF;r)

from (4.3.1) to the left hand side of (4.3.3). Then in view of (1.3.28), we get

TI’L

I+ (k)

=

consequently, we arrive at =, =

(—mI); T A+ rjI+ 1) ZY (o r)

M

7=0
m ; Li/s] T )
—1)'m! 1) 1A I+1 »
gt = j I 4!
lm/s| _ . m—si .
m! DY A+ri+I), . i (m—si
n — (m — si)! ! (A7) JZ:; (=1) ( J )

if m # sl, 1 € N. Thus completing the first part. The proof of the converse part
which uses the technique employed in [16], runs as follows.
In order to show that the series (4.3.2) and the condition (4.3.3) together imply

the series (4.3.1), we use Lemma 4.3.1 with
Py=j' T (A+rjl+1) ZJ(f’A)(ZEk;T‘),

and consider one sided relation in the lemma that is, the series on the left hand

side implies the series on the right hand side. Then

m

Q= (=mI); T™HA+rjl + 1) 28 (a*5r) (4.3.4)

DA+ rml+1) Z )j 0, (435)

m!
j=0
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Since the condition (4.3.3) holds, @,, = 0 for m # sl, | € N, whereas

ms

Qms = Z(—msf)j D A+rjl+1) ZJ(»f"A)(wk; T).

=0
Also the series (4.3.2) holds true, whence it follows that

Qus = Y _(=msD); TN A+rjl +1) ZE (2% r)
§=0
1714 I+1
— (ms) ( '_*'Tm + )(/\xk>m
m:

Consequently, the inverse pair (4.3.4) and (4.3.5) assume the form:

ms

(AzF)™  T(A+rml+1) . _
e s) ;(—msl)j I YA+rjl+1)
X ZJ(»f"A) (z%;7)
=
Lm/s]
F(A+rml+1) (—ml);
7 (AN _ i 0.
m (I‘ T’) m) Jz:; (S]) Q J
[m/s] _ .
LA+ rml+1) (—mI)g TV A+ril+1), 4.
- ml 2 51 (A7)’
=0
subject to the condition (4.3.3). O

4.4 Mittag-Lefller Matrix Function

In 2007, a generalization of the Mittag-Leffler function was introduced in the

form [98]:

qu 4.4.1
Zfan—l—ﬁ nl’ ( )

where «, 8,7 € C, R(a, 8,7) >0, g € (0,1) UN. Here we allow ¢ to take value 0
in which case the series retains convergence behavior. Also, if « is allowed to
assume value 0 then with ¢ = 0 and 8 = 1, the reducibility of (4.4.1) to the
exponential function e* occurs. Thus, for ¢ > 0, R(«) > 0,R(5,~) > 0 and
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z € C, the function (4.4.1) yields an instance

; Flom T ﬁ (4.4.2)

We define here the matrix analogues of (4.4.1) and (4.4.2) as follows.

Definition 4.4.1. For A, B € CP*?, R(u) > —1 for all eigen values
peoa(A),reCandseN,

o) n

Efita(2) = Y (B)ul (A4 rnl + ). (4.4.3)
n=0 :

Definition 4.4.2. For A € C**?, r € C, R(u) > —1 for all eigen values
€ o(A),

Erpasi(z Z T YA+l + [) (4.4.4)
n=0
It is interesting to note that putting B = —m/, where m € N and z = A\z¥ in

(4.4.3), and comparing it with the function in (4.2.1), we obtain the relation:

Eﬁﬁ{ff()\:ck) =m! T"HA+rml + I>Zr(,ﬁ’/\)(33k;7”)-

The functions (4.4.3) and (4.4.4) will be used in the generating function relations

derived in the following section.

4.5 Generating Function Relations

We derive the generating function relations for the matrix polynomial

quﬁ”\)(xk; r) in the form of Theorems 4.5.1, 4.5.2 and 4.5.3.

Theorem 4.5.1. Letr € C, s € N and A, B be the matrices in CP*P, R(u) > —1
for all eigenvalues p € o(A), then for |t| < 1,

Z YA+ rmI + 1) Z53V (k) ¢

m=0
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= (=8P B, (At (=) (1 -7).

