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     Introduction: 

The central nervous system possesses two major types of cells: Neurons and Glia. 

In humans, neurons and glia are roughly equal in number (Azevedo et al., 2009) 

and are interdependent in functions (Barres, 2008). There are 4 types of glial cells 

in CNS viz. oligodendrocytes, astrocytes, microglia and ependymal cells. 

Among all, Astrocytes possess wide spectrum of functions from cradle to grave 

of CNS such as guiding development of neurons and oligodendrocytes by 

releasing neurotrophic factors, contribute to the metabolism of neurotransmitters, 

store glycogen (energy source), provide nutrient support, and so on. 

(Montgomery, 1994; Wang and Bordey, 2008) 

Astrocytes make very important contributions to CNS metabolism. They take up 

glucose from blood vessels and furnish energy metabolites to cells in grey and 

white matters. Mitochondrion is the central organelle for metabolism as it 

contains enzymes for energy molecule- ATP production. In the CNS diseases, 

mitochondrial dysfunction plays a very critical role (Keane et al., 

2011).Mitochondrial dysfunction through glutathione depletion, glutamate 

excitotoxicity, altered gene expression of electron transport chain complexes, 

abnormal Ca
+2 

elevation, oxidative stress, decreased ATP levels are possible 

underlying mechanisms (Pieczenik & Neustadt, 2007; Streck et al., 2014).Recently it 

has also been reported that Astrocytes donate healthy mitochondria to neurons 

after stroke (Hayakawa et al., 2016) thus mitochondrial dysfunction in Astrocytes 

makes neurons also vulnerable to cell death (Voloboueva et al., 2007).  

Methyl-CpG-binding protein 2 (MECP2) is a global transcriptional factor, known 

to regulate wide array of genes positively and negatively depending on the 

genome context in which it is operated.  The electron transport chain (ETC) is 

coded by over 850 nuclear DNA (nDNA) and 37 mitochondrial DNA (mtDNA) 

genes. Recent reports provide an insight into mitochondrial dysfunction by 

altering electron transport chain complexes genes expressions and enzyme 

activities in brain of MeCP2 null mouse (Kriaucionis et al., 2006) and RETT 

syndrome patients (Pecorelli et al., 2013). However, whether MeCP2 altered 

expression causing change in electron transport chain complexes activities in turn 

at what extent affects glial cell functions is still not much clear. Cell mitochondria 

also function as calcium store and release calcium into cytosol according to the 

stimulus which further regulates calcium dependent kinases and calcium 

signalling pathways. There are growing body of evidences that suggest role of 

MeCP2 in calcium homeostasis in neurons (Mironov et al., 2009; Marchetto et 

al., 2010). Cytosolic calcium was found to be higher in resting state preBӧtC 

respiratory neurons in MeCP2
-/y

 mouse model of Rett syndrome (Mironov et al., 

2009). Electron transport chain and mitochondrial calcium signalling are 

interconnected and impairment in any might affect the other. (Nicholls, 2005) 



Astrocytes also act as a bridge between nervous and immune system by 

expressing receptors involved in innate immunity including toll like receptors 

(TLR-2,TLR-4), components of complement system, and MHC-II,B7, CD-40 

receptors which are critical in T-cell activation. Moreover, they release pro-

inflammatory and anti-inflammatory cytokines and chemokines that act as 

immune mediators in cooperation with microglia and provoke adaptive immune 

system (Dong and Benveniste, 2001; Falsig et al., 2006). Increased activation of 

pro-inflammatory cytokines are reported to have deleterious effects in 

neuroinflammatory diseases such as Multiple sclerosis, Parkinson’s disease, 

Alzheimer’s disease, and AIDS dementia (Allan and Rothwell, 2003; Maragakis 

and Rothstein, 2006; Sharma et al., 2010;  Li et al., 2011). Astrocytes bring about 

release of proinflammatory mediators that not only exert paracrine effects in 

neighbouring cells, but also promote autocrine effects thus grounds higher 

astroglial reactivity in response to inflammation (Shih et al., 2006). Astrocytes 

also undergo reactive astrogliosis, a hallmark of many neurodegenerative diseases 

which involves proliferation, morphological changes and enhanced glial fibrillary 

acidic protein (GFAP) expression. Although, astrogliosis is beneficial as it leads 

to the increased production of growth factors and neurotrophins that supports 

neuronal survival and promotes neuronal growth, but on the other hand it forms 

glial scars ultimately which is detrimental for neuronal function (Hatten et al., 

