5.4 Analysis of the other Factors

In this section of chapter, other factors such as purchase place, frequency of purchase, consistency in paint application, brand preference and reasons for selection of specific brand and source of information etc., are tested across all demographic factors of consumers. All these factors are also tested across all four city as well as overall. Hence, cross sectional tabular formats of analysis are depicted throughout this part of chapter. This portion was covered to support overall model summary as well as to provide insights about consumers' home painting habits. Following is the data interpretation -

Table 5.4.1: Table showing respondents' opinions on harmfulness of breathing VOCs across four cities.

					Harmful	ness of breatl	ning VOC	s				
CITY	Very Ha	armful	Har	mful	Somewha	t Harmful	Not H	armful	Don'	t Know	To	otal
	N	%	N	%	N	%	N	%	N	%	N	%
Vadodara	140	32.3	43	16.8	12	25.0	4	8.0	1	8.3	200	25.0
Ahmedabad	91	21.0	87	34.0	9	18.8	11	22.0	2	16.7	200	25.0
Surat	88	20.3	75	29.3	14	29.2	21	42.0	2	16.7	200	25.0
Rajkot	115	26.5	51	19.9	13	27.1	14	28.0	7	58.3	200	25.0
Total	434	100.0	256	100.0	48	100.0	50	100.0	12	100.0	800	100.0
Chi-Square value					56.338							
p Value (Statistic	is significan	it at 0.05 le	evel)		0.000							

- From above table, it could be observed that majority (32.3%) respondents who believed that breathing VOCs are very harmful for health were from Vadodara followed by Rajkot (26.5%), Ahmedabad (21%) and Surat (20.3%).
- Respondents who believed that breathing VOCs are harmful for health, 34% respondents were from Ahmedabad followed in descending order by Surat (29.3%), Rajkot (19.9%) and Vadodara (16.8%).
- 42% of respondent who believed that breathing VOCs are not harmful for health were from Surat while 29.2% were respondents who believed that breathing VOCs are somewhat harmful.
- It was also observed from high Chi-Square value (56.338) that there was a significant (p = 0.000) difference between opinions of all four cities of Gujarat state. (Ref. Table 5.4.1)

Table 5.4.2: Table showing city wise opinions on harmfulness of breathing VOCs across respondents' age groups.

City*	Age	Very I	Harmful	Harm	ful	Somev Harm		Not Harm	ful	Don Kno	-	Total		Significanc	e #
City	Age	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	<=37	55	39.3	17	39.5	2	16.7	0	.0	0	.0	74	37.0		
V	38-46	55	39.3	17	39.5	1	8.3	0	.0	0	.0	73	36.5	31.009	0.000
	>46	30	21.4	9	20.9	9	75.0	4	100	1	100	53	26.5		
	Total	140	100	43	100	12	100	4	100	1	100	200	100		
	<=37	33	36.3	33	37.9	1	11.1	0	.0	0	.0	67	33.5		
A	38-46	34	37.4	22	25.3	1	11.1	1	9.1	1	50.0	59	29.5	27.274	0.001
	>46	24	26.4	32	36.8	7	77.8	10	90.9	1	50.0	74	37.0		
	Total	91	100	87	100	9	100	11	100	2	100	200	100		
	<=37	42	47.7	23	30.7	0	.0	2	9.5	0	.0	67	33.5		
S	38-46	27	30.7	33	44.0	2	14.3	4	19.0	1	50.0	67	33.5	46.321	0.000
	>46	19	21.6	19	25.3	12	85.7	15	71.4	1	50.0	66	33.0		
	Total	88	100	75	100	14	100	21	100	2	100	200	100		
	<=37	56	48.7	21	41.2	1	7.7	0	.0	0	.0	78	39.0		
R	38-46	37	32.2	11	21.6	2	15.4	3	21.4	1	14.3	54	27.0	45.586	0.000
	>46	22	19.1	19	37.3	10	76.9	11	78.6	6	85.7	68	34.0		
	Total	115	100	51	100	13	100	14	100	7	100	200	100		
	<=37	186	42.9	94	36.7	4	8.3	2	4.0	0	.0	286	35.8		
o	38-46	153	35.3	83	32.4	6	12.5	8	16.0	3	25.0	253	31.6	134.564	0.000
	>46	95	21.9	79	30.9	38	79.2	40	80.0	9	75.0	261	32.6		
	Total	434	100	256	100	48	100	50	100	12	100	200	100		
* V=	Vadodara,	A=Ahm	edabad, S=	Surat, F	R=Rajkot	t, O=Ov	erall;								
# Statis	tic is sign	ificant a	t 0.05 leve	el	-										

- In overall, respondents who said that breathing VOCs were very harmful to their health 42.9% respondents were no more than 37 years of age, 35.3% respondents were of 38 to 46 years of age and 21.9% respondents were above 46 years of age. Moreover, respondents who said that breathing VOCs were harmful for health 36.7 % respondents were of age 37 years or less. Further, 79.2% respondents who said that breathing VOCs were somewhat harmful and 80% respondents who said that breathing VOCs were not harmful were above 46 years of age. While, only 4% respondents who said that breathing VOCs were not harmful and 8.3% respondents who said that breathing VOCs were somewhat harmful were of age 37 years or less. Furthermore, high significant difference (Chi-Square Value = 134.564& p Value = 0.000) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Vadodara, respondents who said that breathing VOCs were very harmful to their health 39.3% respondents were no more than 37 years of age, 39.3% respondents were of 38 to 46 years of age and 21.4% respondents were above 46 years of age. Moreover, respondents who said that breathing VOCs were harmful for health, 39.5% respondents were of age 37 years or

less. Further, only 16.7% respondents who said that breathing VOCs were somewhat harmful and 0% respondents who said that breathing VOCs were not harmful were also no more than 37 years of age. While, 100% respondents who said that breathing VOCs were not harmful and 75% respondents who said that breathing VOCs were somewhat harmful were above 46 years of age. Furthermore, high significant difference (Chi-Square Value = 31.009& p Value = 0.000) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.

- In Ahmedabad, respondents who said that breathing VOCs were very harmful to their health 36.3% respondents were no more than 37 years of age, 37.4% respondents were of 38 to 46 years of age and 26.4% respondents were above 46 years of age. Moreover, respondents who said that breathing VOCs were harmful for health, 37.9% respondents were of age 37 years or less. Further, only 11.1% respondents who said that breathing VOCs were somewhat harmful and 0% respondents who said that breathing VOCs were not harmful were also no more than 37 years of age. While, 90.9% respondents who said that breathing VOCs were somewhat harmful were above 46 years of age. Furthermore, high significant difference (Chi-Square Value = 27.274& p Value = 0.000) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Surat, respondents who said that breathing VOCs were very harmful to their health 47.7% respondents were no more than 37 years of age, 30.7% respondents were of 38 to 46 years of age and 21.6% respondents were above 46 years of age. Moreover, respondents who said that breathing VOCs were harmful for health, 44% respondents were of age of 37 to 46 years. Further, none respondents who said that breathing VOCs were somewhat harmful and 9.5% respondents who said that breathing VOCs were not harmful were also no more than 37 years of age. While, 71.4% respondents who said that breathing VOCs were not harmful were above 46 years of age. Furthermore, high significant difference (Chi-Square Value = 46.321& p Value = 0.000) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.

• In Rajkot, respondents who said that breathing VOCs were very harmful to their health 48.7% respondents were no more than 37 years of age, 32.2% respondents were of 38 to 46 years of age and 19.1% respondents were above 46 years of age. Moreover, respondents who said that breathing VOCs were harmful for health, 41.2% respondents were of age 37 years or less. Further, only 7.7% respondents who said that breathing VOCs were somewhat harmful and 0% respondents who said that breathing VOCs were not harmful were also no more than 37 years of age. While, 78.6% respondents who said that breathing VOCs were not harmful were above 46 years of age. Furthermore, high significant difference (Chi-Square Value = 45.586& p Value = 0.000) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years. (Ref. Table 5.4.2)

Table 5.4.3: Table showing city wise opinions on harmfulness of breathing VOCs across respondents' gender.

				Name													
CITY*	Gender	Very Harn		Harn	nful				mful	_	-	Tota	l	Significa	nce#		
CITT	Genuer	N	%	N	%	N	%	N	%	N	%	N	%	% Chi- Square 71.0 29.0 6.754 100 76.0 24.0 100 70.5 29.5 13.900 72.5 27.5 17.695			
V	Male	103	73.6	31	72.1	5	41.7	2	50.0	1	100.0	142	71.0	6 751	0.140		
V	Female	37	26.4	12	27.9	7	58.3	2	50.0	0	.0	58	29.0	0.734	0.149		
	Total	140	100	43	100	12	100	4	100	1	100	200	100				
A	Male	64	70.3	66	75.9	9	100.0	11	100.0	2	100.0	152	76.0	9 552	0.073		
A	Female	27	29.7	21	24.1	0	.0	0	.0	0	.0	48	24.0	0.332	0.073		
	Total	91	100	87	100	9	100	11	100	2	100	200	100				
s	Male	59	67.0	47	62.7	12	85.7	21	100.0	2	100.0	141	70.5	13 000	0.008		
S	Female	29	33.0	28	37.3	2	14.3	0	.0	0	.0	59	29.5	13.900	0.000		
	Total	88	100	75	100	14	100	21	100	2	100	200	100				
R	Male	73	63.5	38	74.5	13	100.0	14	100.0	7	100.0	145	72.5	17 605	0.001		
K	Female	42	36.5	13	25.5	0	.0	0	.0	0	.0	55	27.5	17.093	0.001		
	Total	115	100	51	100	13	100	14	100	7	100	200	100				
0	Male	299	68.9	182	71.1	39	81.3	48	96.0	12	100.0	580	72.5	23 320	0.000		
U	Female	135	31.1	74	28.9	9	18.8	2	4.0	0	.0	220	27.5	23.329	0.000		
	Total	434	100	256	100	48	100	50	100	12	100	200	100				
* V = '	Vadodara	ı, A=A	Ahmed	abad,	S=Su	rat, R	=Rajko	t, O=	Overal	11;							
# Statisti	c is signific	cant at	0.05 lev	/el	•		•	•	•	•		•		•			

- In overall, 68.9% respondents who said that breathing VOCs were very harmful to health were male and 31.1% were female respondents. Likewise, 71.1% respondents who said that breathing VOCs were harmful to health were male and 28.9% were female respondents. Moreover, 81.3% respondents who said that breathing VOCs were somewhat harmful to health were male and 18.8% were female respondents. While, 96% respondents who said that breathing VOCs were not harmful to health were male and 4% were female respondents. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 23.329 and p value = 0.000) between opinion, regarding harmfulness of breathing VOCs, of male and female respondents from selected cities of Gujarat state.
- In Vadodara, 73.6% respondents who said that breathing VOCs were very harmful to health were male and 26.4% were female respondents. Likewise, 72.1% respondents who said that breathing VOCs were harmful to health were male and 27.9% were female respondents. Moreover, 50% respondents who said that breathing VOCs were not harmful to health were male and 50% were female respondents. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 6.754 and p value = 0.149) between opinion, regarding harmfulness of breathing VOCs, of male and female respondents from Vadodara.

- In Ahmedabad, 70.3% respondents who said that breathing VOCs were very harmful to health were male and 29.7% were female respondents. Likewise, 75.9% respondents who said that breathing VOCs were harmful to health were male and 24.1% were female respondents. Moreover, 100% respondents who said that breathing VOCs were not harmful to health were male. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 8.552 and p value = 0.073) between opinion, regarding harmfulness of breathing VOCs, of male and female respondents.
- In Surat, 67% respondents who said that breathing VOCs were very harmful to health were male and 33% were female respondents. Likewise, 62.7% respondents who said that breathing VOCs were harmful to health were male and 37.3% were female respondents. Moreover, 100% respondents who said that breathing VOCs were not harmful to health were male. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 13.900 and p value = 0.008) between opinion, regarding harmfulness of breathing VOCs, of male and female respondents from Ahmedabad.
- In Rajkot, 63.5% respondents who said that breathing VOCs were very harmful to health were male and 36.5% were female respondents. Likewise, 74.5% respondents who said that breathing VOCs were harmful to health were male and 25.5% were female respondents. Moreover, 100% respondents who said that breathing VOCs were not harmful to health were male respondents. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 17.695 and p value = 0.001) between opinion, regarding harmfulness of breathing VOCs, of male and female respondents from Rajkot. (Ref. Table 5.4.3)

Table 5.4.4: Table showing city wise opinions on harmfulness of breathing VOCs across educational qualification of respondents

					H	Iarmfulı	ess of b	reathing	VOCs						
City	Ed.**	Very I	Harmful	Har	mful	Some Hari		Not H	armful	Don't	Know	То	tal	Signific	cance#
*	Eu.""	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	UG	3	2.1	6	14.0	3	25.0	2	50.0	0	.0	14	7.0		
\mathbf{V}	Gr	52	37.1	18	41.9	6	50.0	2	50.0	1	100	79	39.5	32.065	0.000
	PG	85	60.7	19	44.2	3	25.0	0	.0	0	.0	107	53.5		
	Total	140	100	43	100	12	100	4	100	1	100	200	100		
	UG	8	8.8	14	16.1	4	44.4	7	63.6	2	100	35	17.5		
A	Gr	58	63.7	42	48.3	5	55.6	4	36.4	0	.0	109	54.5	40.712	0.000
PG 25 27.5 31 35.6 0 .0 0 .0 0 .0 56 28.0 Total 91 100 87 100 9 100 11 100 2 100 200 100															
	Total	91	100	87	100	9	100	11	100	2	100	200	100	100	
	UG	10	11.4	17	22.7	4	28.6	7	33.3	0	.0	38	19.0		
S	Gr	57	64.8	34	45.3	10	71.4	13	61.9	2	100	116	58.0	19.814	0.011
	PG	21	23.9	24	32.0	0	.0	1	4.8	0	.0	46	23.0		
	Total	88	100	75	100	14	100	21	100	2	100	200	100		
	UG	9	7.8	11	21.6	8	61.5	5	35.7	2	28.6	35	17.5		
R	Gr	71	61.7	30	58.8	4	30.8	8	57.1	5	71.4	118	59.0	33.581	0.000
	PG	35	30.4	10	19.6	1	7.7	1	7.1	0	.0	47	23.5		
	Total	115	100	51	100	13	100	14	100	7	100	200	100		
	UG	30	6.9	48	18.8	19	39.6	21	42.0	4	33.3	122	15.3		
О	Gr	238	54.8	124	48.4	25	52.1	27	54.0	8	66.7	422	52.8	98.072	0.000
	PG	166	38.2	84	32.8	4	8.3	2	4.0	0	.0	256	32.0		
	Total	434	100	256	100	48	100	50	100	12	100	200	100		
			nedabad, S=			_									
** Edu	icational (Qualificat	ion: UG=	Under (Graduate	Gr. = G	raduate;	PG = Pc	stgradua	te			-		
# Stat	istic is sigi	nificant a	at 0.05 leve	el											

- In overall, respondents who said that breathing VOCs were very harmful to their health 6.9% respondents were undergraduate, 54.8% respondents were graduate and 38.2% respondents were postgraduate. Moreover, respondents who said that breathing VOCs were harmful for health 48.4% respondents were graduate. Further, 39.6% respondents who said that breathing VOCs were somewhat harmful and 42% respondents who said that breathing VOCs were not harmful were also from undergraduate. While, only 4% respondents who said that breathing VOCs were somewhat harmful were postgraduate respondents who said that breathing VOCs were somewhat harmful were postgraduate respondents. Furthermore, high significant difference (Chi-Square Value = 98.072& p Value = 0.000) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate.
- In Vadodara, respondents who said that breathing VOCs were very harmful to their health 2.1% respondents were undergraduate, 37.1% respondents were graduate and 60.7% respondents were postgraduate. Moreover, respondents who said that breathing VOCs were

harmful for health 44.2% respondents were postgraduate. Further, 25% respondents who said that breathing VOCs were somewhat harmful and 50% respondents who said that breathing VOCs were not harmful were also from undergraduate. While, none of the respondents who said that breathing VOCs were not harmful and 25% respondents who said that breathing VOCs were somewhat harmful were postgraduate respondents. Furthermore, high significant difference (Chi-Square Value = 32.065& p Value = 0.000) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate.

- In Ahmedabad, respondents who said that breathing VOCs were very harmful to their health 8.8% respondents were undergraduate, 63.7% respondents were graduate and 27.5% respondents were postgraduate. Moreover, respondents who said that breathing VOCs were harmful for health 48.3 % respondents were graduate. Further, 44.4% respondents who said that breathing VOCs were somewhat harmful and 63.6% respondents who said that breathing VOCs were not harmful were also from undergraduate. While, none of the respondents who said that breathing VOCs were somewhat harmful were postgraduate respondents. Furthermore, high significant difference (Chi-Square Value = 40.712& p Value = 0.000) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate.
- In Surat, respondents who said that breathing VOCs were very harmful to their health 11.4% respondents were undergraduate, 64.8% respondents were graduate and 23.9% respondents were postgraduate. Moreover, respondents who said that breathing VOCs were harmful for health 45.3 % respondents were graduate. Further, 28.6% respondents who said that breathing VOCs were somewhat harmful and 33.3% respondents who said that breathing VOCs were not harmful were also from undergraduate. While, only 4.8% respondents who said that breathing VOCs were somewhat harmful and none of the respondents who said that breathing VOCs were somewhat harmful were postgraduate respondents. Furthermore, high significant difference (Chi-Square Value = 19.814& p Value = 0.011) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate.

• In Rajkot, respondents who said that breathing VOCs were very harmful to their health 7.8% respondents were undergraduate, 61.7% respondents were graduate and 30.4% respondents were postgraduate. Moreover, respondents who said that breathing VOCs were harmful for health 58.8% respondents were graduate. Further, 61.5% respondents who said that breathing VOCs were somewhat harmful and 35.7% respondents who said that breathing VOCs were not harmful were also from undergraduate. While, only 7.1% respondents who said that breathing VOCs were somewhat harmful and 7.7% respondents who said that breathing VOCs were somewhat harmful were postgraduate respondents. Furthermore, high significant difference (Chi-Square Value = 33.581& p Value = 0.000) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate. (Ref. Table 5.4.4)

Table 5.4.5: Table showing city wise opinions on harmfulness of breathing VOCs across occupation of respondent.