Proof. Here, substituting the series for Z )( r) from (4.2.1) on the left hand

side, we get

> (B)w TN A+ rml + 1) 252 (k) o
m=0

= Y (B I (A+rml +1)
m=0

X (/\:ck)”tm

D(A +rml + 1) “”fJ ml(—1)I0~Y(A + rnl + 1)
m! — nl(m — sn)!

oo |m/ SJ

_ ZZ ) F (A+m1+1) by,

— sn)!

m=0 n=0

In view of the double series relation (1.3.26), we further get

i(B)m T YA +rml+1) Z89Y (%) o7

_ Z Z (_l)sn(B)m+snF_ (A +rnl + I) ()\xk)ntm—&-sn

= n! m!
o= (B A+ snd ) t™ (— 1) (B)gn ™A + rnd + 1) o
- ZZ m)! n! ()‘xk) t
m=0 n=0
- neat (DB DY (A0l + 1 o
n=0 /'
— — (B)Snr_l(A + T"fl] + I) s —sl\n
= (1-t)") - (AzF(=t)*(1 —t)=*H»  (4.5.1)
n=0 :
= (=077 B (e (=t (1 = 1))
O
Corollary 4.5.1. Ifr € N, then fors <r ors=r-+1,
> (B)w (A+1),} 250 (ak;r) 1
m=0
= (1-t)"
P B B+1 B4 (s—1)1 A+1 A+2] A—{—rl's_s)\kas
s+r 57 S AR s ) r ) r PR r 7TT )
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Proof. For r € N, the infinite series on the right hand side in (4.5.1), takes the

form

()\ikRs)n

(1—¢t)8 A+I; R

This in view of the formula (1.3.23) and the matrix function (4.2.2) leads us to

the corollary. O

If (B),, is dropped from the left hand side of this theorem, then we obtain the

following form.

Theorem 4.5.2. In the usual notations and meaning, there holds the generating

function relation:
ZF YA+ rmI +1) Z(AA (2 7) t™ = €' Eparr (AF(—1)*).
m=0

Proof. The proof follows in a straight forward manner. In fact, by using the

double series relation (1.3.26), we have

F (A+rml + 1) Z5 (%) ¢
m=0
DTN A ol 4 D)
n! (m — sn)!

_ Z Z (=L)"Y (A+rnl +1) (A yrgmtsn

n! ml!

m=0 n=0
N ()T A I A1),
= Z:O—'Z% - (AzF)"t

Again for r € N, we have (cf. [94, Eq. (3.5), p. 619])
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Corollary 4.5.2.

Z (A+1),,, *’A)(a:k;r) tm
m=0
( A+I A+2I A+rl )\mk(—t)5>
= ¢ oF, ) R ; :
T r r rr

Here the proof follows by proceeding as in corollary 6.2.

Next, in the notations and meaning of Theorem 4.5.1, we have

Theorem 4.5.3. Let a and b be complex constants which are not zero

simultaneously, then the generating function relation holds.

oo k
ZZA’\ (ajbn) )(a—irbn) I YA+l +1)t"

n=0

e (1 —bte") ™ Eoparr(Mah(—t)%e™™).
Proof. Beginning with the left hand side, we have

oo ke
Z ZAN ((I—, r) (a+bn)"T Y A+rnl +1)t"

n=0 a + bn>s
oo |n/s] . ) )
_1 57 F 1 A _[ _[ )\ k j .
=22 = : +7."7, T JOr) (a+ bn)"=*7¢"
n=0 j=0 (n—sj)ty
oo 00 _4\s k\iT—1 . A
_ ZZ ((=t)*Az")’T "(A+rjl—|—]) (CL—an;l—ij) o (452)
j J: n!
n=0 5=0
We use here the Lagrange expansion formula [82, Eq. (18), p. 146]:
o0 fn
1—t4'(z) tg Z D" f(@)(9(@)"ony s (t=2/9(2))

n=

by taking f(z) = e(@**)* and g(x) = . Then we find

a+bsj)z > n

: .
= Z(a—i—bSJ + bn) ml

n=0

el
1 — btebz
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Thus (4.5.2) simplifies to

k‘
ZZ(AA ( (a +bn)s’ ) (@ +bn)" T (A+rnl +1)t"