1991; Sofroniew and Vinters, 2010). Thus, the astrocytes have the potential to 

impact both beneficially and detrimentally on surrounding neural and non-neural 

cells. Thus, overall, mitochondrial impairment and inflammation in astrocytes are 

two of many manifestations for causing central nervous system diseases.  

Currently steroidal and non-steroidal drugs are given to patients with such 

diseases but these conventional drugs have not been successful to cure chronic 

inflammatory disorders and long term administration has adverse effects.  

Quercetin, a plant flavonol, is documented to have anti-oxidant (Jackson et al., 

2006; Cevik et al., 2013; Song et al., 2013),anti-inflammatory (Shen et al., 2002; 

Cho et al., 2003, Jackson et al., 2006, Al-Fayez et al., 2006,Bhaskar et al., 2011, 

Zhang et al, 2011), cell protective (Cao et al., 2007; Silva et al., 2008; Yousef et 

al., 2010, Schϋltke et al., 2010,Wang et al., 2011), anti-proliferative (Spencer et 

al., 2003), proliferative and regenerative  (Dihal et al., 2006; Wang et al., 2011; 

Wu et al., 2014) roles in various neuronal and non-neuronal cell types. It can 

traverse through BBB owing to P-glycoprotein transporters and 

lipophilicity.(Spencer, 2008). It is effective in improving mitochondrial 

dysfunctions in Huntington's disease model (Sandhir et al., 2013). It has also been 

found to modulate L-type calcium channel in Pituitary Tumor (GH3) cells and 

Neuronal NG108-15 cells differentially that indicates the ability of Quercetin in 

regulating ion channels dependent on cell type or calcium level(Wu et al.,2003). 

Interestingly, brain derived neurotrophic factor (BDNF) has been found to be 

improving calcium regulation speculated to be mediated by SERCA, Ca
2+

 



ATPase that transfers Ca
2+

 from the cytosol of the cell to the lumen, in MeCP2 

deficient neurons (Mironov et al., 2009). Quercetin has been documented to up 

regulate (BDNF) in Alzheimer mouse model (Hou et al., 2010) and in acute 

hypobaric hypoxia (HH) condition (Liu et al., 2015). Hence, increased BDNF 

expression following quercetin treatment might benefit in impaired calcium 

homeostasis. 

Docosahexenoic acid is the omega-3 polyunsaturated fatty acid (PUFA), found in 

the cell membranes. DHA has been found to have pleiotropic effects and it is 

owing to the multiple target sites. It has been known to have anti-inflammatory 

(Belluzzi et al., 2000), anti-apoptotic, neuroprotective (Lim et al., 2005), anti-

oxidant effects in different conditions in vitro and in vivo (Bourre, 2004). 

Cardiolipin, a mitochondrial inner membrane component interacts with 

cytochrome C, a mobile carrier located between mitochondrial respiratory 

complex III and complex IV. Cardiolipin depletion detaches cytochrome C from 

the inner membrane. DHA accumulates in Cardiolipin and its amount influences 

the electron transport chain efficiency and thus ATP production (Watkins et al., 

1998). DHA regulates intracellular calcium as well (Sergeeva et al., 2005; Begum 

et al., 2012) 

In spite of the extensive data available on the Quercetin and DHA suggesting 

their beneficiary effects in inflammation and mitochondrial functions in other cell 

types, their dose dependent effects in astrocytes is still largely not clear. Thus the 

present study highlights the effects of Quercetin and DHA in mitochondrial 

dysfunction mediated by MeCP2 deficiency and in LPS activated Astrocytes. 

Major Objectives: 

1. To determine the effects of Quercetin on mitochondrial dysfunction 

mediated by MeCP2 deficiency in Astrocytes. 