				Н	larmfulı	ess of b	reathing	VOCs							
City	Oc.**	Very I	Harmful	Har	mful	Some Hari		Not Ha	ırmful	Don't	Know	То	tal	Signific	cance#
*	Oc.""	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	S	44	31.4	25	58.1	9	75.0	2	50.0	0	.0	80	40.0		
V	В	55	39.3	4	9.3	1	8.3	0	.0	0	.0	60	30.0	26.821	0.001
	P	41	29.3	14	32.6	2	16.7	2	50.0	1	100	60	30.0		
	Total	140	100	43	100	12	100	4	100	1	100	200	100		
	S	28	30.8	36	41.4	5	55.6	9	81.8	2	100	80	40.0		
A	В	31	34.1	28	32.2	1	11.1	0	.0	0	.0	60	30.0	17.066	0.029
	P	32	35.2	23	26.4	3	33.3	2	18.2	0	.0	60	30.0		
	Total	91	100	87	100	9	100	11	100	2	100	200	100		
	S	39	44.3	21	28.0	7	50.0	12	57.1	1	50.0	80	40.0		
S	В	25	28.4	32	42.7	1	7.1	2	9.5	0	.0	60	30.0	16.457	0.036
	P	24	27.3	22	29.3	6	42.9	7	33.3	1	50.0	60	30.0		
	Total	88	100	75	100	14	100	21	100	2	100	200	100		
	S	43	37.4	16	31.4	7	53.8	9	64.3	5	71.4	80	40.0		
R	В	37	32.2	17	33.3	2	15.4	3	21.4	1	14.3	60	30.0	9.990	0.266
	P	35	30.4	18	35.3	4	30.8	2	14.3	1	14.3	60	30.0		
	Total	115	100	51	100	13	100	14	100	7	100	200	100		
	S	154	35.5	98	38.3	28	58.3	32	64.0	8	66.7	320	40.0		
О	В	148	34.1	81	31.6	5	10.4	5	10.0	1	8.3	240	30.0	33.529	0.000
	P	132	30.4	77	30.1	15	31.3	13	26.0	3	25.0	240	30.0		
	Total	434	100	256	100	48	100	50	100	12	100	200	100		
* V =	Vadodara	a, A=Ahı	medabad,	S=Surat	t, R=Raj	kot, O=	Overall	;							
** Oc	cupation :	S = Serv	vice Class;	B = Bu	siness cla	ass; P =	Professi	onals							
# Stat	istic is sigi	nificant a	at 0.05 leve	el			-		-			-			

- In overall, respondents who said that breathing VOCs were very harmful to their health 35.5% respondents were service class, 34.1% respondents were business class and 30.4% respondents were professionals. Moreover, respondents who said that breathing VOCs were harmful for health 38.3 % respondents were service class. Further, 58.3% respondents who said that breathing VOCs were somewhat harmful and 64% respondents who said that breathing VOCs were not harmful were also from service class. While, only 10% respondents who said that breathing VOCs were somewhat harmful and 10.4% respondents who said that breathing VOCs were somewhat harmful were business class respondents. Furthermore, high significant difference (Chi-Square Value = 33.529 & p Value = 0.000) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three occupational groups i.e. service class, business class and professionals.
- In Vadodara, respondents who said that breathing VOCs were very harmful to their health 31.4% respondents were service class, 39.3% respondents were business class and 29.3% respondents were professionals. Moreover, respondents who said that breathing VOCs were

harmful for health 58.1 % respondents were service class. Further, 75% respondents who said that breathing VOCs were somewhat harmful and 50% respondents who said that breathing VOCs were not harmful were also from service class. While, none of the respondents who said that breathing VOCs were not harmful and 8.3% respondents who said that breathing VOCs were somewhat harmful were business class respondents. Furthermore, high significant difference (Chi-Square Value = 26.821 & p Value = 0.001) in opinions regarding harmfulness of breathing VOCs was observed between respondents of Vadodara from three occupational groups i.e. service class, business class and professionals.

- In Ahmedabad, respondents who said that breathing VOCs were very harmful to their health 30.8% respondents were service class, 34.1% respondents were business class and 35.2% respondents were professionals. Moreover, respondents who said that breathing VOCs were harmful for health 41.4 % respondents were service class. Further, 55.6% respondents who said that breathing VOCs were somewhat harmful and 81.8% respondents who said that breathing VOCs were not harmful were also from service class. While, none of the respondents who said that breathing VOCs were not harmful and 11.1% respondents who said that breathing VOCs were somewhat harmful were business class respondents. Furthermore, high significant difference (Chi-Square Value = 17.066 & p Value = 0.029) in opinions regarding harmfulness of breathing VOCs was observed between respondents of Ahmedabad from three occupational groups i.e. service class, business class and professionals.
- In Surat, respondents who said that breathing VOCs were very harmful to their health 44.3% respondents were service class, 28.4% respondents were business class and 27.3% respondents were professionals. Moreover, respondents who said that breathing VOCs were harmful for health 28 % respondents were service class. Further, 50% respondents who said that breathing VOCs were somewhat harmful and 57.1% respondents who said that breathing VOCs were not harmful were also from service class. While, only 9.5% respondents who said that breathing VOCs were somewhat harmful and 7.1% respondents who said that breathing VOCs were somewhat harmful were business class respondents. Furthermore, high significant difference (Chi-Square Value = 16.457 & p Value = 0.000) in opinions regarding harmfulness of breathing VOCs was observed between respondents of Surat from three occupational groups i.e. service class, business class and professionals.

• In Rajkot, respondents who said that breathing VOCs were very harmful to their health 37.4% respondents were service class, 32.2% respondents were business class and 30.4% respondents were professionals. Moreover, respondents who said that breathing VOCs were harmful for health 31.4% respondents were service class. Further, 53.8% respondents who said that breathing VOCs were somewhat harmful and 64.3% respondents who said that breathing VOCs were not harmful were also from service class. While, only 21.4% respondents who said that breathing VOCs were somewhat harmful and 15.4% respondents who said that breathing VOCs were somewhat harmful were business class respondents. Furthermore, no significant difference (Chi-Square Value = 9.99 & p Value = 0.266) in opinions regarding harmfulness of breathing VOCs was observed between respondents of Rajkot from three occupational groups i.e. service class, business class and professionals. (Ref. Table 5.4.5)

Table 5.4.6: Table showing city wise opinions on harmfulness of breathing VOCs across monthly income groups of respondents

					Н	armfulne	ss of breat	thing V	VOCs						
City*	MI**		ery mful	На	ırmful		ewhat mful		Not rmful		on't now	To	otal	Signific	ance#
City"	WII""	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	MI – 1	50	35.7	19	44.2	7	58.3	3	75.0	0	.0	79	39.5		
V	MI – 2	47	33.6	14	32.6	1	8.3	1	25.0	1	100	64	32.0	9.394	0.310
	MI – 3	43	30.7	10	23.3	4	33.3	0	.0	0	.0	57	28.5		
	Total	140	100	43	100	12	100	4	100	1	100	200	100		
	MI – 1	36	39.6	46	52.9	5	55.6	8	72.7	2	100	97	48.5		
A	MI – 2	17	18.7	18	20.7	0	.0	3	27.3	0	.0	38	19.0	14.986	0.059
	MI – 3	38	41.8	23	26.4	4	44.4	0	.0	0	.0	65	32.5		
	Total	91	100	87	100	9	100	11	100	2	100	200	100		
	MI – 1	25	28.4	17	22.7	8	57.1	11	52.4	1	50.0	62	31.0		
\mathbf{S}	MI – 2	28	31.8	21	28.0	4	28.6	8	38.1	1	50.0	62	31.0	19.045	0.015
	MI – 3	35	39.8	37	49.3	2	14.3	2	9.5	0	.0	76	38.0		
	Total	88	100	75	100	14	100	21	100	2	100	200	100		
	MI – 1	18	15.7	12	23.5	2	15.4	1	7.1	1	14.3	34	17.0		
R	MI – 2	57	49.6	23	45.1	6	46.2	7	50.0	5	71.4	98	49.0	4.485	0.811
	MI – 3	40	34.8	16	31.4	5	38.5	6	42.9	1	14.3	68	34.0		
	Total	115	100	51	100	13	100	14	100	7	100	200	100		
	MI – 1	129	29.7	94	36.7	22	45.8	23	46.0	4	33.3	272	34.0		
O	MI – 2	149	34.3	76	29.7	11	22.9	19	38.0	7	58.3	262	32.8	20.018	0.010
	MI – 3	156	35.9	86	33.6	15	31.3	8	16.0	1	8.3	266	33.3		
	Total	434	100	256	100	48	100	50	100	12	100	200	100		
* V = V	Vadodara,	A=Ahm	edabad,	S=Sura	t, R=Rajkot,	O= Ove	all;								
** Mo	nthly Incor	ne : MI	[-1:<=2	29166.6	7, MI – 2: 2	9166.68-	46250.00, I	MI - 3	: >46250.	.00					
# Statis	stic is signi	ificant a	at 0.05 le	vel											

In overall, respondents who said that breathing VOCs were very harmful to their health 29.7% respondents had monthly income no more than Rs.29166.67, 34.3% respondents had monthly income between Rs.29166.67 to Rs.46250 and 35.9% respondents had monthly income above Rs.46250. Moreover, respondents who said that breathing VOCs were harmful for health 33.6% respondents had monthly income above Rs.46250. Further, 45.8% respondents who said that breathing VOCs were somewhat harmful and 46% respondents who said that breathing VOCs were not harmful had monthly income below Rs.29166.68. While, only 16% respondents who said that breathing VOCs were not harmful and 31.3% respondents who said that breathing VOCs were somewhat harmful had monthly income above Rs.46250. Furthermore, high significant difference (Chi-Square Value = 20.018 & p Value = 0.010) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250.

- In Vadodara, respondents who said that breathing VOCs were very harmful to their health 35.7% respondents had monthly income no more than Rs.29166.67, 33.6% respondents had monthly income between Rs.29166.67 to Rs.46250 and 30.7% respondents had monthly income above Rs.46250. Moreover, respondents who said that breathing VOCs were harmful for health 23.3% respondents had monthly income above Rs.46250. Further, 58.3% respondents who said that breathing VOCs were somewhat harmful and 75% respondents who said that breathing VOCs were not harmful had monthly income below Rs.29166.68. While, only none of the respondents who said that breathing VOCs were somewhat harmful had monthly income above Rs.46250. Furthermore, no significant difference (Chi-Square Value = 9.394& p Value = 0.310) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250.
- In Ahmedabad, respondents who said that breathing VOCs were very harmful to their health 39.6% respondents had monthly income no more than Rs.29166.67, 18.7% respondents had monthly income between Rs.29166.67 to Rs.46250 and 41.8% respondents had monthly income above Rs.46250. Moreover, respondents who said that breathing VOCs were harmful for health 52.9% respondents had monthly income below Ra. 29166.68. Further, 58.3% respondents who said that breathing VOCs were somewhat harmful and 72.7% respondents who said that breathing VOCs were not harmful had monthly income below Rs.29166.68. While, only none of the respondents who said that breathing VOCs were not harmful and 44.4% respondents who said that breathing VOCs were somewhat harmful had monthly income above Rs.46250. Furthermore, no significant difference (Chi-Square Value = 14.986& p Value = 0.059) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250.
- In Surat, respondents who said that breathing VOCs were very harmful to their health 28.4% respondents had monthly income no more than Rs.29166.67, 31.8% respondents had monthly income between Rs.29166.67 to Rs.46250 and 39.8% respondents had monthly income above Rs.46250. Moreover, respondents who said that breathing VOCs were harmful for health 49.3% respondents had monthly income above Rs.46250. Further, 57.1% respondents who

said that breathing VOCs were somewhat harmful and 52.4% respondents who said that breathing VOCs were not harmful had monthly income below Rs.29166.68. While, only 9.5% respondents who said that breathing VOCs were not harmful and 14.3% respondents who said that breathing VOCs were somewhat harmful had monthly income above Rs.46250. Furthermore, significant difference (Chi-Square Value = 19.045 & p Value = 0.015) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250.

• In Rajkot, respondents who said that breathing VOCs were very harmful to their health 15.9% respondents had monthly income no more than Rs.29166.67, 49.6% respondents had monthly income above Rs.46250. Moreover, respondents who said that breathing VOCs were harmful for health 31.4% respondents had monthly income above Rs.46250. Further, 15.4% respondents who said that breathing VOCs were somewhat harmful and 7.1% respondents who said that breathing VOCs were not harmful had monthly income below Rs.29166.68. While, 42.9% respondents who said that breathing VOCs were not harmful and 38.5% respondents who said that breathing VOCs were not harmful had monthly income above Rs.46250. Furthermore, no significant difference (Chi-Square Value = 4.485& p Value = 0.811) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250. (Ref. Table 5.4.6)

Table 5.4.7: Table showing city wise opinions on harmfulness of breathing VOCs across per capita Income groups of respondents

					Н	armfuln	ess of br	eathing	VOCs						
City	PCI**	Very I	Harmful	Har	mful	Some Har		Not Ha	armful		on't now	То	tal	Signific	ance#
		N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	Low	47	33.6	12	27.9	7	58.3	3	75.0	0	.0	69	34.5		
V	Mod.	43	30.7	16	37.2	0	.0	1	25.0	1	100	61	30.5	12.642	0.125
	High	50	35.7	15	34.9	5	41.7	0	.0	0	.0	70	35.0		
	Total	140	100	43	100	12	100	4	100	1	100	200	100		
	Low	31	34.1	47	54.0	5	55.6	9	81.8	2	100	94	47.0		
A	Mod.	26	28.6	16	18.4	1	11.1	2	18.2	0	.0	45	22.5	17.165	0.028
	High	34	37.4	24	27.6	3	33.3	0	.0	0	.0	61	30.5		
	Total	91	100	87	100	9	100	11	100	2	100	200	100		
	Low	26	29.5	17	22.7	10	71.4	10	47.6	2	100	65	32.5		
S	Mod.	27	30.7	23	30.7	3	21.4	8	38.1	0	.0	61	30.5	23.782	0.002
	High	35	39.8	35	46.7	1	7.1	3	14.3	0	.0	74	37.0		
	Total	88	100	75	100	14	100	21	100	2	100	200	100		
	Low	29	25.2	11	21.6	5	38.5	1	7.1	3	42.9	49	24.5		
R	Mod.	52	45.2	27	52.9	5	38.5	7	50.0	4	57.1	95	47.5	8.136	0.420
	High	34	29.6	13	25.5	3	23.1	6	42.9	0	.0	56	28.0		
	Total	115	100	51	100	13	100	14	100	7	100	200	100		
	Low	133	30.6	87	34.0	27	56.3	23	46.0	7	58.3	277	34.6		
О	Mod.	148	34.1	82	32.0	9	18.8	18	36.0	5	41.7	262	32.8	25.035	0.002
	High	153	35.3	87	34.0	12	25.0	9	18.0	0	.0	261	32.6		
	Total	434	100	256	100	48	100	50	100	12	100	200	100		
* V=	Vadodar	a, A=Ah	medabad,	S=Sura	t, R=Raj	kot, O=	Overall	;							
			ME : Mo					•	•						
# Stat	istic is sign	nificant a	at 0.05 leve	el											

- In overall, respondents who said that breathing VOCs were very harmful to their health 30.6%
- respondents had low per capita income, 34.1% respondents had moderate per capita income and 35.3% respondents had high per capita income. Moreover, respondents who said that breathing VOCs were harmful for health 34% respondents had high per capita income. Further, 56.3% respondents who said that breathing VOCs were somewhat harmful and 46% respondents who said that breathing VOCs were not harmful had low per capita income. While, none of the respondents who said that breathing VOCs were not harmful and 18% respondents who said that breathing VOCs were somewhat harmful had high per capita income. Furthermore, high significant difference (Chi-Square Value = 25.035 & p Value = 0.002) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three per capita income groups i.e. low, moderate and high.
- In Vadodara, respondents who said that breathing VOCs were very harmful to their health 33.6% respondents had low per capita income, 30.7% respondents had moderate per capita income and 35.7% respondents had high per capita income. Moreover, respondents who said

that breathing VOCs were harmful for health 37.2% respondents had moderate per capita income. Further, 58.3% respondents who said that breathing VOCs were somewhat harmful and 75% respondents who said that breathing VOCs were not harmful had low per capita income. While, none of the respondents who said that breathing VOCs were not harmful and 41.7% respondents who said that breathing VOCs were somewhat harmful had high per capita income. Furthermore, no significant difference (Chi-Square Value = 12.642 & p Value = 0.125) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three per capita income groups i.e. low, moderate and high.

- In Ahmedabad, respondents who said that breathing VOCs were very harmful to their health 34.1% respondents had low per capita income, 28.6% respondents had moderate per capita income and 37.4% respondents had high per capita income. Moreover, respondents who said that breathing VOCs were harmful for health 54% respondents had low per capita income. Further, 55.6% respondents who said that breathing VOCs were somewhat harmful and 81.8% respondents who said that breathing VOCs were not harmful had low per capita income. While, only 18.2% respondents who said that breathing VOCs were not harmful and 11.1% respondents who said that breathing VOCs were somewhat harmful had high per capita income. Furthermore, high significant difference (Chi-Square Value = 17.165 & p Value = 0.028) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three per capita income groups i.e. low, moderate and high.
- In Surat, respondents who said that breathing VOCs were very harmful to their health 29.5% respondents had low per capita income, 30.7% respondents had moderate per capita income and 39.8% respondents had high per capita income. Moreover, respondents who said that breathing VOCs were harmful for health 46.7% respondents had high per capita income. Further, 71.4% respondents who said that breathing VOCs were somewhat harmful and 47.6% respondents who said that breathing VOCs were not harmful had low per capita income. While, 14.3% respondents who said that breathing VOCs were not harmful and 7.1% respondents who said that breathing VOCs were not harmful had high per capita income. Furthermore, high significant difference (Chi-Square Value = 23.782 & p Value = 0.002) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three per capita income groups i.e. low, moderate and high.