00 I 1(A—|—7"]]—|—[) s e(a-i—bsj):c
= ‘ —t)° A" ————.
: j! ((=t)*Aa%) 1 — bteb=
7=0
This in view of (4.4.4), yields the desired generating function relation. O

Here also for r € N, we have (cf. [94, Eq. (3.14), p. 621])

Corollary 4.5.3. There holds the matrix generating function relation:

i 74 ((L 7“) (a+bn)" (A+ 1)L

— a+bn)s
= " (1 —bte)?
( A+1 A+21 A+rl )\:ck(—t)seb“)
XOFT - ; .

) AR )

T T r rr

4.6 Summation Formulas

We illustrate in this section, the use of the inverse series in deriving some

: . : AN ;
summation formulas. The inverse series of Z7 (z*;r) is

()\I'k)m . F(A—{—rm[—{— I) o 1 X AN/ k.
- I = (ms)] ]Z:;(—msl)jl—‘ (A+rjl+1)Z2" (2% 7). (4.6.1)

If the summation m from 0 to oo is taken on both sides, then we get the

expression:

T4 I I
”m D SN st T (A 4 il 4 D2 ),

m=0 7=0
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Next, re-writing the inverse series (4.6.1) as

|
(Ax®)y™ T = e F(A(; :)7'72] LIRS Z( —msI);T (A +rjl + I)Zﬁ’A(:L'k; ),(4.6.2)

J=0

and then apllying summation m from 0 to co and assuming [Az*| < 1, we get

— m! I'( A I+1
Z m +7“m LIRS Z(—ms])jF_l(A +rjl + ])Zﬁ”\(xk;r),

— Pl
1 )\x - s

Further, multiplying by (B),, and then taking infinite series both sides, yields

Zw(kx’“) = (1— ")~ P

m=0
N (B) D(A+1rml + 1) = ) | |

=3 T s A+ il + DZA ),
m=0 =0

provided that |[Az*| < 1. An interesting summation formula occurs if A = 1 and

the inverse series is multiplied by (C' + I)!

and then the infinite series is
considered. With this, the Bessel matrix function [92, Eq.(1.8), p.267] appears in
the summation formula on the left hand side which is stated below ( cf. [80, Eq.,

p.| with A=k=r=1).

(C+ D PT(A+rmI+1)
(ms)!

P Je@T(C+T) = )

x Y (=msI); T7HA+rjl + 1) 20 (2%;7).

J=0

Also from (4.6.2), we have the finite product formula:

M | ms

=1 m=1 (ms)! =0
The product on the left hand side when simplified, yields the formula:

M om! T(A [+1) &
M RM(M+Y)/2) Hm' (A+rml + )Z(—msI)jF_l(A—l—rjI—i—I)

m=1 §=0

xZﬁ’A(mk; T).

(ms)!



Chapter 4. Generalized Konhauser Matriz Polynomial and its Properties 103

4.7 Differential Recurrence Relation

We recall the generating function relation of Theorem 4.5.2 and put

o0
—e 3

U=y YA+ rnd 4+ DAk,
n=0
Then
2\IJ = ¢ i YA +rnl +1) (kn)z (A"
8]: n=0
= Z YA +rnl +1) n 2" ()"
= ke f: (=)™ D HA+rnl + 1) 2" ()"
“— (n—1)!
= (=1)%kXe'aF 1t f: ﬂF_l(A +rnl + (r+1)1)
B — !
x (Az*t*)™, (4.7.1)
and
Iy i " PN A 4l 4 1) (b)Y (s
ot !

YA+ rnd + 1) (AF) neen?

YA+ rnl +1) (Aa®)" ¢!