2.  To determine the effects of DHA on mitochondrial dysfunction mediated by 

MeCP2 deficiency in Astrocytes. 

3. To evaluate anti-inflammatory role of Quercetin on LPS activated 

Astrocytes. 

4. To evaluate anti-inflammatory role of DHA on LPS activated Astrocytes. 

 

Results and Discussion: 

 

1. To determine the effects of Quercetin on mitochondrial dysfunction 

mediated by MeCP2 deficiency in Astrocytes. 

 

To investigate whether Quercetin can modulate gene and/or protein expression 

of mitochondrial respiratory complexes in impaired mitochondria, systematic 

study was carried out. Rat brain cortical astrocytes were isolated following 

established protocol (Chen et al., 2007) and rat C6 glioma cell line (a model for 



Astroglia) was procured from NCCS, Pune. Cells were immuno characterized 

by glial fibrillary acidic protein (GFAP), an astrocyte marker and calcium-

binding adaptor molecule 1(Iba-1), a microglial marker immunostaining and 

purity of astrocytes was observed to be 98-100%. In Rett syndrome mouse 

MeCP2
-/y

model and patients, increased transcript levels of electron transport 

chain complexes, enzyme activities and decreased ATP levels are documented 

(Saywell et al.,2005;Kriaucionis et al.,2006; Pecorelli et al.,2013). MeCP2 

knock down using MeCP2 siRNA was established in the present study. MeCP2 

knock down & mitochondrial complexes impairment were confirmed by semi 

quantifying transcript levels of MeCP2, Uqcrc-1 (complex-3), Ndufv-2 

(complex-1) and GAPDH (internal standard) by RT-PCR, protein levels by 

western blot and respiratory complex-I: NADH: ubiquinone reductase and 

complex-III: Coenzyme Q – cytochrome c reductase enzyme activities assays. 

Uqcrc-1 and Ndufv-2 genes expression were up regulated significantly in 

MeCP2 knock down Astrocytes compared to negative control. Ndufv-2 protein 

level was also increased in MeCP2 deficient Astrocytes. Mitochondrial electron 

transport chain complex- I activity was higher whereas complex-III activity was 

lower compared to control. 

 

To assess the role of Quercetin(QH) in MeCP2 knock down Astrocytes, (25 & 

100 μM) concentrations were selected. After 12h pre-incubation of quercetin, 

MeCP2 siRNA for 24h treatment using hiperfect reagent was carried out as per 

the manufacturer protocol. The gene expression study showed normalized 

Uqcrc1 and Ndufv2 levels in QH treated MeCP2 knockdown while compared to 

MeCP2 knockdown and control groups. BDNF gene expression was observed to 

be reduced in MeCP2 knockdown but it was equivalent to control in QH treated 

MeCP2 knockdown astrocytes. This indicates that Quercetin can regulate 

BDNF expression by sensing the deficiency. GFAP gene expression was also 

down regulated in QH treated MeCP2 knockdown Astrocytes than MeCP2 

knockdown alone. Respiratory electron transport chain complexes protein 

expressions study by western blot and enzyme activities by spectrophotometric 

methods is being carried out in present. 

 

Mitochondrion is one of the calcium stores and study of intracellular calcium is 

an indirect evidence of its functioning. Intracellular calcium was also quantified 

in (25, 50,100 & 200μM) QH treated MeCP2 knockdown C6 glioma cells using 

Cal520AM calcium dye. MeCP2 knock down cells showed significantly high 

cytosolic calcium while compared to negative control whereas 25, 50,100 μM  

Quercetin treated MeCP2 knockdown C6 cells showed respectively p<0. 0.1, 

p<0.1 and p<0.001 lowered [Ca]cyt in comparison to untreated MeCP2 knock 

down cells. 200 μM  Quercetin increases [Ca]cyt in Normal control and MeCP2 

knock down cells but interestingly the[Ca]cyt difference in 200μM QH treated 

MeCP2 knock down cells to normal control is lower than difference between 

normal control and 200μM QH treated control cells. This suggests that 



Quercetin at higher doses also acts in cytosolic calcium concentration dependent 

manner. To ascertain the underlying mechanism of QH’s effect on [Ca]cyt in 

MeCP2 knock down Astrocytes, BDNF transcript level was evaluated as it’s a 

regulator of Calcium channel and one of the target genes for MeCP2. Uqcrc1 

and Ndufv2 transcript levels were also assessed in calcium chelated groups to 

check the interconnected effect of calcium flux on mitochondrial respiratory 

complexes genes expression. 