• In Rajkot, respondents who said that breathing VOCs were very harmful to their health 25.2% respondents had low per capita income, 45.2% respondents had moderate per capita income and 29.6% respondents had high per capita income. Moreover, respondents who said that breathing VOCs were harmful for health 52.9% respondents had moderate per capita income. Further, 38.5% respondents who said that breathing VOCs were somewhat harmful and 50% respondents who said that breathing VOCs were not harmful had moderate per capita income. While, 42.9% respondents who said that breathing VOCs were not harmful and 23.1% respondents who said that breathing VOCs were somewhat harmful had high per capita income. Furthermore, high significant difference (Chi-Square Value = 8.136 & p Value = 0.420) in opinions regarding harmfulness of breathing VOCs was observed between respondents from three per capita income groups i.e. low, moderate and high. (Ref. Table 5.4.7)

Table 5.4.8: Table showing city wise opinions on harmfulness of breathing VOCs across marital status of respondents

					Н	armfu	lness of	breat	hing V(OCs					
CITY*	Marital	Very Harr		Harn	nful	Som- Hari	ewhat nful	Not Hari	nful	Don ³ Kno		Total	l	Significa	nce#
CITY"	Status**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Mar.	123	87.9	35	81.4	9	75.0	3	75.0	1	100	171	85.5	2.804	0.501
V	UM	17	12.1	8	18.6	3	25.0	1	25.0	0	.0	29	14.5	2.804	0.591
	Total	140	100	43	100	12	100	4	100	1	100	200	100		
	Mar.	87	95.6	70	80.5	8	88.9	6	54.5	1	50.0	172	86.0	20.444	0.00
A	UM	4	4.4	17	19.5	1	11.1	5	45.5	1	50.0	28	14.0	20.444	0.00
	Total	91	100	87	100	9	100	11	100	2	100	200	100		
S	Mar.	78	88.6	75	100	12	85.7	15	71.4	2	100	182	91.0	10 515	0.00
3	UM	10	11.4	0	.0	2	14.3	6	28.6	0	.0	18	9.0	18.515	0.00
	Total	88	100	75	100	14	100	21	100	2	100	200	100		
R	Mar.	82	71.3	41	80.4	13	100	14	100	7	100	157	78.5	12.948	0.01
K	UM	33	28.7	10	19.6	0	.0	0	.0	0	.0	43	21.5	12.940	0.01
	Total	115	100	51	100	13	100	14	100	7	100	200	100		
0	Mar.	370	85.3	221	86.3	42	87.5	38	76.0	11	91.7	682	85.3	4 225	0.27
U	UM	64	14.7	35	13.7	6	12.5	12	24.0	1	8.3	118	14.8	4.225	0.37
	Total	434	100	256	100	48	100	50	100	12	100	200	100		
* V = V	adodara, A=	Ahmed	abad, S=	=Surat,	R=Rajk	ot, O=	Overall	,							
** Marita	al Status: Ma	r. = Ma	arried; U	JM: Un	married										
# Statisti	ic is significa	ant at 0	.05 leve	el											

- In overall, 85.3% respondents who said that breathing VOCs were very harmful to health were married and 14.7% were unmarried respondents. Likewise, 86.3% respondents who said that breathing VOCs were harmful to health were married and 13.7% were unmarried respondents. Moreover, 87.5% respondents who said that breathing VOCs were somewhat harmful to health were married and 12.5% were unmarried respondents. While, 76% respondents who said that breathing VOCs were not harmful to health were married and 24% were unmarried respondents. Furthermore, it could be seen from the above table that there was no strong significant difference (Chi-Square value = 4.225 and p value = 0.376) between opinion, regarding harmfulness of breathing VOCs, of married and unmarried respondents from selected cities of Gujarat state.
- In Vadodara, 87.9% respondents who said that breathing VOCs were very harmful to health were married and 12.1% were unmarried respondents. Likewise, 81.4% respondents who said that breathing VOCs were harmful to health were married and 18.6% were unmarried respondents. Moreover, 75% respondents who said that breathing VOCs were somewhat harmful to health were married and 25% were unmarried respondents. While, 75% respondents who said that breathing VOCs were not harmful to health were married and 25% were unmarried respondents. Furthermore, it could be seen from the above table that there was no

- significant difference (Chi-Square value = 2.804 and p value = 0.591) between opinion, regarding harmfulness of breathing VOCs, of married and unmarried respondents.
- In Ahmedabad, 95.6% respondents who said that breathing VOCs were very harmful to health were married and 4.4% were unmarried respondents. Likewise, 80.5% respondents who said that breathing VOCs were harmful to health were married and 19.5% were unmarried respondents. Moreover, 88.9% respondents who said that breathing VOCs were somewhat harmful to health were married and 11.1% were unmarried respondents. While, 54.5% respondents who said that breathing VOCs were not harmful to health were married and 45.5% were unmarried respondents. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 20.444 and p value = 0.000) between opinion, regarding harmfulness of breathing VOCs, of married and unmarried respondents.
- In Surat, 88.6% respondents who said that breathing VOCs were very harmful to health were married and 11.4% were unmarried respondents. Likewise, 100% respondents who said that breathing VOCs were harmful to health were married. Moreover, 85.7% respondents who said that breathing VOCs were somewhat harmful to health were married and 14.3% were unmarried respondents. While, 71.4% respondents who said that breathing VOCs were not harmful to health were married and 28.6% were unmarried respondents. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 18.515 and p value = 0.001) between opinion, regarding harmfulness of breathing VOCs, of married and unmarried respondents
- In Rajkot, 71.3% respondents who said that breathing VOCs were very harmful to health were married and 28.7% were unmarried respondents. Likewise, 80.4% respondents who said that breathing VOCs were harmful to health were married and 19.6% were unmarried respondents. Moreover, 100% respondents who said that breathing VOCs were somewhat harmful to health were married and 100% respondents who said that breathing VOCs were not harmful to health were also married. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 12.948 and p value = 0.012) between opinion, regarding harmfulness of breathing VOCs, of married and unmarried respondents. (Ref. Table 5.4.8)

Table 5.4.9: Table showing city wise opinions on harmfulness of breathing VOCs across family size of respondents

				H	Iarmful	ness o	f breath	ing V	OCs.						
CITY*	Family		ery mful	Har	mful		ewhat mful		Not rmful		on't now	To	otal	Signific	cance#
CITY"	Size**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	1-4	108	77.1	34	79.1	7	58.3	4	100.0	1	100.0	154	77.0	3.960	0.411
V	5+	32	22.9	9	20.9	5	41.7	0	.0	0	.0	46	23.0	3.900	0.411
	Total	140	100	43	100	12	100	4	100	1	100	200	100		
	1-4	67	73.6	65	74.7	6	66.7	8	72.7	1	50.0	147	73.5	0.853	0.931
A	5+	24	26.4	22	25.3	3	33.3	3	27.3	1	50.0	53	26.5	0.855	0.931
	Total	91	100	87	100	9	100	11	100	2	100	200	100		
S	1-4	57	64.8	49	65.3	5	35.7	13	61.9	0	.0	124	62.0	8.010	0.091
2	5+	31	35.2	26	34.7	9	64.3	8	38.1	2	100.0	76	38.0	0.010	0.091
	Total	88	100	75	100	14	100	21	100	2	100	200	100		
R	1-4	68	59.1	26	51.0	6	46.2	11	78.6	4	57.1	115	57.5	4.241	0.374
ĸ	5+	47	40.9	25	49.0	7	53.8	3	21.4	3	42.9	85	42.5	4.241	0.574
	Total	115	100	51	100	13	100	14	100	7	100	200	100		
0	1-4	300	69.1	174	68.0	24	50.0	36	72.0	6	50.0	540	67.5	9.385	0.052
U	5+	134	30.9	82	32.0	24	50.0	14	28.0	6	50.0	260	32.5	9.385	0.052
	Total	434	100	256	100	48	100	50	100	12	100	200	100		
* V = V:	adodara, A	=Ahme	dabad, S	S=Sura	t, R=Ra	kot, O	= Overa	ıll;							
# Statisti	c is signifi	cant at	0.05 le	vel											

- In overall, 69.1% respondents who said that breathing VOCs were very harmful to health had family size up to 4 and 30.9% respondents had family size more than 4. Likewise, 68% respondents who said that breathing VOCs were harmful to health had family size up to 4 and 32% respondents had family size more than 4. Moreover, 50% respondents who said that breathing VOCs were somewhat harmful to health had family size up to 4 and 50% had family size more than 4. While, 72% respondents who said that breathing VOCs were not harmful to health had family size up to 4 and 28% had family size more than 4. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 9.385 and p value = 0.052) between opinion, regarding harmfulness of breathing VOCs, of respondents with different family size i.e., family size up to 4 and family size more than 4, from selected cities of Gujarat state.
- In Vadodara, 77.1% respondents who said that breathing VOCs were very harmful to health had family size up to 4 and 22.9% respondents had family size more than 4. Likewise, 79.1% respondents who said that breathing VOCs were harmful to health had family size up to 4 and 20.9% respondents had family size more than 4. Moreover, 58.3% respondents who said that breathing VOCs were somewhat harmful to health had family size up to 4 and 41.7% had family size more than 4. While, 100% respondents who said that breathing VOCs were not

harmful to health had family size up to 4. Furthermore, it could be seen from the above table that there was no strong significant difference (Chi-Square value = 3.960 and p value = 0.411) between opinion, regarding harmfulness of breathing VOCs, of respondents with different family size i.e., family size up to 4 and family size more than 4.

- In Ahmedabad, 73.6% respondents who said that breathing VOCs were very harmful to health had family size up to 4 and 26.4% respondents had family size more than 4. Likewise, 74.7% respondents who said that breathing VOCs were harmful to health had family size up to 4 and 25.3% respondents had family size more than 4. Moreover, 66.7% respondents who said that breathing VOCs were somewhat harmful to health had family size up to 4 and 33.3% had family size more than 4. While, 72.7% respondents who said that breathing VOCs were not harmful to health had family size up to 4 and 27.3% had family size more than 4. Furthermore, it could be seen from the above table that there was no strong significant difference (Chi-Square value = 0.853 and p value = 0.931) between opinion, regarding harmfulness of breathing VOCs, of respondents with different family size i.e., family size up to 4 and family size more than 4.
- In Surat, 64.8% respondents who said that breathing VOCs were very harmful to health had family size up to 4 and 35.2% respondents had family size more than 4. Likewise, 65.3% respondents who said that breathing VOCs were harmful to health had family size up to 4 and 34.7% respondents had family size more than 4. Moreover, 35.7% respondents who said that breathing VOCs were somewhat harmful to health had family size up to 4 and 64.3% had family size more than 4. While, 61.9% respondents who said that breathing VOCs were not harmful to health had family size up to 4 and 38.1% had family size more than 4. Furthermore, it could be seen from the above table that there was no strong significant difference (Chi-Square value = 8.010 and p value = 0.091) between opinion, regarding harmfulness of breathing VOCs, of respondents with different family size i.e., family size up to 4 and family size more than 4.
- In Rajkot, 59.1% respondents who said that breathing VOCs were very harmful to health had family size up to 4 and 40.9% respondents had family size more than 4. Likewise, 51% respondents who said that breathing VOCs were harmful to health had family size up to 4 and 49% respondents had family size more than 4. Moreover, 46.2% respondents who said that breathing VOCs were somewhat harmful to health had family size up to 4 and 53.8% had

family size more than 4. While, 78.6% respondents who said that breathing VOCs were not harmful to health had family size up to 4 and 21.4% had family size more than 4. Furthermore, it could be seen from the above table that there was no strong significant difference (Chi-Square value = 4.241and p value = 0.374) between opinion, regarding harmfulness of breathing VOCs, of respondents with different family size i.e., family size up to 4 and family size more than 4. (Ref. Table 5.4.9)

Table 5.4.10: Table showing city wise opinions on harmfulness of breathing VOCs across family type of respondents

				На	rmfuln	ess of	breathi	ıg VO	Cs.						
CITY*	Family		ery mful	Har	mful		newhat rmful		Not rmful		Oon't Know	To	otal	Signific	cance#
CITY"	Type**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Nuclear	102	72.9	28	65.1	5	41.7	3	75.0	0	.0	138	69.0	7.761	0.101
•	Joint	38	27.1	15	34.9	7	58.3	1	25.0	1	100.0	62	31.0	7.701	0.101
	Total	140	100	43	100	12	100	4	100	1	100	200	100		
	Nuclear	67	73.6	67	77.0	5	55.6	7	63.6	1	50.0	147	73.5	2 156	0.522
A	Joint	24	26.4	20	23.0	4	44.4	4	36.4	1	50.0	53	26.5	3.156	0.532
	Total	91	100	87	100	9	100	11	100	2	100	200	100		
S	Nuclear	63	71.6	50	66.7	4	28.6	12	57.1	0	.0	129	64.5	14.109	0.007
3	Joint	25	28.4	25	33.3	10	71.4	9	42.9	2	100.0	71	35.5	14.109	0.007
	Total	88	100	75	100	14	100	21	100	2	100	200	100		
R	Nuclear	76	66.1	32	62.7	4	30.8	6	42.9	3	42.9	121	60.5	9.153	0.057
N	Joint	39	33.9	19	37.3	9	69.2	8	57.1	4	57.1	79	39.5	9.133	0.037
	Total	115	100	51	100	13	100	14	100	7	100	200	100		
0	Nuclear	308	71.0	177	69.1	18	37.5	28	56.0	4	33.3	535	66.9	21 226	0.000
<u> </u>	Joint	126	29.0	79	30.9	30	62.5	22	44.0	8	66.7	265	33.1	31.336	0.000
	Total	434	100	256	100	48	100	50	100	12	100	200	100		
* V = V	adodara, A=	Ahmed	labad, S=	=Surat,	R=Rajk	ot, O=	Overall	,							
# Statisti	ic is signific	ant at (0.05 leve	el											

- In overall, 71% respondents who said that breathing VOCs were very harmful to health had nuclear family and 29% respondents had joint family. Likewise, 69.1% respondents who said that breathing VOCs were harmful to health had nuclear family and 30.9% respondents had joint family. Moreover, 37.5% respondents who said that breathing VOCs were somewhat harmful to health had nuclear family and 62.5% had joint family. While, 56% respondents who said that breathing VOCs were not harmful to health had nuclear family and 44% had joint family. Furthermore, it could be seen from the table that there was a strong significant difference (Chi-Square value = 31.336 and p value = 0.000) between opinion, regarding harmfulness of breathing VOCs, of respondents with different family type i.e., nuclear family and joint family, from selected cities of Gujarat state.
- In Vadodara, 72.9% respondents who said that breathing VOCs were very harmful to health had nuclear family and 27.1% respondents had joint family. Likewise, 65.1% respondents who said that breathing VOCs were harmful to health had nuclear family and 34.9% respondents had joint family. Moreover, 41.7% respondents who said that breathing VOCs were somewhat harmful to health had nuclear family and 58.3% had joint family. While, 75% respondents who said that breathing VOCs were not harmful to health had nuclear family and 25% had joint family. Furthermore, it could be seen from the table that there was no significant difference

- (Chi-Square value = 7.761 and p value = 0.101) between opinion, regarding harmfulness of breathing VOCs, of respondents with different family type i.e., nuclear family and joint family.
- In Ahmedabad, 73.6% respondents who said that breathing VOCs were very harmful to health had nuclear family and 26.4% respondents had joint family. Likewise, 77% respondents who said that breathing VOCs were harmful to health had nuclear family and 23% respondents had joint family. Moreover, 55.6% respondents who said that breathing VOCs were somewhat harmful to health had nuclear family and 44.4% had joint family. While, 63.6% respondents who said that breathing VOCs were not harmful to health had nuclear family and 36.4% had joint family. Furthermore, it could be seen from the table that there was no significant difference (Chi-Square value = 3.156 and p value = 0.532) between opinion, regarding harmfulness of breathing VOCs, of respondents with different family type i.e., nuclear family and joint family.
- In Surat, 71.6% respondents who said that breathing VOCs were very harmful to health had nuclear family and 28.4% respondents had joint family. Likewise, 66.7% respondents who said that breathing VOCs were harmful to health had nuclear family and 33.3% respondents had joint family. Moreover, 28.6% respondents who said that breathing VOCs were somewhat harmful to health had nuclear family and 71.4% had joint family. While, 57.1% respondents who said that breathing VOCs were not harmful to health had nuclear family and 42.9% had joint family. Furthermore, it could be seen from the table that there was a significant difference (Chi-Square value = 14.109 and p value = 0.007 between opinion, regarding harmfulness of breathing VOCs, of respondents with different family type i.e., nuclear family and joint family.
- In Rajkot, 66.1% respondents who said that breathing VOCs were very harmful to health had nuclear family and 33.9% respondents had joint family. Likewise, 62.7% respondents who said that breathing VOCs were harmful to health had nuclear family and 30.8% respondents had joint family. Moreover, 30.8% respondents who said that breathing VOCs were somewhat harmful to health had nuclear family and 69.2% had joint family. While, 42.9% respondents who said that breathing VOCs were not harmful to health had nuclear family and 57.1% had joint family. Furthermore, it could be seen from the table that there was no significant difference (Chi-Square value = 9.153 and p value = 0.057) between opinion, regarding harmfulness of breathing VOCs, of respondents with different family type i.e., nuclear family and joint family. (Ref. Table 5.4.10)

Table 5.4.11: Table showing city wise opinions on harmfulness of breathing VOCs across children group of respondents

				H	armfuln	ess of br	eathing	VOCs							
City	Child	Very I	Iarmful	Har	mful	Some Hari		Not Ha	armful	_	on't now	То	tal	Signific	ance#
*	**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	0	21	15.0	11	25.6	3	25.0	1	25.0	0	.0	36	18.0		
V	1	36	25.7	14	32.6	2	16.7	1	25.0	1	100	54	27.0	8.130	0.421
•	2	83	59.3	18	41.9	7	58.3	2	50.0	0	.0	110	55.0	0.130	0.421
	3 or +	0	.0	0	.0	0	.0	0	.0	0	.0	0	.0		
	Total	140	100	43	100	12	100	4	100	1	100	200	100		
	0	13	14.3	20	23.0	0	.0	7	63.6	1	50.0	41	20.5		
A	1	22	24.2	16	18.4	1	11.1	1	9.1	0	.0	40	20.0	24.023	0.020
2.1	2	53	58.2	45	51.7	8	88.9	2	18.2	1	50.0	109	54.5	24.025	0.020
	3 or +	3	3.3	6	6.9	0	.0	1	9.1	0	.0	10	5.0		
	Total	91	100	87	100	9	100	11	100	2	100	200	100		
	0	12	13.6	0	.0	2	14.3	6	28.6	0	.0	20	10.0		
S	1	14	15.9	19	25.3	0	.0	2	9.5	1	50.0	36	18.0	28.661	0.004
5	2	56	63.6	55	73.3	11	78.6	13	61.9	1	50.0	136	68.0	20.001	0.001
	3 or +	6	6.8	1	1.3	1	7.1	0	.0	0	.0	8	4.0		
	Total	88	100	75	100	14	100	21	100	2	100	200	100		
	0	39	33.9	13	25.5	1	7.7	0	.0	0	.0	53	26.5		
R	1	4	3.5	1	2.0	3	23.1	1	7.1	1	14.3	10	5.0	25.848	0.011
	2	68	59.1	36	70.6	8	61.5	13	92.9	6	85.7	131	65.5		
	3 or +	4	3.5	1	2.0	1	7.7	0	.0	0	.0	6	3.0		
	Total	115	100	51	100	13	100	14	100	7	100	200	100		
	0	85	19.6	44	17.2	6	12.5	14	28.0	1	8.3	150	18.8		
O	1	76	17.5	50	19.5	6	12.5	5	10.0	3	25.0	140	17.5	9.454	0.664
	2	260	59.9	154	60.2	34	70.8	30	60.0	8	66.7	486	60.8		
	3 or +	13	3.0	8	3.1	2	4.2	1	2.0	0	.0	24	3.0		
÷ 17	Total	434	100	256	100	48	100	50	100	12	100	200	100		
		_	edabad, S			_		. 41 2							
			$\frac{1}{1}$; 1 = 1 Ch		2 Childre	2n; 3+=	or more	e than 3							
# Stat	istic is sigi	nificant a	t 0.05 leve	ei											