0 —1)sn+s
= U+se E —( )' DA+ rnd 4 (r 4 1)1) AmHighnth gsnts
n.
n=0

= U+ (=1)*sAz™t*~ 1etz
n=0

x (Azk )" (4.7.2)

STL

YA+l + (r+ 1))

From (4.7.1) and (4.7.2), we find the partial differential matrix equation:

t t (0 x [0
gq; = (§\P> -7 (%q/> . (4.7.3)
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But since
U = ZF_I(A +nrl 4+ D Z5N (%) 17,
n=0
we have
0 d (AN k. N
ax\If ZF (A+nrl+1) 83:2"* (1) t
and

0

81?\1] ZnF A+nrl+])Z(*‘)(x r) "t

When all the three series are substituted in (4.7.3), we obtain
t o0
- Z T NA +nrl + DZ3Y (kr) ¢
s

1 oo
= — E n T Y (A+nrl + I)Zﬁf’/\)(mk;r) "
s
n=0

r _
— > T A+nrI+1)

n=0

0
£Z7(§M) (ZL’k; r) t"

That is,

1 [e.0]
- ZF (A—i—m*]—r[—l—])ZA V(akr)
s

n=1

—— Zn r! A—I—nrl%—I)Z(AA)(xk r)t"

n=1
+% ST A+l +1) %Z“‘”(mk r) " =0.
n=1

Afetr multiplying both sides by ks I'(A + I), we get

S {kA+ Dy 28N~k (A D)) 2 (o)
n=1

9 (4 n
s (A+1)} o — 2z 2k b 1t = 0.

This ultimately leads us to the differential recurrence relation:

d
sz (A+ D)5t =20 @) + k(A+ D)0y 200 (@)
x

d
=kn (A+1);} an”\)(:ck; ),

(4.7.4)

(4.7.5)
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where n > 1,r € N.
The relation (4.7.4) can also be simplified by multiplying both sides by
['(A+nrl+I). We find the expression:

s diZf{f’)‘) (%) — kn ZEV (@) + k(A + el + 1)) Zné’l’\*) (z%;7) = O. (4.7.6)
T

If we insists that r € C, then the equation (4.7.4) after multiplying by ks, can be

re-written as

st TN A+nrl +1) diZ,(f”\) (2";7) — kn TN A+ nrl + 1) ZU (2% r)
T

kDN A+ nrl —rl + D ZM) (2% r) = O,

This is a differential recurrence relation.

4.8 General Order Derivative

We obtain a general order derivative of 24 Z,(n@)‘)(a:k , 1), with the objective of
deriving a mixed relation in the subsequent section.

For [ € N, we have

d 14 (AA) ¢k
il Zy (e ,r)}
e : PRy
§=0
Now [6]
d . .
@z“’fﬂ =D(A+kjl + DT YA+ kil + I — 1)z TR+
Hence,
d' T A AN,
o 7t 2]
=T(A+rmI+1)> mr—lm + i+ DT(A+ kjl + 1)
= 5!

XD YA+ kjl + 1 —1I) M ATkl
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In the case when k = r, then this further reduces to

d' [ 4 4N, .
e [w Zp (x ,r)]
=T(A+rml+1) Z T DA I T — D) N AR
= (m—=sj)lj!
=47 F(A +rml +1) T(A+rml+1—11) T (A4 rml+1—1I)
[m/s]

S

J . .
A I +1—11)\7 2"
X ; (=3 ']' A+ I+ ) A @

=3 U DA+ rmI+ 1) T YA+ rml +1—11) ZA Y@ r). (48.0)

4.9 Mixed Relation

Theorem 4.9.1. The following mized relation holds.

AT A+ rml + 1) TN A+ rml) Z47N @ ) — AT 285 (27 )

—rma? Z,Sﬁ’ (") + ka*(A+mrI + 1)} Z A’}) (z";1r) =0, (4.9.1)
where the notations carry their usual meaning.
Proof. We put [ =1 in (4.8.1) to get

4 [SCA ZU (" )| = 2T D(A+rml 4+ 1) DY A+ rml) Z8 @7 r).

dx

Here the left hand side may be replaced by its actual expression to get

d
x4 d—Z,Sﬁ’A)(.T/’“, )+ AmA’IZ,Sﬁ”\) (", 1)
T

=2 T(A+rmI+ 1) T YA+ rml) Z45 Y@ ).