 

Previous studies have shown increased ROS generation in MeCP2 mutated Rett 

syndrome model (Felice et al., 2014). Since QH is a known antioxidant, (QH 

25, 50,100 & 200 μM) dose dependent effects in MeCP2 knock down C6 

glioma cells were investigated by DCF-DA staining. Fluorimetric intensity 

analyses indicated increased ROS generation in MeCP2 knock down C6 cells. 

QH100 & 200 μM treated MeCP2 knock down C6 cells significantly reduced 

ROS production compared to untreated MeCP2 knock down C6 cells. 

 

Cytosolic calcium was shown to be increased along with apoptosis. To evaluate 

if the increased cytosolic calcium level points to apoptosis, MTT cell viability 

assay was performed. Data showed no cell death in any of the groups. 

 

 

2. To determine the effects of DHA on mitochondrial dysfunction mediated 

by MeCP2 deficiency in Astrocytes 

 

In this study, dose dependent effect of Docosahexaenoic acid (DHA) on 

mitochondrial electron transport chain complexes genes, proteins and enzyme 

activities by RT-PCR, western blot and spectrophotometry respectively in 

MeCP2 knockdown Astrocytes was determined. 25 & 100 μM DHA 

concentrations were selected following the previous published reports (Yang et 

al., 2013).  After DHA 12h pre-treatment, MeCP2 20nM siRNA 24h incubation 

was carried out. The gene expression study showed down regulated Uqcrc1 

levels in 25 & 100 μM DHA treated groups, whereas, it showed up regulated 

Ndufv2 in  100 μM DHA treated and normalized Ndufv2 in 25 μM DHA treated 

while compared to MeCP2 knockdown and control groups. BDNF and GFAP 

gene expression were observed to be equivalent to control in DHA treated 

MeCP2 knockdown astrocytes. These data indicate dose dependent beneficial 

effect of DHA on genes expression of mitochondrial electron transport chain. 

Respiratory electron transport chain complexes protein expressions study by 

western blot and enzyme activities by spectrophotometric methods is also being 

carried out in present as mentioned above. 

 

Intracellular calcium was also quantified in 25, 50,100 &200 μM DHA treated 

MeCP2 knockdown C6 glioma cells as discussed previously. This data shows 

robustly increased cytosolic [Ca] in 25μM DHAtreated MeCP2 knock down 



cells and decreased cytosolic [Ca] in 200μM DHA treated MeCP2 knockdown 

cells. 

 

ROS generation in DHA treated MeCP2 knock down C6 glioma cells show 

highly increased ROS in 25μM DHA treated MeCP2 knockdown cells and 

decreased ROS in 200 μM DHA treated MeCP2 knockdown cells. Thus the 

dose dependent effect of DHA on cytosolic calcium and ROS generation is 

similar. In MTT assay, there was no cell death observed. 

 

3. To evaluate anti-inflammatory role of Quercetin on LPS activated 

Astrocytes. 

 

Quercetin has been already known to down regulate expression of certain pro-

inflammatory cytokines in microglial cell line at 12.5-20μM (Sun et al., 2015) 

but does not affect astrocytes at those lower concentrations. Also, 25 & 50 μM 

Quercetin treated astrocytes showed minor difference in cytokines release 

compared to inflammation induced Astrocytes (Sharma et al., 2007). Hence in 

the present study, effects of higher QH concentrations in LPS treated rat cortical 