In overall, 59.9% respondents who believed that breathing VOCs were very harmful for health, had 2 children and 19.6% respondents had no child. Similarly, respondents who believed that breathing VOCs were harmful for health, 60.2% had 2 children and 3.1% respondents had 3 or more children. Moreover, 70.8% respondents who believed that breathing VOCs were somewhat harmful for health had 2 children and remaining 12.5% respondents had no child, 12.5% respondents had 1 child and 4.2% respondents had 3 or more children. Further, 60% respondents who believed that breathing VOCs were not harmful for health had 2 children and remaining 28% respondents had no child, 10% respondents had 1 child and 2% respondents had 3 or more children. Which was almost similar to total 18.8% respondents with no child, 17.5% respondents with one child, 60.8% respondents had 2 children and 3% respondents had 3 or more children. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 9.454 and p value = 0.664) between opinion of

- respondents, regarding harmfulness of breathing VOCs, with different child group, i.e., no child, 1 child, 2 children and 3 or more children, from selected cities of Gujarat state.
- However, in Ahmedabad, Surat and Rajkot cities, there was a significant difference between opinion of respondents, regarding harmfulness of breathing VOCs, with different child group, i.e., no child, 1 child, 2 children and 3 or more children. Which could be seen from above table, for Ahmedabad city, Chi-Square value is 24.023 and significance value was 0.020, for Surat city, Chi-Square value was 28.661 and significance value was 0.004 and for Rajkot, Chi-Square value was 25.848 and significance value was 0.011.
 - o In Ahmedabad, 58.2% respondents who believed that breathing VOCs were very harmful for health, had 2 children and 14.3% respondents had no child. Similarly, respondents who believed that breathing VOCs were harmful for health, 51.7% had 2 children and 6.9% respondents had 3 or more children. Moreover, 88.9% respondents who believed that breathing VOCs were somewhat harmful for health had 2 children and remaining none respondents had no child, 11.1% respondents had 1 child and none respondents had 3 or more children. Further, only 18.2% respondents who believed that breathing VOCs were not harmful for health had 2 children and remaining 63.6% respondents had no child, 9.1% respondents had 1 child and 9.1% respondents had 3 or more children.
 - o In Surat also, 63.6% respondents who believed that breathing VOCs were very harmful for health, had 2 children and 13.6% respondents had no child. Similarly, respondents who believed that breathing VOCs were harmful for health, 73.3% had 2 children and 1.3% respondents had 3 or more children. Moreover, 78.6% respondents who believed that breathing VOCs were somewhat harmful for health had 2 children and remaining 14.3% respondents had no child, none of the respondents had 1 child and 7.1% respondents had 3 or more children. Further, 61.9% respondents who believed that breathing VOCs were not harmful for health had 2 children and remaining 28.6% respondents had no child, 9.5% respondents had 1 child and no respondents had 3 or more children.
 - o In Rajkot, 59.1% respondents who believed that breathing VOCs were very harmful for health, had 2 children and 33.9% respondents had no child. Similarly, respondents who believed that breathing VOCs were harmful for health, 70.6% had 2 children and

2% respondents had 3 or more children. Moreover, 61.5% respondents who believed that breathing VOCs were somewhat harmful for health had 2 children and remaining 7.7% respondents had no child, 23.1% respondents had 1 child and 7.7% respondents had 3 or more children. Further, 92.9% respondents who believed that breathing VOCs were not harmful for health had 2 children and remaining none of the respondents were without child, 7.1% respondents had 1 child and no respondents had 3 or more children.

- However, in Vadodara, there was no significant difference between opinion of respondents, regarding harmfulness of breathing VOCs, with different child group, i.e., no child, 1 child, 2 children and 3 or more children. Which could be seen from table that for Vadodara city Chi-Square value is 8.130 and significance value is 0.421. In this city, no respondent had 3 or more children.
 - o In Vadodara, 59.3% respondents who believed that breathing VOCs were very harmful for health, had 2 children and 15% respondents had no child. Similarly, respondents who believed that breathing VOCs were harmful for health, 41.9% had 2 children. Moreover, 58.3% respondents who believed that breathing VOCs were somewhat harmful for health had 2 children and remaining 25% respondents had no child, 16.7% respondents had 1 child. Which was almost similar to total 18% respondents with no child, 27% respondents with one child, and 55% respondents with 2 children in Vadodara. (Ref. Table 5.4.11)

Table 5.4.12: Respondents' opinions, on importance of having harmful chemicals free items such as decorative paints in their houses, across four cities.

				Imp	ortanc	e Level						
	Extremel	ly Important	Imp	ortant	N	eutral	Not I	mportant	Don	't Know	T	otal
CITY	N	%	N	%	N	%	N	%	N	%	N	%
Vadodara	131	27.2	57	27.1	11	19.0	0	.0	1	7.1	200	25.0
Ahmedabad	105	21.8	70	33.3	18	31.0	4	10.8	3	21.4	200	25.0
Surat	104	21.6	60	28.6	15	25.9	18	48.6	3	21.4	200	25.0
Rajkot	141	29.3	23	11.0	14	24.1	15	40.5	7	50.0	200	25.0
Total	481	100.0	210	100.0	58	100.0	37	100.0	14	100.0	800	100.0
Chi-Square value	63.772											
p Value	0.000 (Sta	tistic is significa	nt at 0.	05 level)								

- From above table, it could be observed that for majority (29.3%) respondents it was very important to have harmful chemicals free items such as decorative paints in their houses were from Rajkot followed by Vadodara (27.2%), Ahmedabad (21.8%) and Surat (21.6%).
- Respondents who believed that it was important to have harmful chemicals free items such as decorative paints in their houses, 33.3% respondents were from Ahmedabad followed in descending order by Surat (28.6%), Vadodara (27.1%) and Rajkot (11%).
- 48.6% of respondent who believed that it was not important to have harmful chemicals free items such as decorative paints in their houses were from Surat.
- It was also observed from high Chi-Square value (63.772) that there was a significant (p = 0.000) difference between opinions of all four cities of Gujarat state regarding importance to have harmful chemicals free items such as decorative paints in their houses. (Ref. Table 5.4.12)

Table 5.4.13: Respondents' city wise opinions on importance of having harmful chemicals free items such as decorative paints in houses across their age groups

City *	Age	Extremely Important		Important		Neutral		Not Important		Don't Know		Total		Significance#	
		N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	<=37	57	43.5	16	28.1	1	9.1	0	.0	0	.0	74	37.0		0.000
V	38-46	54	41.2	18	31.6	1	9.1	0	.0	0	.0	73	36.5	34.327	
	>46	20	15.3	23	40.4	9	81.8	0	.0	1	100	53	26.5		
	Total	131	100	57	100	11	100	0	.0	1	100	200	100		
	<=37	39	37.1	26	37.1	1	5.6	1	25.0	0	.0	67	33.5	20.813	0.008
A	38-46	31	29.5	24	34.3	3	16.7	0	.0	1	33.3	59	29.5		
	>46	35	33.3	20	28.6	14	77.8	3	75.0	2	66.7	74	37.0		
	Total	105	100	70	100	18	100	4	100	3	100	200	100		
	<=37	43	41.3	22	36.7	1	6.7	1	5.6	0	.0	67	33.5	46.162	0.000
S	38-46	43	41.3	18	30.0	3	20.0	2	11.1	1	33.3	67	33.5		
	>46	18	17.3	20	33.3	11	73.3	15	83.3	2	66.7	66	33.0		
	Total	104	100	60	100	15	100	18	100	3	100	200	100		
	<=37	67	47.5	10	43.5	1	7.1	0	.0	0	.0	78	39.0		0.000
R	38-46	41	29.1	7	30.4	2	14.3	2	13.3	2	28.6	54	27.0	45.554	
	>46	33	23.4	6	26.1	11	78.6	13	86.7	5	71.4	68	34.0		
	Total	141	100	23	100	14	100	15	100	7	100	200	100		
	<=37	206	42.8	74	35.2	4	6.9	2	5.4	0	.0	286	35.8	135.155	
О	38-46	169	35.1	67	31.9	9	15.5	4	10.8	4	28.6	253	31.6		0.000
	>46	106	22.0	69	32.9	45	77.6	31	83.8	10	71.4	261	32.6		
	Total	481	100	210	100	58	100	37	100	14	100	800	100		
* V =	Vadodara	, A=Ahm	edabad, S=	=Surat, F	R=Rajkot	, O= Ove	erall;								
# Stat	istic is sigr	nificant a	at 0.05 leve	el		-	-	-	-						

• In overall, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 42.8% respondents were no more than 37 years of age, 35.1% respondents were of 38 to 46 years of age and 22% respondents were above 46 years of age. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, 35.2 % respondents were of age 37 years or less. Further, 77.6% respondents who remained neutral, i.e., neither important nor unimportant, and 83.8% respondents who said that it was not important to have harmful chemicals free items in their houses were above 46 years of age. While, only 5.4% respondents who said that it was not important to have harmful chemicals free items in their houses and 6.9% respondents who remained neutral, i.e., neither important nor unimportant, were of age 37 years or less. Furthermore, high significant difference (Chi-Square Value = 135.155 & p Value = 0.000) in opinions of respondents, regarding importance of having harmful chemicals free items in their houses, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.

- In Vadodara, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 43.5% respondents were no more than 37 years of age, 41.2% respondents were of 38 to 46 years of age and 15.3% respondents were above 46 years of age. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, 28.1 % respondents were of age 37 years or less. Further, 81.8% respondents who remained neutral, i.e., neither important nor unimportant, were above 46 years of age. Moreover, none of the respondents from Vadodara said that it was not important to have harmful chemicals free items in their houses. While, only 9.1% respondents who remained neutral, i.e., neither important nor unimportant, were of age 37 years or less. Furthermore, high significant difference (Chi-Square Value = 34.327 & p Value = 0.000) in opinions of respondents, regarding importance of having harmful chemicals free items in their houses, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Ahmedabad, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 37.1% respondents were no more than 37 years of age, 29.5% respondents were of 38 to 46 years of age and 33.3% respondents were above 46 years of age. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, 37.1% respondents were of age 37 years or less. Further, 77.8% respondents who remained neutral, i.e., neither important nor unimportant, and 75% respondents who said that it was not important to have harmful chemicals free items in their houses were above 46 years of age. While, only 25% respondents who said that it was not important to have harmful chemicals free items in their houses and 5.6% respondents who remained neutral, i.e., neither important nor unimportant, were of age 37 years or less. Furthermore, high significant difference (Chi-Square Value = 20.813 & p Value = 0.008) in opinions of respondents, regarding importance of having harmful chemicals free items in their houses, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Surat, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 41.3% respondents were no more than 37 years of age, 41.3% respondents were of 38 to 46 years of age and 17.3% respondents were above 46 years of age. Moreover, respondents who said that it was important to have harmful chemicals free items in

their houses, 36.7 % respondents were of age 37 years or less. Further, 73.3% respondents who remained neutral, i.e., neither important nor unimportant, and 83.3% respondents who said that it was not important to have harmful chemicals free items in their houses were above 46 years of age. While, only 5.6% respondents who said that it was not important to have harmful chemicals free items in their houses and 6.7% respondents who remained neutral, i.e., neither important nor unimportant, were of age 37 years or less. Furthermore, high significant difference (Chi-Square Value = 46.162 & p Value = 0.000) in opinions of respondents, regarding importance of having harmful chemicals free items in their houses, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.

• In Rajkot, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 47.5% respondents were no more than 37 years of age, 29.1% respondents were of 38 to 46 years of age and 23.4% respondents were above 46 years of age. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, 43.5% respondents were of age 37 years or less. Further, 78.6% respondents who remained neutral, i.e., neither important nor unimportant, and 86.7% respondents who said that it was not important to have harmful chemicals free items in their houses were above 46 years of age. While, only no respondents who said that it was not important to have harmful chemicals free items in their houses and 7.1% respondents who remained neutral, i.e., neither important nor unimportant, were of age 37 years or less. Furthermore, high significant difference (Chi-Square Value = 45.554 & p Value = 0.000) in opinions of respondents, regarding importance of having harmful chemicals free items in their houses, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years. (Ref. Table 5.4.13)

Table 5.4.14: Respondents' city wise opinions on importance of having harmful chemicals free items such as decorative paints in houses across their gender

CITY*	Gender	Extremely Important		Important		Neutral		Not Important		Don't Know		Total		Significance#	
		N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
v	Male	99	75.6	39	68.4	4	36.4	0	.0	0	.0	142	71.0	10.372	0.016
V	Female	32	24.4	18	31.6	7	63.6	0	.0	1	100.0	58	29.0		
	Total	131	100	57	100	11	100	0	.0	1	100	200	100		
A	Male	75	71.4	52	74.3	18	100.0	4	100.0	3	100.0	152	76.0	9.211	0.056
A	Female	30	28.6	18	25.7	0	.0	0	.0	0	.0	48	24.0	9.211	0.050
	Total	105	100	70	100	18	100	4	100	3	100	200	100		
S	Male	68	65.4	38	63.3	15	100.0	17	94.4	3	100.0	141	70.5	15.284	0.004
3	Female	36	34.6	22	36.7	0	.0	1	5.6	0	.0	59	29.5		
	Total	104	100	60	100	15	100	18	100	3	100	200	100		
R	Male	94	66.7	15	65.2	14	100.0	15	100.0	7	100.0	145	72.5	16.673	0.002
N	Female	47	33.3	8	34.8	0	.0	0	.0	0	.0	55	27.5		
	Total	141	100	23	100	14	100	15	100	7	100	200	100		
0	Male	336	69.9	144	68.6	51	87.9	36	97.3	13	92.9	580	72.5	24.563	0.000
U	Female	145	30.1	66	31.4	7	12.1	1	2.7	1	7.1	220	27.5		0.000
	Total	481	100	210	100	58	100	37	100	14	100	800	100		
* V = V2	adodara, A	=Ahm	edabad,	S=Sur	at, R=R	Rajkot	;, O= Ov	erall;							
# Statisti	c is signific	ant at	0.05 lev	el											

- In overall, 69.9% respondents who said that it was extremely important to have harmful chemicals free items in their houses were male and 30.1% were female respondents. Likewise, 68.6% respondents who said that it was just important to have harmful chemicals free items in their houses were male and 31.4% were female respondents. Moreover, 97.3% respondents who said that it was not important to have harmful chemicals free items in their houses were male and 2.7% were female respondents. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 24.563 and p value = 0.000) between opinion, regarding importance to have harmful chemicals free items in house, of male and female respondents from selected cities of Gujarat state.
- In Vadodara, 75.6% respondents who said that it was extremely important to have harmful chemicals free items in their houses were male and 24.4% were female respondents. Likewise, 68.4% respondents who said that it was important to have harmful chemicals free items in their houses were male and 31.6% were female respondents. Moreover, none of the respondents said that it was not important to have harmful chemicals free items in their houses. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 10.372 and p value = 0.016) between opinion, regarding importance to have harmful chemicals free items in their houses, of male and female respondents from Vadodara.

- In Ahmedabad, 71.4% respondents who said that it was extremely important to have harmful chemicals free items in their houses were male and 28.6% were female respondents. Likewise, 74.3% respondents who said that it was just important to have harmful chemicals free items in their houses were male and 25.7% were female respondents. Moreover, all respondents who said that it was not important to have harmful chemicals free items in their houses were male. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 9.211 and p value = 0.056) between opinion, regarding importance of having harmful chemicals free items in their houses, of male and female respondents.
- In Surat, 65.4% respondents who said that it was extremely important to have harmful chemicals free items in their houses were male and 34.6% were female respondents. Likewise, 63.3% respondents who said that it was important to have harmful chemicals free items in their houses male and 36.7% were female respondents. Moreover, 94.4% respondents who said that it was not important to have harmful chemicals free items in their houses were male. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 15,284 and p value = 0.004) between opinion, regarding importance to have harmful chemicals free items in their houses, of male and female respondents from Ahmedabad.
- In Rajkot, 66.7% respondents who said that it was extremely important to have harmful chemicals free items in their houses were male and 33.3% were female respondents. Likewise, 65.2% respondents who it was important to have harmful chemicals free items in their houses were male and 24.8% were female respondents. Moreover, all respondents who said that it was not important to have harmful chemicals free items in their houses were male respondents. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 16.673 and p value = 0.002) between opinion, regarding importance to have harmful chemicals free items in their houses, of male and female respondents from Rajkot. (Ref. Table 5.4.14)

Table 5.4.15: Respondents' city wise opinions on importance of having harmful chemicals free items such as decorative paints in houses across their educational qualification.