In this, by rearranging the terms we obtain

z? % = 2 I T(A+rml+ 1) TN A+ rmI) Z"Y (@ r)

— Az 78N (7 1), (4.9.2)
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Now, re-writing (4.7.6) with k = r, we have

d
ST %Z,Sf’k)(a:’“; r)—rn Z8V @)+ r(A4 el + 1)~ 29 (7 r) = 0(4.9.3)

Using (4.9.2) in (4.9.3) leads us to the desired mixed relation. O

4.10 Contour Integral

Following the work [96, Thm-2.1, p. 125] we obtain below the contour integration
representation of the polynomial Z\/> (x r).

From [96, Eq.(2.3), p.125]), we have

1
I A+rjl+1)= 2m/et_A =l gt
¢

where € is the contour coming from —oo, encircling the origin of the complex
t-plane in the positive direction and then going back to —oc. This enables us to

express the polynomial in integral form as follows.

(AN (K _ (=1 Jopki
Zp () = T(A+rml+1) — T (A+rjl + )Nz
= (m—sj)lj!
= T A+mml+1)Y —————{ — / et = AT gy S N gk
= (m — sj)l! | 2mi
m/s]
_ DA+ rml+ 1) /e A ( 7,”)” Y9y dt,  (4.10.1)
(2mi)m! = 0 !
¢

where Y = A\z* ¢!, The series occuring in the integrand is nothing but the

terminating hypergeometric matrix function ,Fo[*]. Thus, we have

CT(A+rml+1)
(2mi)m!

/ A Fy[——: < sy —m = Y] dt. (4.10.2)
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4.11 Matrix Integral Transform

Using the integral formula (4.11.1), we define Euler (Beta) matrix transform as

follows.

Definition 4.11.1. For the matrices P,QQ € CP*P  a Beta matriz transform may

be defined as

1

B{f(z): P,Q} = /xP—fu )2 f(2) da. (4.11.1)

0
We apply this transform to the polynomial (4.2.1) in the following theorem.

Theorem 4.11.1. If A, P,Q € CP*P, P, () are positive stable matrices, for
q=0,1,2,..., the matrices P+ qlI, Q) are commutative,

P+ql,QQ+ql, P+ Q+ ql are invertible and k,r,s,m € N, then

A _I_ I rm — —
{0k Q) = U Dm ngraprie )
< s;—ml >, < k; P >, S—Tt
X s+kFr+k r 3

<rmA+I= <kEP+Q>;
where the notation A(j; C) carries the meaning as in (1.3.23).
Proof. From (4.11.1),

B {Z(é’k) (ta®:r) : P, Q}

m

1
= /a:P_I(l - :c)Q_IZ,(né”\)(txk; r)dx
0

; Lm/s)
- [ gyt LA AT D) SN L Meanpot (7 4 4 4 1ty

m! n!
0 n=0

m/s) :
FirmI +A+1 —1M) sn,
_ (rm + A+ ) § : ( Wi) F_I(Tn]+A+I)tn/$an+P_I(1—I)Q_Idx
n:

n=0 0

Lm/s]
L(rml+A+1) Z (—m)

m!

m!

n!
n=0
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Lm/s]

TrmI+A+1) (—m)sn 4 "
= — ; DTNl + A+ 1) 17 Dkl + P) T(Q)
xI ' (knl + P + Q)

m/s) n

TR 2 (=)l D (PP + QU D@ (P + @)y

B <A+ Do FPITQI (P4 Q)
m!

g8

< s;—ml >, < k; P »; —t
X sk Frin "
<rmA+1>= =<kP+Q>;

This theorem reduces to the Euler (Beta) transform given in [78, Theorem 9.4

649] when the P, @, A are scalars.

O

» P