astrocytes were determined. Firstly, time dependent (for 30min, 4 h, 8 h, 12 h 

and 24 h) gene expression pattern of pro-inflammatory cytokines IL-1, IL-6, 

TNF-α and other markers Cycloxygenase-2 ( COX-2), hemeoxygenase-1 (HO-

1) and Toll like receptor 4 (TLR4) in 1μg/ml LPS treated astrocytes was 

monitored. 24 h LPS exposure exhibited substantial increase in inflammatory 

markers in other cell types (Ohgami et al., 2003) but the diminished IL-1, IL-6, 

TNF-α and COX-2 transcript levels were observed in present study.  LPS, an 

endotoxin acts through TLR-4 mainly in astrocytes. TLR-4 transcript level 

showed insignificant change in LPS treated groups in comparison to control. IL-

1, IL-6, TNF-α, and COX-2 transcript levels illustrate bell shaped pattern, 

induced expression from 30min to 12 h. The highest expression of cytokines 

and COX-2 were at 8 h time point, henceforth it was considered to examine 

effects of Quercetin doses. 

 

Pro-inflammatory cytokines IL-1, IL-6 and TNF-α were ascertained after 

Quercetin hydrate incubation for 2 h followed by 8 h of LPS exposure. 

Cytokines transcript levels were unaltered at 200 μM or 25 μM Quercetin 

treatments while the levels reduced significantly in 100 or 50 μM doses when 

compared with LPS alone. COX-2 transcript level was also found to be lowered 

at 200, 100 and 50 μM doses and HO-1 level increased at 200, 100 and 25 μM 

doses. TLR-4 transcript level was not increased by 1μg/ml LPS but it was still 

checked in quercetin treated groups to determine if quercetin exert any effect on 

TLR-4 gene expression.TLR-4 transcript level was not changed in LPS or 

quercetin treated groups was observed.  

 



Involvement of multiple signalling molecules operated during inflammation 

makes it a complex mechanism. Inflammation in Astrocytes is reported to be via 

MAPK, NF-ҡB, JAK/STAT and AP-1 pathways (Gorina et al., 2011).  Bacterial 

lipopolysaccharide (LPS) binding to TLR 4 activates MyD88 adaptor which in 

turn causes early activation of NF-ҡB and MyD88 independent activation of 

MAPK. p38 regulates phosphorylation of Stat1 and the transcriptional activity 

of NF-ҡB and thereby influences LPS induced gene expression in Astrocytes 

(Gorina et al., 2011). The pro-inflammatory markers under p38 regulation are 

IL-1β, IL-6, TNF-α, MCP-1, COX-2, iNOS (Lu et al., 2010; Font-Nieves et al., 

2012). In our study, phospho p38 level was found to be lowered at 200, 100 and 

50 μM doses whereas up at 25 μM dose while compared to LPS alone. The 

transcript levels of IL-1β, IL-6, TNF-α, COX-2 were down regulated at either 

200,100 or 50 μM QH but none of them were affected by 25μM quercetin 

which is concomitant with phospho p38 expression. Quercetin causes increased 

phosphorylation of p38 MAPK which also controls Nrf2 pathway at lower 

micromolar doses in LPS induced microglial BV-2 cell line (Sun GY et al., 

2015). In this study, higher phosphorylated p38 expression and also up 

regulated Hemeoxygenase1 (Nrf2 pathway product) at 25μM quercetin dose 

was found. However, significantly increased HO-1 transcripts in higher doses 

suggest more up regulation of Nrf2 pathway or involvement of other pathways 

also in regulation of HO-1 in astrocytes via Quercetin. LPS has been 

documented to cause delayed ERK1/2 activation after 2h (Gorina et al., 2011). 

We also observed no activation of ERK1/2 after 1 h LPS incubation but 

phosphorylated ERK1/2 level was higher in 50,25μM quercetin treated 

astrocytes in 1 h in comparison to LPS alone. ERK regulates IL-1β, IL-6, TNF-

α, MCP-1, iNOS transcription but up regulation of ERK1/2 in quercetin treated 

astrocytes indicated lowering effect only in IL-6 expression at 50μM QH 

whereas no effect on cytokines gene expressions at 25μM QH. Reduced pIKBα 

protein level in 200, 100 and 50 μM Quercetin groups whereas increased level 

in 25μM Quercetin group were seen. Thus, data indicates modulatory effects of 

quercetin on p38, ERK and NFҡB signaling pathways in dose dependent 

manner. 