		Importance Level													
City	Ed.**	Extremely Important		Important		Neutral		Not Important		Don't Know		Total		Significance#	
*		N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	UG	4	3.1	6	10.5	4	36.4	0	.0	0	.0	14	7.0		0.000
\mathbf{V}	Gr	50	38.2	22	38.6	7	63.6	0	.0	0	.0	79	39.5	26.679	
	PG	77	58.8	29	50.9	0	.0	0	.0	1	100	107	53.5		
	Total	131	100	57	100	11	100	0	.0	1	100	200	100		
	UG	11	10.5	9	12.9	11	61.1	2	50.0	2	66.7	35	17.5	45.425	0.000
A	Gr	53	50.5	47	67.1	6	33.3	2	50.0	1	33.3	109	54.5		
	PG	41	39.0	14	20.0	1	5.6	0	.0	0	.0	56	28.0		
	Total	105	100	70	100	18	100	4	100	3	100	200	100		
	UG	14	13.5	13	21.7	5	33.3	5	27.8	1	33.3	38	19.0	13.444	0.097
S	Gr	60	57.7	32	53.3	10	66.7	12	66.7	2	66.7	116	58.0		
	PG	30	28.8	15	25.0	0	.0	1	5.6	0	.0	46	23.0		
	Total	104	100	60	100	15	100	18	100	3	100	200	100		
	UG	16	11.3	3	13.0	6	42.9	5	33.3	5	71.4	35	17.5	30.403	0.000
R	Gr	87	61.7	13	56.5	8	57.1	8	53.3	2	28.6	118	59.0		
	PG	38	27.0	7	30.4	0	.0	2	13.3	0	.0	47	23.5		
	Total	141	100	23	100	14	100	15	100	7	100	200	100		
	UG	45	9.4	31	14.8	26	44.8	12	32.4	8	57.1	122	15.3	101.454	
O	Gr	250	52.0	114	54.3	31	53.4	22	59.5	5	35.7	422	52.8		0.000
	PG	186	38.7	65	31.0	1	1.7	3	8.1	1	7.1	256	32.0		
	Total	481	100	210	100	58	100	37	100	14	100	800	100		
* V =	Vadodara	, A=Ahm	edabad, S=	=Surat, F	R=Rajkot	, O= Ove	erall;								
** Edu	icational (Qualificat	ion: UG=	Under (Graduate	Gr. = G	raduate;	PG = Po	stgradua	te	-		-	· · · · · · · · · · · · · · · · · · ·	
# Stat	istic is sigi	nificant a	t 0.05 leve	el						-					

- In overall, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 9.4% respondents were undergraduate, 52% respondents were graduate and 38.7% respondents were postgraduate. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, 54.3% respondents were graduate. Further, 32.4% respondents who said that it was not important to have harmful chemicals free items in their houses and 44.8% respondents who remained neutral were also from undergraduate. While, only 8.1% respondents who said that it was not important to have harmful chemicals free items in their houses were postgraduate respondents. Furthermore, high significant difference (Chi-Square Value = 101.454 & p Value = 0.000) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate.
- In Vadodara, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 3.1% respondents were undergraduate, 38.2% respondents were

graduate and 58.8% respondents were postgraduate. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses50.9% respondents were postgraduate. Further, none of the respondents from Vadodara said that it was not important to have harmful chemicals free items in their houses. Furthermore, high significant difference (Chi-Square Value = 26.679 & p Value = 0.000) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate.

- In Ahmedabad, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 10.5% respondents were undergraduate, 50.5% respondents were graduate and 39% respondents were postgraduate. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses 67.1% respondents were graduate. Further, none of the respondents who said that it was not important to have harmful chemicals free items in their houses were postgraduates. Furthermore, high significant difference (Chi-Square Value = 45.425 & p Value = 0.000) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate.
- In Surat, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 13.5% respondents were undergraduate, 57.7% respondents were graduate and 28.8% respondents were postgraduate. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, 53.3% respondents were graduate. Further, only 5.6% respondents who said that it was not important to have harmful chemicals free items in their houses were postgraduates. Furthermore, no significant difference (Chi-Square Value = 13.444 & p Value = 0.097) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate.
- In Rajkot, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 11.3% respondents were undergraduate, 61.7% respondents were graduate and 27% respondents were postgraduate. Moreover, respondents who said that it was just important to have harmful chemicals free items in their houses, 30.4% respondents were postgraduate. Further, only 13.3% respondents who said that it was not important to have

harmful chemicals free items in their houses were graduate. Furthermore, high significant difference (Chi-Square Value = 30.403 & p Value = 0.000) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate. (Ref. Table 5.4.15)

Table 5.4.16: Respondents' city wise opinions on importance of having harmful chemicals free items such as decorative paints in houses across their occupation

					Im	portanc	e Level								
City	Oc.**		emely ortant	Impo	rtant	Neu	tral	No Impo			on't now	То	tal	Signific	ance#
*	Oc.""	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	S	48	36.6	24	42.1	7	63.6	0	.0	1	100	80	40.0		
\mathbf{V}	В	43	32.8	15	26.3	2	18.2	0	.0	0	.0	60	30.0	5.159	0.524
	P	40	30.5	18	31.6	2	18.2	0	.0	0	.0	60	30.0		
	Total	131	100	57	100	11	100	0	.0	1	100	200	100		
	S	29	27.6	32	45.7	13	72.2	3	75.0	3	100	80	40.0		
A	В	40	38.1	20	28.6	0	.0	0	.0	0	.0	60	30.0	25.068	0.002
	P	36	34.3	18	25.7	5	27.8	1	25.0	0	.0	60	30.0		
	Total	105	100	70	100	18	100	4	100	3	100	200	100		
	S	46	44.2	14	23.3	10	66.7	8	44.4	2	66.7	80	40.0		
S	В	33	31.7	25	41.7	0	.0	2	11.1	0	.0	60	30.0	21.338	0.006
	P	25	24.0	21	35.0	5	33.3	8	44.4	1	33.3	60	30.0		
	Total	104	100	60	100	15	100	18	100	3	100	200	100		
	S	47	33.3	10	43.5	10	71.4	9	60.0	4	57.1	80	40.0		
R	В	46	32.6	8	34.8	2	14.3	3	20.0	1	14.3	60	30.0	12.784	0.120
	P	48	34.0	5	21.7	2	14.3	3	20.0	2	28.6	60	30.0		
	Total	141	100	23	100	14	100	15	100	7	100	200	100		
	S	170	35.3	80	38.1	40	69.0	20	54.1	10	71.4	320	40.0		
О	В	162	33.7	68	32.4	4	6.9	5	13.5	1	7.1	240	30.0	40.175	0.000
	P	149	31.0	62	29.5	14	24.1	12	32.4	3	21.4	240	30.0		
	Total	481	100	210	100	58	100	37	100	14	100	800	100		
* V =	Vadodara	a, A=Ahr	nedabad,	S=Surat	t, R=Raj	kot, O=	Overall	;							
** Oc	cupation :	S = Serv	ice Class;	B = Bu	siness cla	ass; P =	Professi	onals							
# Stat	istic is sigr	nificant a	t 0.05 leve	el											

- In overall, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 35.3% respondents were service class, 33.7% respondents were business class and 31% respondents were professionals. Moreover, respondents who said that it was just important to have harmful chemicals free items in their houses, 38.1 % respondents were service class. Further, 54.1% respondents who said that it was not important to have harmful chemicals free items in their houses were also from service class while only 13.5% respondents were from business class. Furthermore, high significant difference (Chi-Square Value = 40.175 & p Value = 0.000) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents from three occupational groups i.e. service class, business class and professionals.
- In Vadodara, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 36.6% respondents were service class, 32.8% respondents were business class and 30.5% respondents were professionals. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, 42.1% respondents

were service class. Further, none of the respondents said that it was not important to have harmful chemicals free items in their houses and 63.6% respondents who remained neutral were from service class. Furthermore, no significant difference (Chi-Square Value = 5.159 & p Value = 0.524) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents of Vadodara from three occupational groups i.e. service class, business class and professionals.

- In Ahmedabad, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 27.6% respondents were service class, 38.1% respondents were business class and 34.3% respondents were professionals. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, 42.1 % respondents were service class. Further, 75% respondents who said that it was not important to have harmful chemicals free items in their houses were also from service class. While, none of the respondents who said that it was not important to have harmful chemicals free items in their houses were business class respondents. Furthermore, high significant difference (Chi-Square Value = 25.068 & p Value = 0.002) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents of Ahmedabad from three occupational groups i.e. service class, business class and professionals.
- In Surat, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 44.2% respondents were service class, 31.7% respondents were business class and 24% respondents were professionals. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, only 23.3% respondents were service class. Further, 44.4% respondents who said that it was not important to have harmful chemicals free items in their houses were also from service class. While, only 11.1% of the respondents who said that it was not important to have harmful chemicals free items in their houses were business class respondents. Furthermore, high significant difference (Chi-Square Value = 21.338 & p Value = 0.002) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents of Surat from three occupational groups i.e. service class, business class and professionals.
- In Rajkot, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 33.3% respondents were service class, 32.6% respondents were business class and 34% respondents were professionals. Moreover, respondents who said that

it was important to have harmful chemicals free items in their houses, 43.5% respondents were service class. Further, 60% of the respondents said that it was not important to have harmful chemicals free items in their houses and 71.4% respondents who remained neutral were from service class. Furthermore, no significant difference (Chi-Square Value = 12.784 & p Value = 0.120) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents of Rajkot from three occupational groups i.e. service class, business class and professionals. (Ref. Table 5.4.16)

Table 5.4.17: Respondents' city wise opinions on importance of having harmful chemicals free items such as decorative paints in houses across their monthly income groups

					In	portanc	e Level								
City	MI**		remely ortant	Impo	rtant	Neu	tral	No Impo			on't now	То	tal	Signific	ance#
*	WII	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	MI – 1	48	36.6	23	40.4	8	72.7	0	.0	0	.0	79	39.5		
V	MI – 2	40	30.5	23	40.4	1	9.1	0	.0	0	.0	64	32.0	11.963	0.063
	MI – 3	43	32.8	11	19.3	2	18.2	0	.0	1	100	57	28.5		
	Total	131	100	57	100	11	100	0	.0	1	100	200	100		
	MI – 1	45	42.9	34	48.6	12	66.7	3	75.0	3	100	97	48.5		
A	MI – 2	19	18.1	15	21.4	3	16.7	1	25.0	0	.0	38	19.0	10.277	0.246
	MI – 3	41	39.0	21	30.0	3	16.7	0	.0	0	.0	65	32.5		
	Total	105	100	70	100	18	100	4	100	3	100	200	100		
	MI – 1	34	32.7	8	13.3	9	60.0	10	55.6	1	33.3	62	31.0		
S	MI – 2	34	32.7	15	25.0	5	33.3	6	33.3	2	66.7	62	31.0	33.392	0.000
	MI – 3	36	34.6	37	61.7	1	6.7	2	11.1	0	.0	76	38.0		
	Total	104	100	60	100	15	100	18	100	3	100	200	100		
	MI – 1	24	17.0	5	21.7	2	14.3	2	13.3	1	14.3	34	17.0		
R	MI – 2	71	50.4	9	39.1	9	64.3	6	40.0	3	42.9	98	49.0	3.770	0.877
	MI – 3	46	32.6	9	39.1	3	21.4	7	46.7	3	42.9	68	34.0		
	Total	141	100	23	100	14	100	15	100	7	100	200	100		
	MI – 1	151	31.4	70	33.3	31	53.4	15	40.5	5	35.7	272	34.0		
O	MI – 2	164	34.1	62	29.5	18	31.0	13	35.1	5	35.7	262	32.8	16.657	0.034
	MI – 3	166	34.5	78	37.1	9	15.5	9	24.3	4	28.6	266	33.3		
	Total	481	100	210	100	58	100	37	100	14	100	800	100		
* V =	Vadodara	, A=Ahı	medabad,	S=Surat	t, R=Raj	kot, O=	Overall	;				-			
** M	onthly Inco	me: N	II − 1: <=2	9166.67	, MI – 2	: 29166.0	68-46250	.00, MI	-3: >46	250.00)			•	•
# Stat	istic is sign	ificant a	at 0.05 leve	el											

- In overall, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 31.4% respondents had monthly income no more than Rs.29166.67, and 34.1% respondents had monthly income between Rs.29166.67 to Rs.46250 and 34.5% respondents had monthly income above Rs.46250. Moreover, respondents who said that it was just important to have harmful chemicals free items in their houses, 37.1% respondents had monthly income above Rs.46250. Further, 40.5% respondents who said that it was not important to have harmful chemicals free items in their houses, and 53.4% respondents who remained neutral had monthly income below Rs.29166.68. Furthermore, a significant difference (Chi-Square Value = 16.657 & p Value = 0.034) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250.
- In Vadodara, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 36.6% respondents had monthly income no more than Rs.29166.67,

and 30.5% respondents had monthly income between Rs.29166.67 to Rs.46250 and 32.8% respondents had monthly income above Rs.46250. Moreover, respondents who said that it was just important to have harmful chemicals free items in their houses, only 19.3% respondents had monthly income above Rs.46250. Further, none of the respondents from Vadodara said that it was not important to have harmful chemicals free items in their houses.72.7% respondents who remained neutral had monthly income below Rs.29166.68. Furthermore, no significant difference (Chi-Square Value = 11.963 & p Value = 0.063) in opinions regarding importance to have harmful chemicals free items in their houses, was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250.

- In Ahmedabad, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 42.9% respondents had monthly income no more than Rs.29166.67, and 18.1% respondents had monthly income between Rs.29166.67 to Rs.46250 and 39% respondents had monthly income above Rs.46250. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, 48.6% respondents had monthly income below Rs.29166.68. Further, 66.7% respondents who remained neutral and 75% respondents who said that it was not important to have harmful chemicals free items in their houses, had monthly income below Rs.29166.68. Furthermore, no significant difference (Chi-Square Value = 10.277 & p Value = 0.246) in opinions, regarding importance to have harmful chemicals free items in their houses, was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250.
- In Surat, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 32.7% respondents had monthly income no more than Rs.29166.67, and 32.7% respondents had monthly income between Rs.29166.67 to Rs.46250 and 34.6% respondents had monthly income above Rs.46250. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, only 13.3% respondents had monthly income below Rs.29166.68. Further, 60% respondents who remained neutral and 55.6% respondents who said that it was not important to have harmful chemicals free items in their houses, had monthly income below Rs.29166.68. Furthermore, high significant difference (Chi-Square Value = 33.392 & p Value = 0.000) in opinions, regarding importance to have

harmful chemicals free items in their houses, was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250.

• In Rajkot, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 17% respondents had monthly income no more than Rs.29166.67, and 50.4% respondents had monthly income between Rs.29166.67 to Rs.46250 and 32.6% respondents had monthly income above Rs.46250. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, 21.7% respondents had monthly income below Rs.29166.68. Further, only 14.3% respondents who remained neutral and 13.3% respondents who said that it was not important to have harmful chemicals free items in their houses, had monthly income below Rs.29166.68. Furthermore, no significant difference (Chi-Square Value = 3.770 & p Value = 0.877) in opinions, regarding importance to have harmful chemicals free items in their houses, was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250. (Ref. Table 5.4.17)

Table 5.4.18: Respondents' city wise opinions on importance of having harmful chemicals free items such as decorative paints in houses across their Per Capita Income groups

					Im	portance	e Level								
City	PCI**		emely ortant	Impo	rtant	Neu	tral	No Impo	ot rtant		on't now	То	tal	Signific	ance #
*	rcı	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	Low	40	30.5	22	38.6	7	63.6	0	.0	0	.0	69	34.5		
V	Mod.	40	30.5	19	33.3	2	18.2	0	.0	0	.0	61	30.5	8.385	0.211
	High	51	38.9	16	28.1	2	18.2	0	.0	1	100	70	35.0		
	Total	131	100	57	100	11	100	0	0.	1	100	200	100		
	Low	43	41.0	32	45.7	13	72.2	3	75.0	3	100	94	47.0		
A	Mod.	26	24.8	16	22.9	2	11.1	1	25.0	0	.0	45	22.5	11.482	0.176
	High	36	34.3	22	31.4	3	16.7	0	.0	0	.0	61	30.5		
	Total	105	100	70	100	18	100	4	100	3	100	200	100		
	Low	35	33.7	8	13.3	10	66.7	11	61.1	1	33.3	65	32.5		
S	Mod.	28	26.9	22	36.7	5	33.3	5	27.8	1	33.3	61	30.5	29.749	0.000
	High	41	39.4	30	50.0	0	.0	2	11.1	1	33.3	74	37.0		
	Total	104	100	60	100	15	100	18	100	3	100	200	100		
	Low	35	24.8	4	17.4	5	35.7	3	20.0	2	28.6	49	24.5		
R	Mod.	67	47.5	12	52.2	7	50.0	8	53.3	1	14.3	95	47.5	6.356	0.607
	High	39	27.7	7	30.4	2	14.3	4	26.7	4	57.1	56	28.0		
	Total	141	100	23	100	14	100	15	100	7	100	200	100		
	Low	153	31.8	66	31.4	35	60.3	17	45.9	6	42.9	277	34.6		
О	Mod.	161	33.5	69	32.9	16	27.6	14	37.8	2	14.3	262	32.8	29.021	0.000
	High	167	34.7	75	35.7	7	12.1	6	16.2	6	42.9	261	32.6		
	Total	481	100	210	100	58	100	37	100	14	100	800	100		
* V =	Vadodara	ı, A=Ahı	medabad,	S=Surat	t, R=Raj	kot, O=	Overall	;			•				
** PF	ER CAPIT	A INCO	ME: Mo	d.= Mod	lerate										
# Stat	istic is sigr	nificant a	at 0.05 leve	el					-			-			

- In overall, respondents who said that it was extremely important to have harmful chemicals free items in their houses, 31.8% respondents had low per capita income, and 33.5% respondents had moderate per capita income and 34.7% respondents had high per capita income. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses, 35.7% respondents had high per capita income. Further, 60.3% respondents who remained neutral and 45.9% respondents who said that it was not important to have harmful chemicals free items in their houses had low per capita income. Furthermore, high significant difference (Chi-Square Value = 29.021 & p Value = 0.000) in opinions regarding importance to have harmful chemicals free items in their houses, was observed between respondents from three per capita income groups i.e. low, moderate and high.
- In Vadodara, respondents who said that it was extremely important to have harmful chemicals free items in their houses 30.5% respondents had low per capita income, 30.5% respondents had moderate per capita income and 38.9% respondents had high per capita income. Moreover, respondents who said that it was important to have harmful chemicals free items in their

houses, 38.6% respondents had low per capita income. Further, 63.6% respondents remained neutral had low per capita income. While, none of the respondents who said that it was not important to have harmful chemicals free items in their houses. Furthermore, no significant difference (Chi-Square Value = 8.385 & p Value = 0.211) in opinions regarding importance to have harmful chemicals free items in their houses, was observed between respondents from three per capita income groups i.e. low, moderate and high.

