

List Of Figures

Figures	Title	Page
Figure 1.1	Schematic illustration of MeCP2 domains and isoforms	2
Figure 1.2	Schematic representation of molecular functions of MeCP2	6
Figure 1.3	Schematic representation of the various post-translational modifications of MeCP2	8
Figure 1.4	Distribution of known phosphorylation sites on MeCP2 protein along its various structural domains.	10
Figure 1.5	Stage wise development of oligodendrocyte progenitor cell to mature myelinatingoligodendrocyte.	15
Figure 1.6	Hypothetical model of regulation of MeCP2 phosphorylation in glial cells	21
Figure 2.1	Flow diagram of isolation and culture of OLGs and astrocytes	24
Figure 2.2	Flow diagram of sub-cellular fractionation	28
Figure 2.3	Flow diagram of chromatin fractionation	30
Figure 3.1	Characterization of glial cells	47
Figure 3.2	MeCP2 expression in oligodendroglial cells	49
Figure 3.3	pS80MeCP2 expression and distribution in N19 oligodendroglial cells.	50
Figure 3.4	Expression of pS421MeCP2 in oligodendrocytes	51

Figure 3.5	pS80MeCP2 expression in immature and mature N19 OLGs:	52
Figure 3.6	Optimization of Cytoplasmic and Nuclear extraction	53
Figure 3.7	Expression and intracellular localization of MeCP2 and the pS80MeCP2 in the OLGs	54
Figure 3.8	Intracellular localization of MeCP2 and the pMeCP2s in the astrocytes by immunostaining	55
Figure 3.9	Expression and intracellular localization of MeCP2 and the pMeCP2s in the astrocytes	56
Figure 3.10	Expression and intracellular localization of MeCP2 and the pMeCP2s in the C6 glioma	57
Figure 3.11	Intracellular localization of MeCP2 and the pMeCP2s in C6 glioma cell line	58
Figure 4.1	MeCP2 S80 phosphorylation by growth factors and ECM in immature OLGs	72
Figure 4.2	Laminin Differentially Regulates the Expression of pS80MeCP2 in Immature and Mature OLGs	74
Figure 4.3	MeCP2 phosphorylation by growth factors and ECM in Astrocytes	76
Figure 4.4	MeCP2 phosphorylation by neurotrophins in Astrocytes	80
Figure 4.5	MeCP2 phosphorylation by neurotrophins in C6 glioma	82
Figure 4.6	LPS treatment increases the GFAP expression in cortical astrocytes	83
Figure 4.7	MeCP2 phosphorylation by LPS in Astrocytes.	87

Figure 5.1	$\alpha 6\beta 1$ -Integrin mediates the LN dependent dephosphorylation of MeCP2 at S80 in OLGs	105
Figure 5.2	CamKII mediates the BDNF dependent phosphorylation of MeCP2 at S421 in Astrocytes	108
Figure 5.3	CamKII mediates the BDNF dependent phosphorylation of pS421 MeCP2 association with chromatin in Astrocytes	109
Figure 5.4	BDNF differentially regulates pMeCP2S80 and pMeCP2S421 expression in C6 glioma	112
Figure 5.5	BDNF treatment lead to differential sub-nuclear distribution of phospho-MeCP2s in C6 glioma	114
Figure 5.6	BDNF treatment affects the binding of phospho MeCP2s to chromatin	115
Figure 5.7	pERK1/2 mediated LPS induced MeCP2 phosphorylation at S421 in Astrocytes	119
Figure 6.1	Diagrammatic representation of the effect of Laminin (LN) on differential phosphorylation of MeCP2 at S80 in oligodendrocytes	122
Figure 6.2	Schematic representation of the effect of BDNF on MeCP2 S421 phosphorylation in astrocytes	123
Figure 6.3	Graphical representation showing the effect of BDNF on MeCP2 phosphorylation at S80 and S421 in C6 glioma cells	124
Figure 6.4	Pictorial representation showing the effect of LPS on phosphorylation of MeCP2 at S421 in Astrocytes	125

List Of Tables

Tables	Title	Page
Table 1.1	Stimuli inducing MeCP2 phosphorylation	12
Table 2.1	Antibodies for immunoflouresence	26
Table 2.2	Antibodies for Immunoblotting	33
Table 2.3	Factors used for cell treatment	34
Table 2.4	Antagonists and concentration for cell treatment	34
Table 4.1	Factors affecting glial cell development	61