 

4. To evaluate anti-inflammatory role of DHA on LPS activated Astrocytes. 

 

To examine the effects of Docosahexaenoic acid, an Omega-3 PUFA in 

inflammatory astrocytes, cells were seeded at a density of 5*10
5
/ml and pre-

incubated for 12 h with DHA (100, 25 μM) conjugated to Bovine serum 

albumin (BSA- 1mg/ml) followed by 6 hLPS/IFN-ϒ (LPS-5μg/ml; IFN-ϒ-

100U/ml) treatment. Total RNA was collected and transcript levels of pro-

inflammatory markers were measured as discussed in Objective 3. 100μM DHA 

treated LPS/IFN-ϒ activated astrocytes exhibited significantly higher IL-1, 

COX-2 genes expression whereas IL-6, TNF-α, HO-1 and TLR-4 genes 

expression remained unchanged compared to LPS/IFN-ϒ alone treatment. 



However, 25μM DHA treated LPS/IFN-ϒ activated astrocytes showed down 

regulated IL-1 and TLR-4 genes expression and a subtle difference in IL-6, 

TNF-α, COX-2, HO-1 compared to LPS/IFN-ϒ alone.  Other studies on DHA 

has documented anti-inflammatory role at 100μM, 50 μM doses in other cell 

types which is owing to its direct or indirect effects on phosphorylation of 

signaling molecules (Zhao et al., 2005; Yang et al., 2013). In present study, the 

modulatory effects of DHA on signaling pathways MAPK and NF-kB were also 

ascertained by collecting total protein at 30min and 6 h LPS/IFN-ϒ incubations. 

The phosphorylated ERK1/2 protein expression was found to be increased in 

both (100, 25 μM) DHA and LPS/ IFN-ϒ 30min treated groups whereas it 

decreased at 6 hr time point in comparison to LPS/ IFN-ϒ group. The proteins 

expression of pIKBα, Phospho p38, GFAP, Caspase 3 was also performed by 

western blot analysis. These data showed no significant alteration in expressions 

that is concomitant with the genes expression studies data which showed anti-

inflammatory effects only when compared to LPS/ IFN-ϒ.  The recent genome-

wide studies has also shown that MeCP2 could bind to methylated and 

unmethylated CpG DNA  and facilitate activation or repression of transcription 

depending upon the conditions in which genes are expressed (Ma and Li et al., 

2015; Baubek et al., 2013; Miao et al., 2012). LPS induces MeCP2 expression 

in THP-1 cells and causes inflammation by increasing cytokines release (Ma 

and Li et al., 2015). Thus, lowered MeCP2 expression could be partly 

associated with anti-inflammatory role of a compound. To evaluate the anti-

inflammatory role of DHA in astrocytes, the MeCP2 gene expression was 

assessed by RT-PCR. MeCP2 transcript level was significantly increased in 

LPS/ IFN-ϒ supplemented astrocytes in comparison to control. Interestingly, 

100 μM and 25 μM DHA showed decreased level of MeCP2, but negligible 

anti-inflammatory effect was observed through regulation of pro-inflammatory 

cytokine and enzymes genes expression which is a bit contradicting to the 

previous reports. BDNF (a growth factor), Uqcrc1, Ndufv2 (mitochondrial 

respiratory chain complexes genes) and GFAP (astrogliosis marker) are 

regulated by MeCP2 and these genes also showed altered levels. DHA (100, 25 

μM) did not display highly significant anti-inflammatory effect through 

suppressing pro-inflammatory cytokines and enzymes expression in rat cortical 

astrocytes. 

 

Conclusions: 

In summary, data from current study show anti-oxidant and calcium level 

modulatory effects of Quercetin and DHA in MeCP2 deficient Astrocytes in 

dose dependent manner. Quercetin also exhibits significant anti-inflammatory 

effects in astrocytes by modulating MAPK and NF-ҡB pathways. 
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