- In Ahmedabad, respondents who said that it was extremely important to have harmful chemicals free items in their houses41% respondents had low per capita income, 24.8% respondents had moderate per capita income and 34.3% respondents had high per capita income. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses45.7% respondents had low per capita income. Further, 75% respondents who said that it was not important to have harmful chemicals free items in their houses had low per capita income. Furthermore, no significant difference (Chi-Square Value = 11.482 & p Value = 0.176) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents from three per capita income groups i.e. low, moderate and high.
- In Surat, respondents who said that it was extremely important to have harmful chemicals free items in their houses33.7% respondents had low per capita income, 26.9% respondents had moderate per capita income and 39.4% respondents had high per capita income. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses50% respondents had high per capita income. Further, 61.1% respondents who said that it was not important to have harmful chemicals free items in their houses had low per capita income. Furthermore, high significant difference (Chi-Square Value = 29.749 & p Value = 0.000) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents from three per capita income groups i.e. low, moderate and high.
- In Rajkot, respondents who said that it was extremely important to have harmful chemicals free items in their houses24.8% respondents had low per capita income, 47.5% respondents had moderate per capita income and 27.7% respondents had high per capita income. Moreover, respondents who said that it was important to have harmful chemicals free items in their houses52.2% respondents had moderate per capita income. Further, 53.3% respondents who

said that it was not important to have harmful chemicals free items in their houses moderate per capita income. Furthermore, no significant difference (Chi-Square Value = 6.356 & p Value = 0.607) in opinions regarding importance to have harmful chemicals free items in their houses was observed between respondents from three per capita income groups i.e. low, moderate and high. (Ref. Table 5.4.18)

Table 5.4.19: Respondents' city wise opinions on importance of having harmful chemicals free items such as decorative paints in houses across their marital status

					Im	porta	nce Lev	el							
CITY*	Marital		emely ortant	Impo	rtant	Neu	tral	Not Imp	ortant	Don Kno	-	Tota	I	Significa	nce #
CITT	Status**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Mar.	111	84.7	50	87.7	9	81.8	0	.0	1	100.0	171	85.5	0.579	0.901
v	UM	20	15.3	7	12.3	2	18.2	0	.0	0	.0	29	14.5	0.379	0.901
	Total	131	100	57	100	11	100	0	.0	1	100	200	100		
	Mar.	91	86.7	64	91.4	13	72.2	3	75.0	1	33.3	172	86.0	11 002	0.018
A	UM	14	13.3	6	8.6	5	27.8	1	25.0	2	66.7	28	14.0	11.903	0.018
	Total	105	100	70	100	18	100	4	100	3	100	200	100		
S	Mar.	94	90.4	60	100.0	10	66.7	15	83.3	3	100.0	182	91.0	18.415	0.001
3	UM	10	9.6	0	.0	5	33.3	3	16.7	0	.0	18	9.0	10.415	0.001
	Total	104	100	60	100	15	100	18	100	3	100	200	100		
R	Mar.	104	73.8	17	73.9	14	100.0	15	100.0	7	100.0	157	78.5	12.025	0.017
K	UM	37	26.2	6	26.1	0	.0	0	.0	0	.0	43	21.5	12.023	0.017
	Total	141	100	23	100	14	100	15	100	7	100	200	100		
0	Mar.	400	83.2	191	91.0	46	79.3	33	89.2	12	85.7	682	85.3	9.188	0.057
U	UM	81	16.8	19	9.0	12	20.7	4	10.8	2	14.3	118	14.8	2.100	0.057
	Total	481	100	210	100	58	100	37	100	14	100	800	100		
* V = V	* V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall;														
** Mari	tal Status: N	1ar. = 1	Marrie	d; UM:	Unmarı	ried									
# Statist	ic is signific	ant at (0.05 lev	el											

- In overall, 83.2% respondents who said that it was extremely important to have harmful chemicals free items in their houses were married and 16.8% were unmarried respondents. Likewise, 91% respondents who said that it was important to have harmful chemicals free items in their houses were married and 9% were unmarried respondents. Moreover, 89.2% respondents who said that it was not important to have harmful chemicals free items in their houses were married and 10.8% were unmarried respondents. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 9.188 and p value = 0.057) between opinion, regarding importance to have harmful chemicals free items in their houses, of married and unmarried respondents from selected cities of Gujarat state.
- In Vadodara, 84.7% respondents who said that it was extremely important to have harmful chemicals free items in their houses were married and 15.3% were unmarried respondents. Likewise, 87.7% respondents who said that it was important to have harmful chemicals free items in their houses were married and 12.3% were unmarried respondents. Moreover, none of the respondent from Vadodara said that it was not important to have harmful chemicals free items in their houses. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 0.579 and p value = 0.901) between opinion,

- regarding importance to have harmful chemicals free items in their houses, of married and unmarried respondents from Vadodara.
- In Ahmedabad, 86.7% respondents who said that it was extremely important to have harmful chemicals free items in their houses were married and 13.3% were unmarried respondents. Likewise, 91.4% respondents who said that it was important to have harmful chemicals free items in their houses were married and 8.6% were unmarried respondents. Moreover, 75% respondents who said that it was not important to have harmful chemicals free items in their houses were married and 25% were unmarried respondents. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 11.903 and p value = 0.018) between opinion, regarding importance to have harmful chemicals free items in their houses, of married and unmarried respondents from Ahmedabad.
- In Surat, 90.4% respondents who said that it was extremely important to have harmful chemicals free items in their houses were married and 9.6% were unmarried respondents. Likewise, all respondents who said that it was important to have harmful chemicals free items in their houses were married. Moreover, 83.3% respondents who said that it was not important to have harmful chemicals free items in their houses were married and 16.7% were unmarried respondents. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 18.415 and p value = 0.001) between opinion, regarding importance to have harmful chemicals free items in their houses, of married and unmarried respondents from selected cities of Gujarat state.
- In Rajkot, 73.8% respondents who said that it was extremely important to have harmful chemicals free items in their houses were married and 26.2% were unmarried respondents. Likewise, 73.9% respondents who said that it was important to have harmful chemicals free items in their houses were married and 26.1% were unmarried respondents. Moreover, all respondents who said that it was not important to have harmful chemicals free items in their houses were married. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 12.025 and p value = 0.017) between opinion, regarding importance to have harmful chemicals free items in their houses, of married and unmarried respondents from Rajkot. (Ref. Table 5.4.19)

Table 5.4.20: Respondents' city wise opinions on importance of having harmful chemicals free items such as decorative paints in houses across their family size

					Im	porta	nce Lev	el							
CITY*	Family		emely ortant	Imp	ortant	Ne	utral		Not ortant		Oon't Know	To	otal	Signific	ance #
CHY*	Size	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	1-4	103	78.6	43	75.4	7	63.6	0	.0	1	100.0	154	77.0	1.682	0.641
V	5+	28	21.4	14	24.6	4	36.4	0	.0	0	.0	46	23.0	1.062	0.041
	Total	131	100	57	100	11	100	0	.0	1	100	200	100		
A	1-4	76	72.4	54	77.1	12	66.7	3	75.0	2	66.7	147	73.5	1.052	0.902
A	5+	29	27.6	16	22.9	6	33.3	1	25.0	1	33.3	53	26.5	1.052	0.902
	Total	105	100	70	100	18	100	4	100	3	100	200	100		
S	Total 1-4	71	68.3	36	60.0	5	33.3	9	50.0	3	100.0	124	62.0	10.008	0.040
2	5+	33	31.7	24	40.0	10	66.7	9	50.0	0	.0	76	38.0	10.008	0.040
	Total	104	100	60	100	15	100	18	100	3	100	200	100		
R	1-4	77	54.6	16	69.6	8	57.1	10	66.7	4	57.1	115	57.5	2.369	0.618
K	5+	64	45.4	7	30.4	6	42.9	5	33.3	3	42.9	85	42.5	2.309	0.018
	Total	141	100	23	100	14	100	15	100	7	100	200	100		
0	1-4	327	68.0	149	71.0	32	55.2	22	59.5	10	71.4	540	67.5	6.399	0.171
U	5+	154	32.0	61	29.0	26	44.8	15	40.5	4	28.6	260	32.50	0.399	0.1/1
	Total	481	100	210	100	58	100	37	100	14	100	800	100		
* V = V:	adodara, A	A=Ahm	edabad,	S=Su	rat, R=F	Rajkot	t, O= Ov	erall;							
# Statisti	ic is signifi	cant at	0.05 lev	el			•								•

- In overall, 68% respondents, who said that it was extremely important to have harmful chemicals free items in their houses, had family size up to 4 and 32% respondents had family size more than 4. Moreover, 59.5% respondents who said that it was not important to have harmful chemicals free items in their houses had family size up to 4. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 6.399 and p value = 0.171) between opinion, regarding importance to have harmful chemicals free items in their houses, of respondents with different family size i.e., family size up to 4 and family size more than 4, from selected cities of Gujarat state.
- In Vadodara, 78.6% respondents, who said that it was extremely important to have harmful chemicals free items in their houses, had family size up to 4 and 21.4% respondents had family size more than 4. Moreover, none of the respondents from Vadodara said that it was not important to have harmful chemicals free items in their houses had family size up to 4. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 1.682 and p value = 0.641) between opinion, regarding importance to have harmful chemicals free items in their houses, of respondents with different family size i.e., family size up to 4 and family size more than 4, from Vadodara.

- In Ahmedabad, 72.4% respondents, who said that it was extremely important to have harmful chemicals free items in their houses, had family size up to 4 and 27.6% respondents had family size more than 4. Moreover, 75% respondents who said that it was not important to have harmful chemicals free items in their houses had family size up to 4. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 1.052 and p value = 0.902) between opinion, regarding importance to have harmful chemicals free items in their houses, of respondents with different family size i.e., family size up to 4 and family size more than 4, from Ahmedabad.
- In Surat, 68.3% respondents, who said that it was extremely important to have harmful chemicals free items in their houses, had family size up to 4 and 31.7% respondents had family size more than 4. Moreover, 50% respondents who said that it was not important to have harmful chemicals free items in their houses had family size up to 4. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 10.008 and p value = 0.040) between opinion, regarding importance to have harmful chemicals free items in their houses, of respondents with different family size i.e., family size up to 4 and family size more than 4, from Surat.
- In Rajkot, 54.6% respondents, who said that it was extremely important to have harmful chemicals free items in their houses, had family size up to 4 and 45.4% respondents had family size more than 4. Moreover, 66.7% respondents who said that it was not important to have harmful chemicals free items in their houses had family size up to 4. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 2.369 and p value = 0.618) between opinion, regarding importance to have harmful chemicals free items in their houses, of respondents with different family size i.e., family size up to 4 and family size more than 4, from selected cities of Gujarat state. (Ref. Table 5.4.20)

Table 5.4.21: Respondents' city wise opinions on importance of having harmful chemicals free items such as decorative paints in houses across their family type

					Im	porta	nce Lev	/el							
CITY*	Family		emely ortant	Imp	ortant	Ne	utral		Not ortant		Oon't Know	To	otal	Signific	ance #
CHY"	Type	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Nuclear	97	74.0	34	59.6	6	54.5	0	.0	1	100.0	138	69.0	5.413	0.144
v	Joint	34	26.0	23	40.4	5	45.5	0	.0	0	.0	62	31.0	5.415	0.144
	Total	131	100	57	100	11	100	0	.0	1	100	200	100		
A	Nuclear	77	73.3	55	78.6	10	55.6	3	75.0	2	66.7	147	73.5	3.978	0.409
А	Joint	28	26.7	15	21.4	8	44.4	1	25.0	1	33.3	53	26.5	3.976	0.409
	Total	105	100	70	100	18	100	4	100	3	100	200	100		
S	Nuclear	73	70.2	41	68.3	3	20.0	9	50.0	3	100.0	129	64.5	18.133	0.001
3	Joint	31	29.8	19	31.7	12	80.0	9	50.0	0	.0	71	35.5	10.133	0.001
	Total	104	100	60	100	15	100	18	100	3	100	200	100		
R	Nuclear	90	63.8	16	69.6	3	21.4	7	46.7	5	71.4	121	60.5	11.939	0.018
ĸ	Joint	51	36.2	7	30.4	11	78.6	8	53.3	2	28.6	79	39.5	11.939	0.016
	Total	141	100	23	100	14	100	15	100	7	100	200	100		
0	Nuclear	337	70.1	146	69.5	22	37.9	19	51.4	11	78.6	535	66.9	29.695	0.000
0	Joint	144	29.9	64	30.5	36	62.1	18	48.6	3	21.4	265	33.1	49.095	0.000
	Total	481	100	210	100	58	100	37	100	14	100	800	100		
* V = V	adodara, A=	Ahmed	labad, S=	Surat,	R=Rajko	ot, O=	Overall	;				•	•	•	
# Statist	ic is signific	ant at	0.05 leve	el			•						•		•

- In overall, 70.1% respondents who said that it was extremely important to have harmful chemicals free items in their houses had nuclear family and 29.9% respondents had joint family. Likewise, 69.5% respondents who said that it was important to have harmful chemicals free items in their houses had nuclear family and 30.5% respondents had joint family. Moreover, 51.4% respondents who said that it was not important to have harmful chemicals free items in their houses had nuclear family and 48.6% had joint family. Furthermore, it could be seen from the table that there was a strong significant difference (Chi-Square value = 29.695 and p value = 0.000) between opinion, regarding importance to have harmful chemicals free items in their houses, of respondents with different family type i.e., nuclear family and joint family, from selected cities of Gujarat state.
- In Vadodara, 74% respondents who said that it was extremely important to have harmful chemicals free items in their houses had nuclear family and 26% respondents had joint family. Likewise, 59.6% respondents who said that it was important to have harmful chemicals free items in their houses had nuclear family and 40.4% respondents had joint family. Moreover, no respondents from Vadodara said that it was not important to have harmful chemicals free items in their houses. Furthermore, it could be seen from the table that there was no significant difference (Chi-Square value = 5.413 and p value = 0.144) between opinion, regarding

- importance to have harmful chemicals free items in their houses, of respondents with different family type i.e., nuclear family and joint family, from Vadodara.
- In Ahmedabad, 73.3% respondents who said that it was extremely important to have harmful chemicals free items in their houses had nuclear family and 26.7% respondents had joint family. Likewise, 78.6% respondents who said that it was important to have harmful chemicals free items in their houses had nuclear family and 21.4% respondents had joint family. Moreover, 75% respondents who said that it was not important to have harmful chemicals free items in their houses had nuclear family and 25% had joint family. Furthermore, it could be seen from the table that there was no significant difference (Chi-Square value = 3.978 and p value = 0.409) between opinion, regarding importance to have harmful chemicals free items in their houses, of respondents, with different family type i.e., nuclear family and joint family, from Ahmedabad.
- In Surat, 70.2% respondents who said that it was extremely important to have harmful chemicals free items in their houses had nuclear family and 29.8% respondents had joint family. Likewise, 68.3% respondents who said that it was important to have harmful chemicals free items in their houses had nuclear family and 31.7% respondents had joint family. Moreover, 50% respondents who said that it was not important to have harmful chemicals free items in their houses had nuclear family and 50% had joint family. Furthermore, it could be seen from the table that there was a strong significant difference (Chi-Square value = 18.133 and p value = 0.001) between opinion, regarding importance to have harmful chemicals free items in their houses, of respondents with different family type i.e., nuclear family and joint family, from Surat.
- In Rajkot, 63.8% respondents who said that it was extremely important to have harmful chemicals free items in their houses had nuclear family and 36.2% respondents had joint family. Likewise, 69.6% respondents who said that it was important to have harmful chemicals free items in their houses had nuclear family and 30.4% respondents had joint family. Moreover, 46.7% respondents who said that it was not important to have harmful chemicals free items in their houses had nuclear family and 53.3% had joint family. Furthermore, it could be seen from the table that there was a strong significant difference (Chi-Square value = 11.939 and p value = 0.018) between opinion, regarding importance to have harmful chemicals free

items in their houses, of respondents with different family type i.e., nuclear family and joint family, from Rajkot. (Ref. Table 5.4.21)

Table 5.4.22: Respondents' city wise opinions on importance of having harmful chemicals free items such as decorative paints in houses across their children group

					In	portanc	e Level								
City	Child		remely oortant	Impo	ortant	Net	ıtral	_	ot ortant	_	on't now	To	otal	Signific	ance #
*	**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	0	24	18.3	10	17.5	2	18.2	0	.0	0	.0	36	18.0		
v	1	33	25.2	18	31.6	2	18.2	0	.0	1	100	54	27.0	4.014	0.675
v	2	74	56.5	29	50.9	7	63.6	0	.0	0	.0	110	55.0	4.014	0.075
	3 or +	0	.0	0	.0	0	.0	0	.0	0	.0	0	.0		
	Total	131	100	57	100	11	100	0	.0	1	100	200	100		
	0	21	20.0	11	15.7	5	27.8	2	50.0	2	66.7	41	20.5		
	1	20	19.0	17	24.3	2	11.1	1	25.0	0	.0	40	20.0	10 404	0.104
A	2	62	59.0	37	52.9	9	50.0	0	.0	1	33.3	109	54.5	18.404	0.104
			1.9	5	7.1	2	11.1	1	25.0	0	.0	10	5.0		
	Total	105	100	70	100	18	100	4	100	3	100	200	100		
	0	12	11.5	0	.0	5	33.3	3	16.7	0	.0	20	10.0		
C	1	22	21.2	11	18.3	2	13.3	0	.0	1	33.3	36	18.0	25.554	0.013
S	2	68	65.4	44	73.3	8	53.3	14	77.8	2	66.7	136	68.0	25.756	0.012
	3 or +	2	1.9	5	8.3	0	.0	1	5.6	0	.0	8	4.0		
	Total	104	100	60	100	15	100	18	100	3	100	200	100		
	0	45	31.9	7	30.4	1	7.1	0	.0	0	.0	53	26.5		
ъ	1	4	2.8	1	4.3	3	21.4	1	6.7	1	14.3	10	5.0	25.500	0.013
R	2	89	63.1	14	60.9	10	71.4	13	86.7	5	71.4	131	65.5	25.588	0.012
	3 or +	3	2.1	1	4.3	0	.0	1	6.7	1	14.3	6	3.0		
	Total	141	100	23	100	14	100	15	100	7	100	200	100		
	0	102	21.2	28	13.3	13	22.4	5	13.5	2	14.3	150	18.8		
	1	79	16.4	47	22.4	9	15.5	2	5.4	3	21.4	140	17.5	24.027	0.015
О	2	293	60.9	124	59.0	34	58.6	27	73.0	8	57.1	486	60.8	24.937	0.015
	3 or +	7	1.5	11	5.2	2	3.4	3	8.1	1	7.1	24	3.0		
	Total	481	100	210	100	58	100	37	100	14	100	800	100		
* V=	Vadodar	a, A=Al	medabad	, S=Sura	t, R=Ra	jkot, O=	Overall	;							
** Ch	ildren : 0	= No ch	ild; 1 = 1 (Child; 2	= 2 Chil	dren; 3+	=3 or r	nore tha	n 3						
#Stati	stic is sign	ificant	at 0.05 lev	el	•	•	•					·			

In overall, 60.9% respondents who believed that it was extremely important to have harmful chemicals free items in their houses had 2 children and only 1.5% respondents had 3 or more children. Similarly, respondents who believed that it was not important to have harmful chemicals free items in their houses, 73% had 2 children and 8.1% respondents had 3 or more children. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 24.937 and p value = 0.015) between opinion of respondents, regarding importance to have harmful chemicals free items in their houses, with different child group, i.e., no child, 1 child, 2 children and 3 or more children, from selected cities of Gujarat state.

In parallel to above results, in Surat and Rajkot cities, there was a significant difference between opinion of respondents, regarding importance to have harmful chemicals free items in their houses, with different child group, i.e., no child, 1 child, 2 children and 3 or more

children. Which could be seen from above table, for Surat city, Chi-Square value was 25.756 and significance value was 0.012 and for Rajkot, Chi-Square value was 25.588 and significance value was 0.012.

- o In Surat, 65.4% respondents who believed that it was extremely important to have harmful chemicals free items in their houses had 2 children and only 1.9% respondents had 3 or more children. Similarly, respondents who believed that it was not important to have harmful chemicals free items in their houses, 77.8% had 2 children and none of the respondents had 1 child.
- o In Rajkot, 63.1% respondents who believed that it was extremely important to have harmful chemicals free items in their houses had 2 children and only 2.1% respondents had 3 or more children. Similarly, respondents who believed that it was not important to have harmful chemicals free items in their houses, none of the respondents had 0 children and 86.7% respondents had 2 children.
- However, in Vadodara and Ahmedabad, there was no significant difference between opinion of respondents, regarding importance to have harmful chemicals free items in their houses, with different child group, i.e., no child, 1 child, 2 children and 3 or more children. Which could be seen from table that for Vadodara city Chi-Square value is 4.014 and significance value is 0.675. In this city, no respondent had 3 or more children as well as none of the respondents said that it was not important to have harmful chemicals free items in their houses. Moreover, for Ahmedabad city, Chi-Square value is 18.404 and significance value was 0.104.
 - In Vadodara, 56.5% respondents who believed that it was extremely important to have harmful chemicals free items in their houses had 2 children and only 18.3% respondents had no child.
 - o In Ahmedabad, 59% respondents who believed that it was extremely important to have harmful chemicals free items in their houses had 2 children and only 1.9% respondents had 3 or more children. Similarly, respondents who believed that it was not important to have harmful chemicals free items in their houses, 50% didn't have a child and none of the respondents had 2 children. (Ref. Table 5.4.22)

Table 5.4.23: Respondents' opinions on factor deterring from purchase of item containing toxic material in it across four cities.

					F	actor dete	rring l	Purchase						
	_)wn ealth		ldren's ealth	_	ther's Iealth		Pet's Iealth		of the bove		one of the Above	ТО	TAL
CITY	N	%	N	%	N	%	N	%	N	%	N	%	N	%
Vadodara	30	30.0	51	30.7	5	9.4	0	.0	109	27.0	5	7.1	200	25.0
Ahmedabad	30	30.0	38	22.9	3	5.7	8	100.0	107	26.6	14	20.0	200	25.0
Surat	25	25.0	25	15.1	28	52.8	0	.0	97	24.1	25	35.7	200	25.0
Rajkot	15	15.0	52	31.3	17	32.1	0	.0	90	22.3	26	37.1	200	25.0
Total	100	100.0	166	100.0	53	100.0	8	100.0	403	100.0	70	100.0	800	100.0
	Chi-S	Square v	alue:91	1.555	•				•	•	•	•		
	p Val	lue : 0.00	0 (Statis	tic is signit	ficant at	0.05 level)							

- From above table, it could be observed that 30% respondents were from each of Ahmedabad and Vadodara cities to whom their own health issues prevent them to buy items containing toxic material in it. Respondents, who had pets, were all from Ahmedabad.
- 31.3% respondents were from Rajkot who had children's health issues in their mind which
 deter them to purchase items containing toxics. 30.7% respondents were from Vadodara with
 same thinking.
- 52.8% respondents were from Surat, who revealed that other's health was a factor which
 deterred them to buy items with toxic substances while the same factor affected 32.1%
 respondents from Rajkot. For more than 35% respondents, from each of Surat and Rajkot cities,
 no factor deterred them to buy such an item
- It was also observed from high chi-square value (91.555) that there was a significant (p = 0.000) difference between opinions of respondents of all four selected cities of Gujarat state regarding factors affecting purchase of items containing toxic substance. (Ref. Table 5.4.23)

Table 5.4.24: Respondents' city wise opinions on factor deterring from purchase of item containing toxic material in it across their age groups

					F	actor	deterri	ing p	urchase	;							
City*	Ago	Ov	vH ⁺	C	H ⁺	0	tH ⁺]	PH ⁺	AI	$\mathbf{L}\mathbf{L}^{\scriptscriptstyle{+}}$	NO	NE ⁺	To	tal	Significa	nce #
City	Age	N	%	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	<=37	6	20.0	14	27.5	2	40.0	0	.0	52	47.7	0	.0	74	37.0		
V	38-46	14	46.7	20	39.2	2	40.0	0	.0	37	33.9	0	.0	73	36.5	26.261	0.001
	>46	10	33.3	17	33.3	1	20.0	0	.0	20	18.3	5	100	53	26.5		
	Total	30	100	51	100	5	100	0	100	109	100	5	100	200	100		
	<=37	21	70.0	12	31.6	2	66.7	2	25.0	30	28.0	0	.0	67	33.5		
A	38-46	4	13.3	10	26.3	0	.0	2	25.0	42	39.3	1	7.1	59	29.5	44.657	0.000
	>46	5	16.7	16	42.1	1	33.3	4	50.0	35	32.7	13	92.9	74	37.0		
	Total	30	100	38	100	3	100	8	100	107	100	14	100	200	100		
	<=37	6	24.0	8	32.0	9	32.1	0	0.0	43	44.3	1	4.0	67	33.5		
S	38-46	12	48.0	6	24.0	15	53.6	0	0.0	31	32.0	3	12.0	67	33.5	46.043	0.000
	>46	7	28.0	11	44.0	4	14.3	0	0.0	23	23.7	21	84.0	66	33.0		
	Total	25	100	25	100	28	100	0	100	97	100	25	100	200	100		
	<=37	13	86.7	8	15.4	9	52.9	0	0.0	47	52.2	1	3.8	78	39.0		
R	38-46	0	.0	27	51.9	2	11.8	0	0.0	21	23.3	4	15.4	54	27.0	69.580	0.000
	>46	2	13.3	17	32.7	6	35.3	0	0.0	22	24.4	21	80.8	68	34.0		
	Total	15	100	52	100	17	100	0	100	90	100	26	100	200	100		
	<=37	46	46.0	42	25.3	22	41.5	2	25.0	172	42.7	2	2.9	286	35.8		
О	38-46	30	30.0	63	38.0	19	35.8	2	25.0	131	32.5	8	11.4	253	31.6	120.593	0.000
	>46	24	24.0	61	36.7	12	22.6	4	50.0	100	24.8	60	85.7	261	32.6		
	Total	100	100	166	100	53	100	8	100	403	100	70	100	800	100		
	Vadodara	/					,		/	-	•		•	-		•	
+ OwH	= Own H	Health;	CH = C	hild's F	Iealth; (OtH =	Others'	Hea	th; PH:	Pet's F	Iealth; A	ALL =	All Fac	tors; N	ONE =	None of the giv	en Factor

#Statistic is significant at 0.05 level

In overall, respondents to whom their own health deterred from purchasing an item with toxic material in it, 46% respondents were no more than 37 years of age, 30% respondents were of 38 to 46 years of age and 24% respondents were above 46 years of age. Moreover, respondents to whom their child's health deterred from purchasing an item with toxic material in it, only 25.3% respondents were of age 37 years or less while, 38% respondents were of age between 38 years to 46 years. Further, 42.7% respondents to whom all factors i.e. own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it, and only 2.9% respondents to whom none of the above factors deterred from purchasing an item with toxic material in it, were no more than 37 years of age. While, only 24.8% respondents to whom all factors i.e. own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it and 85.7% respondents to whom no factor deterred from purchasing an item with toxic material in it, were of above 46 years of age. Furthermore, high significant difference (Chi-Square Value = 120.593 & p Value = 0.000) in opinions of respondents, regarding factors i.e., own health, child's health, others' health and pet's health, deterred from purchasing an

- item with toxic material in it, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Vadodara, respondents to whom their own health deterred from purchasing an item with toxic material in it, 20% respondents were no more than 37 years of age, 46.7% respondents were of 38 to 46 years of age and 33.3% respondents were above 46 years of age. Moreover, respondents to whom their child's health deterred from purchasing an item with toxic material in it, only 27.5% respondents were of age 37 years or less while, 39.2% respondents were of age between 38 years to 46 years and 33.3% were above 46 years of age. Further, 47.7% respondents to whom all factors i.e., own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it, were no more than 37 years of age. While, no respondents, below or equal to 37 years of age, was found to whom none of the above factors deterred from purchasing an item with toxic material in it. Only 18.3% respondents to whom all factors i.e. own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it and 100% respondents to whom no factor deterred from purchasing an item with toxic material in it, were of above 46 years of age. Furthermore, high significant difference (Chi-Square Value = 26.261 & p Value = 0.001) in opinions of respondents, regarding factors i.e., own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Ahmedabad, respondents to whom their own health deterred from purchasing an item with toxic material in it, 70% respondents were no more than 37 years of age, 13.3% respondents were of 38 to 46 years of age and 16.7% respondents were above 46 years of age. Moreover, respondents to whom their child's health deterred from purchasing an item with toxic material in it, 31.6% respondents were of age 37 years or less while, 26.3% respondents were of age between 38 years to 46 years and 42.1% were above 46 years of age. Further, 28% respondents to whom all factors i.e., own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it, were no more than 37 years of age. While, no respondents, below or equal to 37 years of age, was found to whom none of the above factors deterred from purchasing an item with toxic material in it.32.7% respondents to whom all factors i.e. own health, child's health, others'

health and pet's health, deterred from purchasing an item with toxic material in it and 92.9% respondents to whom no factor deterred from purchasing an item with toxic material in it, were of above 46 years of age. Furthermore, high significant difference (Chi-Square Value = 44.657 & p Value = 0.000) in opinions of respondents, regarding factors i.e., own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.

- In Surat, respondents to whom their own health deterred from purchasing an item with toxic material in it, 24% respondents were no more than 37 years of age, 48% respondents were of 38 to 46 years of age and 28% respondents were above 46 years of age. Moreover, respondents to whom their child's health deterred from purchasing an item with toxic material in it, only 32% respondents were of age 37 years or less while, 44% respondents were of age above 46 years. Further, 44.3% respondents to whom all factors i.e. own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it, and only 4% respondents to whom none of the above factors deterred from purchasing an item with toxic material in it, were no more than 37 years of age. While, only 23.7% respondents to whom all factors i.e. own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it and 84% respondents to whom no factor deterred from purchasing an item with toxic material in it, were of above 46 years of age. Furthermore, high significant difference (Chi-Square Value = 46.043 & p Value = 0.000) in opinions of respondents, regarding factors i.e., own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Rajkot, respondents to whom their own health deterred from purchasing an item with toxic material in it, 86.7% respondents were no more than 37 years of age, none of the respondents was of 38 to 46 years of age and 13.3% respondents were above 46 years of age. Moreover, respondents to whom their child's health deterred from purchasing an item with toxic material in it, only 52.9% respondents were of age 37 years or less while, 35.3% respondents were of age more than 46 years. Further, 52.2% respondents to whom all factors i.e. own health, child's health, others' health and pet's health, deterred from

purchasing an item with toxic material in it, and only 3.8% respondents to whom none of the above factors deterred from purchasing an item with toxic material in it, were no more than 37 years of age. While, only 24.4% respondents to whom all factors i.e. own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it and 80.8% respondents to whom no factor deterred from purchasing an item with toxic material in it, were of above 46 years of age. Furthermore, high significant difference (Chi-Square Value = 69.580 & p Value = 0.000) in opinions of respondents, regarding factors i.e., own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years. (Ref. Table 5.4.24)

Table 5.4.25: Respondents' city wise opinions on factor deterring from purchase of item containing toxic material in it across their gender

					Fa	ctors	deterri	ng P	urchase	;							
		Ov	wH ⁺	CI	I +	0	tH ⁺	I	PH ⁺	Al	$\mathbf{L}\mathbf{L}^{\scriptscriptstyle{+}}$	N	ONE+	To	tal	Signific	ance #
CITY*	Gender	N	%	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Male	21	70.0	36	70.6	3	60.0	0	.0	80	73.4	2	40.0	142	71.0	2,950	0.566
V	Female	9	30.0	15	29.4	2	40.0	0	.0	29	26.6	3	60.0	58	29.0	2.950	0.500
	Total	30	100	51	100	5	100	0	100	109	100	5	100	200	100		
Α	Male	21	70.0	29	76.3	2	66.7	5	62.5	81	75.7	14	100.0	152	76.0	5.963	0.310
А	Female 9 30.0 9 23.7 1 33.3 3 37.5 26 24.3 0 .0 48 24.0																
	Total 30 100 38 100 3 100 8 100 107 100 14 100 200 100 Male 15 60.0 18 72.0 15 53.6 0 0.0 69 71.1 24 96.0 141 70.5																
c	Male 15 60.0 18 72.0 15 53.6 0 0.0 69 71.1 24 96.0 141 70.5 13.046 0.011																
3	Female	10	40.0	7	28.0	13	46.4	0	0.0	28	28.9	1	4.0	59	29.5	13.040	0.011
	Total	25	100	25	100	28	100	0	100	97	100	25	100	200	100		
R	Male	12	80.0	38	73.1	12	70.6	0	0.0	57	63.3	26	100.0	145	72.5	14.118	0.007
K	Female	3	20.0	14	26.9	5	29.4	0	0.0	33	36.7	0	.0	55	27.5	14.110	0.007
	Total	15	100	52	100	17	100	0	100	90	100	26	100	200	100		
0	Male	69	69.0	121	72.9	32	60.4	5	62.5	287	71.2	66	94.3	580	72.5	21.932	0.001
U	Female	31	31.0	45	27.1	21	39.6	3	37.5	116	28.8	4	5.7	220	27.5	21.932	0.001
	Total	100	100	166	100	53	100	8	100	403	100	70	100	800	100	·	
* V = Va	* V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall;																
+ OwH =	Own Heal	th; CH	= Child'	s Health;	OtH =	Other:	s' Healt	h; PH	: Pet's l	Health;	ALL =	All Fa	actors; No	ONE =	None o	f the given	Factor
#Statistic	c is signific	ant at (0.05 leve	el									•				

- In overall, 69% respondents, to whom their own health deterred from purchasing an item with toxic material in it, were male and 31% were female respondents. 72.9% respondents, to whom their child's health deterred from purchasing an item with toxic material in it, were male and 27.1% were female respondents. Moreover, 39.6% respondents were female, to whom others' health deterred from purchasing an item with toxic material in it. While, 94.3% respondents were male, to whom none of the factors, i.e., own health, child's health, pet's health or others' health, deterred from purchasing an item with toxic material in it. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 21.932 and p value = 0.001) between opinion, regarding which factor deterred from purchasing an item with toxic material in it, of male and female respondents from selected cities of Gujarat state.
- In Vadodara, 70% respondents, to whom their own health deterred from purchasing an item with toxic material in it, were male and 30% were female respondents. 70.6% respondents, to whom their child's health deterred from purchasing an item with toxic material in it, were male and 29.4% were female respondents. Moreover, 40% respondents were female, to whom others' health deterred from purchasing an item with toxic material in it. While, 60% respondents were female, to whom none of the factors, i.e., own health, child's health, pet's

health or others' health, deterred from purchasing an item with toxic material in it. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 2.950 and p value = 0.566) between opinion, regarding which factor deterred from purchasing an item with toxic material in it, of male and female respondents from Vadodara.

- In Ahmedabad, 70% respondents, to whom their own health deterred from purchasing an item with toxic material in it, were male and 30% were female respondents. 76.3% respondents, to whom their child's health deterred from purchasing an item with toxic material in it, were male and 23.7% were female respondents. Moreover, 33.3% respondents were female, to whom others' health deterred from purchasing an item with toxic material in it. While, all respondents were male, to whom none of the factors, i.e., own health, child's health, pet's health or others' health, deterred from purchasing an item with toxic material in it. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 5.963 and p value = 0.310) between opinion, regarding which factor deterred from purchasing an item with toxic material in it, of male and female respondents from Ahmedabad.
- In Surat, 60% respondents, to whom their own health deterred from purchasing an item with toxic material in it, were male and 40% were female respondents. 72% respondents, to whom their child's health deterred from purchasing an item with toxic material in it, were male and 28% were female respondents. Moreover, 46.4% respondents were female, to whom others' health deterred from purchasing an item with toxic material in it. While, 96% respondents were male, to whom none of the factors, i.e., own health, child's health, pet's health or others' health, deterred from purchasing an item with toxic material in it. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 13.046 and p value = 0.011) between opinion, regarding which factor deterred from purchasing an item with toxic material in it, of male and female respondents from Surat.
- In Rajkot, 80% respondents, to whom their own health deterred from purchasing an item with toxic material in it, were male and 20% were female respondents. 73.1% respondents, to whom their child's health deterred from purchasing an item with toxic material in it, were male and 26.9% were female respondents. Moreover, 29.4% respondents were female, to whom others' health deterred from purchasing an item with toxic material in it. While, all respondents were male, to whom none of the factors, i.e., own health, child's health, pet's health or others' health,

deterred from purchasing an item with toxic material in it. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 14.118 and p value = 0.007) between opinion, regarding which factor deterred from purchasing an item with toxic material in it, of male and female respondents from Rajkot. (Ref. Table 5.4.25)

Table 5.4.26: Respondents' city wise opinions on factor deterring from purchase of item containing toxic material in it across their Educational Qualification

						Facto	ors dete	erring	Purcha	ise							
		Ov	vH ⁺	C	H ⁺	0	tH ⁺	P	H ⁺	Al	$\mathrm{LL}^{\scriptscriptstyle +}$	N	ONE ⁺	T	otal	Signific	ance #
City*	Ed.**	N	%	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	UG	3	10.0	6	11.8	0	.0	0	.0	2	1.8	3	60.0	14	7.0		
V	Gr	11	36.7	18	35.3	1	20.0	0	.0	47	43.1	2	40.0	79	39.5	31.124	0.000
	PG	16	53.3	27	52.9	4	80.0	0	.0	60	55.0	0	.0	107	53.5		
	Total	30	100	51	100	5	100	0	100	109	100	5	100	200	100		
	UG	5	16.7	8	21.1	1	33.3	0	.0	10	9.3	11	78.6	35	17.5		
A	Gr	20	66.7	20	52.6	1	33.3	3	37.5	62	57.9	3	21.4	109	54.5	50.185	0.000
	PG 5 16.7 10 26.3 1 33.3 5 62.5 35 32.7 0 .0 56 28.0 Total 30 100 38 100 3 100 8 100 107 100 14 100 200 100																
Total 30 100 38 100 3 100 8 100 107 100 14 100 200 100 UG 6 24.0 3 12.0 2 7.1 0 0.0 20 20.6 7 28.0 38 19.0																	
	UG 6 24.0 3 12.0 2 7.1 0 0.0 20 20.6 7 28.0 38 19.0																
S	Gr	17	68.0	17	68.0	16	57.1	0	0.0	49	50.5	17	68.0	116	58.0	16.365	0.037
	PG	2	8.0	5	20.0	10	35.7	0	0.0	28	28.9	1	4.0	46	23.0		
	Total	25	100	25	100	28	100	0	100	97	100	25	100	200	100		
	UG	4	26.7	5	9.6	5	29.4	0	0.0	11	12.2	10	38.5	35	17.5		
R	Gr	9	60.0	33	63.5	7	41.2	0	0.0	54	60.0	15	57.7	118	59.0	19.169	0.014
	PG	2	13.3	14	26.9	5	29.4	0	0.0	25	27.8	1	3.8	47	23.5		
	Total	15	100	52	100	17	100	0	100	90	100	26	100	200	100		
	UG	18	18.0	22	13.3	8	15.1	0	.0	43	10.7	31	44.3	122	15.3		
О	Gr	57	57.0	88	53.0	25	47.2	3	37.5	212	52.6	37	52.9	422	52.8	73.352	0.000
	PG	25	25.0	56	33.7	20	37.7	5	62.5	148	36.7	2	2.9	256	32.0		
	Total	100	100	166	100	53	100	8	100	403	100	70	100	800	100		
	Vadodara																
	cational C	_					/										
					Iealth; C	tH=	Others'	Healt	h; PH: F	et's He	ealth; Al	LL = A	ll Factors;	NONE:	= None o	f the given	Factor
#Static	tic is sian	ificant	at 0.05	Lovial													

[#]Statistic is significant at 0.05 level

In overall, respondents, to whom their own health deterred from purchasing an item with toxic material in it, 18% respondents were undergraduate, 57% respondents were graduate and 25% respondents were postgraduate. Moreover, respondents, to whom their child's health deterred from purchasing an item with toxic material in it, 33.7% respondents were postgraduates while only 13.3% respondents were undergraduates. Further, 37.7% respondents, to whom their others' health deterred from purchasing an item with toxic material in it, were postgraduates. While, only 2.9% respondents, to whom none of the factors, i.e., own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it, were postgraduates and 44.3% respondents undergraduates. Furthermore, high significant difference (Chi-Square Value = 73.352 & p Value = 0.000) in opinions, regarding factor deterring respondents from purchasing an item with toxic material in it, was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate.

- In Vadodara, out of all respondents, to whom their own health deterred from purchasing an item with toxic material in it, 10% respondents were undergraduate, 36.7% respondents were graduate and 53.3% respondents were postgraduate. Moreover, respondents, to whom their child's health deterred from purchasing an item with toxic material in it, 11.8% respondents were undergraduates. Further, 80% respondents, to whom their others' health deterred from purchasing an item with toxic material in it, were postgraduates. While, none of the respondents were postgraduates, to whom none of the factors, i.e., own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it. Furthermore, high significant difference (Chi-Square Value = 31.124 & p Value = 0.000) in opinions, regarding factor deterring respondents from purchasing an item with toxic material in it, was observed between respondents of Vadodara from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate.
- In Ahmedabad, out of all respondents, to whom their own health deterred from purchasing an item with toxic material in it, 16.7% respondents were undergraduate, 66.7% respondents were graduate and 16.7% respondents were postgraduate. Moreover, respondents, to whom their child's health deterred from purchasing an item with toxic material in it, 26.3% respondents were postgraduates while only 21.1% respondents were undergraduates. Further, 33.3% respondents, to whom their others' health deterred from purchasing an item with toxic material in it, were undergraduates, graduates and postgraduates each. While, only 78.6% respondents, to whom none of the factors, i.e., own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it, were undergraduates and no respondent was postgraduate. Furthermore, high significant difference (Chi-Square Value = 50.185 & p Value = 0.000) in opinions, regarding factor deterring respondents from purchasing an item with toxic material in it, was observed between respondents of Ahmedabad from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate.
- In Surat, out of all respondents, to whom their own health deterred from purchasing an item with toxic material in it, 24% respondents were undergraduate, 68% respondents were graduate and 8% respondents were postgraduate. Moreover, respondents, to whom their child's health deterred from purchasing an item with toxic material in it, 68% respondents were graduates while only 12% respondents were undergraduates. Further, 57.1% respondents, to whom their others' health deterred from purchasing an item with toxic material in it, were graduates.

While, only 4% respondents, to whom none of the factors, i.e., own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it, were postgraduates and 68% respondents graduates. Furthermore, high significant difference (Chi-Square Value = 16.365 & p Value = 0.037) in opinions, regarding factor deterring respondents of Surat from purchasing an item with toxic material in it, was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate.

• In Rajkot, respondents, to whom their own health deterred from purchasing an item with toxic material in it, 26.7% respondents were undergraduate, 60% respondents were graduate and 13.3% respondents were postgraduate. Moreover, respondents, to whom their child's health deterred from purchasing an item with toxic material in it, 26.9% respondents were postgraduates while only 9.6% respondents were undergraduates. Further, 29.4% respondents, to whom their others' health deterred from purchasing an item with toxic material in it, were undergraduates and postgraduates each. While, only 3.8% respondents, to whom none of the factors, i.e., own health, child's health, others' health and pet's health, deterred from purchasing an item with toxic material in it, were postgraduates and 38.5% respondents undergraduates. Furthermore, high significant difference (Chi-Square Value = 19.169 & p Value = 0.014) in opinions, regarding factor deterring respondents from purchasing an item with toxic material in it, was observed between respondents from three groups of educational qualifications i.e. undergraduate, graduate and postgraduate. (Ref. Table 5.4.26)

Table 5.4.27: Respondents' city wise opinions on factor deterring from purchase of item containing toxic material in it across their Occupation

						Facto	rs dete	rring	Purcha	se							
		Ov	vH ⁺	C	H ⁺	0	tH ⁺	P	H ⁺	Al	LL^{+}	N	ONE ⁺	Tot	al	Signific	ance #
City*	Oc.**	N	%	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	S	10	33.3	14	27.5	0	.0	0	.0	53	48.6	3	60.0	80	40.0		
V	В	14	46.7	22	43.1	3	60.0	0	.0	21	19.3	0	.0	60	30.0	21.267	0.006
	P	6	20.0	15	29.4	2	40.0	0	.0	35	32.1	2	40.0	60	30.0		
	Total	30	100	51	100	5	100	0	100	109	100	5	100	200	100		
	S	16	53.3	21	55.3	1	33.3	1	12.5	29	27.1	12	85.7	80	40.0		
A	В	7	23.3	10	26.3	2	66.7	1	12.5	40	37.4	0	.0	60	30.0	36.457	0.000
	P	7	23.3	7	18.4	0	.0	6	75.0	38	35.5	2	14.3	60	30.0		
	Total	30	100	38	100	3	100	8	100	107	100	14	100	200	100		
S 11 44.0 19 76.0 2 7.1 0 0.0 34 35.1 14 56.0 80 40.0																	
S	В	7	28.0	4	16.0	12	42.9	0	0.0	35	36.1	2	8.0	60	30.0	34.532	0.000
	P	7	28.0	2	8.0	14	50.0	0	0.0	28	28.9	9	36.0	60	30.0		
	Total	25	100	25	100	28	100	0	100	97	100	25	100	200	100		
	S	6	40.0	11	21.2	9	52.9	0	0.0	37	41.1	17	65.4	80	40.0		
R	В	6	40.0	24	46.2	1	5.9	0	0.0	25	27.8	4	15.4	60	30.0	22.240	0.004
	P	3	20.0	17	32.7	7	41.2	0	0.0	28	31.1	5	19.2	60	30.0		
	Total	15	100	52	100	17	100	0	100	90	100	26	100	200	100		
	S	43	43.0	65	39.2	12	22.6	1	12.5	153	38.0	46	65.7	320	40.0		
О	В	34	34.0	60	36.1	18	34.0	1	12.5	121	30.0	6	8.6	240	30.0	44.909	0.000
	P	23	23.0	41	24.7	23	43.4	6	75.0	129	32.0	18	25.7	240	30.0		
	Total	100	100	166	100	53	100	8	100	403	100	70	100	800	100		
* V = V	Vadodara,	A=Ah	medaba	d, S=Sı	urat, R=	Rajko	t, O=O	verall	,								
** Occ	upation : S	S = Ser	vice Cla	ıss; B =	Busine	ss clas	ss; P = F	rofes	sionals				•	•	•		•
+ OwH	= Own H	lealth; (CH = Cl	nild's H	Iealth; C)tH =	Others'	Healt	h; PH: I	et's H	ealth; A	LL = A	All Factors	; NONE =	None o	f the given	Factor
	,· · ·															•	

[#]Statistic is significant at 0.05 level

In overall, respondents to whom own health deterred them from purchasing an item with toxic material in it, 43% respondents were service class, 34% respondents were business class and 23% respondents were professionals. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, 39.2 % respondents were service class. Further, respondents to whom others' health deterred them from purchasing an item with toxic material in it, 43.4% respondents were professionals. While, respondents to whom none of the given factor, i.e., own health, others' health, child's health and pets' health, deterred them from purchasing an item with toxic material in it, only 8.6% respondents were business class respondents while 65.7% were service class people. Furthermore, high significant difference (Chi-Square Value = 44.909 & p Value = 0.000), in opinions regarding factors deterring respondents from purchasing an item with toxic material in it, was observed between respondents from three occupational groups i.e. service class, business class and professionals.

In Vadodara, respondents to whom own health deterred them from purchasing an item with toxic material in it, 33.3% respondents were service class, 46.7% respondents were business

class and 20% respondents were professionals. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, 43.1% respondents were business class. Further, respondents to whom others' health deterred them from purchasing an item with toxic material in it, 60% respondents were business class people while none of the respondent was from service group. While, respondents to whom none of the given factor, i.e., own health, others' health, child's health and pets' health, deterred them from purchasing an item with toxic material in it, no respondents were business class respondents while 60% were service class people. Furthermore, high significant difference (Chi-Square Value = 21.267 & p Value = 0.006), in opinions regarding factors deterring respondents from purchasing an item with toxic material in it, was observed between respondents from three occupational groups i.e. service class, business class and professionals.

- In Ahmedabad, respondents to whom own health deterred them from purchasing an item with toxic material in it, 53.3% respondents were service class, 23.3% respondents were business class and 23.3% respondents were professionals. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, 55.3% respondents were service class. Further, respondents to whom others' health deterred them from purchasing an item with toxic material in it, none of the respondents were professionals. While, respondents to whom none of the given factor, i.e., own health, others' health, child's health and pets' health, deterred them from purchasing an item with toxic material in it, only no respondents were business class respondents while 85.7% were service class people. Furthermore, high significant difference (Chi-Square Value = 36.457 & p Value = 0.000), in opinions regarding factors deterring respondents from purchasing an item with toxic material in it, was observed between respondents from three occupational groups i.e. service class, business class and professionals.
- In Surat, respondents to whom own health deterred them from purchasing an item with toxic material in it, 44% respondents were service class, 28% respondents were business class and 28% respondents were professionals. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, 76% respondents were service class. Further, respondents to whom others' health deterred them from purchasing an item with toxic material in it, 50% respondents were professionals. While, respondents to whom none of the given factor, i.e., own health, others' health, child's health and pets' health, deterred them from

purchasing an item with toxic material in it, only 8% respondents were business class respondents while 56% were service class people. Furthermore, high significant difference (Chi-Square Value = 34.532 & p Value = 0.000), in opinions regarding factors deterring respondents from purchasing an item with toxic material in it, was observed between respondents from three occupational groups i.e. service class, business class and professionals.

• In Rajkot, respondents to whom own health deterred them from purchasing an item with toxic material in it, 40% respondents were service class, 40% respondents were business class and 20% respondents were professionals. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, only 21.2% respondents were service class while 46.2% respondents had business. Further, respondents to whom others' health deterred them from purchasing an item with toxic material in it, 52.9% respondents were professionals. While, respondents to whom none of the given factor, i.e., own health, others' health, child's health and pets' health, deterred them from purchasing an item with toxic material in it, only 15.4%respondents were business class respondents while 65.4% were service class people. Furthermore, high significant difference (Chi-Square Value = 22.240 & p Value = 0.004), in opinions regarding factors deterring respondents from purchasing an item with toxic material in it, was observed between respondents from three occupational groups i.e. service class, business class and professionals. (Ref. Table 5.4.27)

Table 5.4.28: Respondents' city wise opinions on factor deterring from purchase of item containing toxic material in it across their Monthly Income groups

		Factors deterring Purchase															
City*	MI**	OwH ⁺		CH ⁺		OtH ⁺		PH ⁺		$\mathbf{ALL}^{\scriptscriptstyle +}$		NONE ⁺		Total		Significance #	
		N	%	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	MI – 1	11	36.7	18	35.3	1	20.0	0	.0	45	41.3	4	80.0	79	39.5	7.885	0.445
	MI – 2	12	40.0	18	35.3	1	20.0	0	.0	32	29.4	1	20.0	64	32.0		
	MI – 3	7	23.3	15	29.4	3	60.0	0	.0	32	29.4	0	.0	57	28.5		
	Total	30	100	51	100	5	100	0	100	109	100	5	100	200	100		
A	MI – 1	19	63.3	19	50.0	1	33.3	3	37.5	44	41.1	11	78.6	97	48.5	22.111	0.015
	MI – 2	6	20.0	6	15.8	2	66.7	3	37.5	18	16.8	3	21.4	38	19.0		
	MI – 3	5	16.7	13	34.2	0	.0	2	25.0	45	42.1	0	.0	65	32.5		
	Total	30	100	38	100	3	100	8	100	107	100	14	100	200	100		
s	MI – 1	9	36.0	8	32.0	5	17.9	0	0.0	27	27.8	13	52.0	62	31.0	28.276	0.000
	MI – 2	10	40.0	13	52.0	5	17.9	0	0.0	25	25.8	9	36.0	62	31.0		
	MI – 3	6	24.0	4	16.0	18	64.3	0	0.0	45	46.4	3	12.0	76	38.0		
	Total	25	100	25	100	28	100	0	100	97	100	25	100	200	100		
R	MI – 1	4	26.7	6	11.5	3	17.6	0	0.0	18	20.0	3	11.5	34	17.0	4.361	0.823
	MI – 2	6	40.0	26	50.0	10	58.8	0	0.0	42	46.7	14	53.8	98	49.0		
	MI – 3	5	33.3	20	38.5	4	23.5	0	0.0	30	33.3	9	34.6	68	34.0		
	Total	15	100	52	100	17	100	0	100	90	100	26	100	200	100		
0	MI – 1	43	43.0	51	30.7	10	18.9	3	37.5	134	33.3	31	44.3	272	34.0	27.150	0.002
	MI – 2	34	34.0	63	38.0	18	34.0	3	37.5	117	29.0	27	38.6	262	32.8		
	MI – 3	23	23.0	52	31.3	25	47.2	2	25.0	152	37.7	12	17.1	266	33.3		
	Total	100	100	166	100	53	100	8	100	403	100	70	100	800	100		
* V = V	Vadodara, A	\=Ahm	edabad	, S=Su	rat, R=	Rajko	ot, O= 0)vera	ll;				•				
** Mo	nthly Incom	ie: Ml	[- 1: <=	-2 9166.	67, MI	- 2: 2	9166.68	3-462	50.00, N	ЛI – 3:	>46250	0.00					
+ OwH	= Own Heal	lth; CH	= Child	l's Heal	th; OtH	= Oth	ners' He	alth;	PH: Pet	's Heal	th; ALL	a = A1	Factors	s; NON	E = Nor	ne of the given	n Factor
#Statist	tic is signific	cant at	0.05 lev	el													•

• In overall, respondents to whom own health deterred them from purchasing an item with toxic material in it, 43% respondents had monthly income no more than Rs.29166.67, 34% respondents had monthly income between Rs.29166.67 to Rs.46250 and 23% respondents had monthly income above Rs.46250. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, 38% respondents had monthly income between Rs.29166.68 and Rs.46250. Further, 47.2% respondents, to whom others' health deterred them from purchasing an item with toxic material in it, had monthly income above Rs.46250 and only 18.9% respondents had monthly income below Rs.29166.67. While, 37.7% respondents, to whom all of the factors, i.e., own health, child's health, others' health and pets health, deterred them from purchasing an item with toxic material in it, had monthly income above Rs.46250. Furthermore, high significant difference (Chi-Square Value = 27.150 & p Value = 0.002) in opinions, regarding factor deterring purchase of an item with toxic material in it, was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250.

- In Vadodara, respondents to whom own health deterred them from purchasing an item with toxic material in it, 36.7% respondents had monthly income no more than Rs.29166.67, 40% respondents had monthly income between Rs.29166.67 to Rs.46250 and 23.3% respondents had monthly income above Rs.46250. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, only 29.4% respondents had monthly income above Rs.46250. Further, 60% respondents, to whom others' health deterred them from purchasing an item with toxic material in it, had monthly income above Rs.46250. While, 41.3% respondents, to whom all of the factors, i.e., own health, child's health, others' health and pets health, deterred them from purchasing an item with toxic material in it, had monthly income below Rs.29166.67. Furthermore, no significant difference (Chi-Square Value = 7.885 & p Value = 0.445) in opinions, regarding factor deterring purchase of an item with toxic material in it, was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250.
- In Ahmedabad, respondents to whom own health deterred them from purchasing an item with toxic material in it, 63.3% respondents had monthly income no more than Rs.29166.67, 20% respondents had monthly income between Rs.29166.67 to Rs.46250 and 16.7% respondents had monthly income above Rs.46250. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, only 15.8% respondents had monthly income between Rs.29166.68 and Rs.46250. Further, 66.7% respondents, to whom others' health deterred them from purchasing an item with toxic material in it, had monthly income above Rs.46250 and none of the respondents had monthly income above Rs.46250. While, 42.1% respondents, to whom all of the factors, i.e., own health, child's health, others' health and pets health, deterred them from purchasing an item with toxic material in it, had monthly income above Rs.46250. Furthermore, high significant difference (Chi-Square Value = 22.111 & p Value = 0.015) in opinions, regarding factor deterring purchase of an item with toxic material in it, was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250.
- In Surat, respondents to whom own health deterred them from purchasing an item with toxic material in it, 36% respondents had monthly income no more than Rs.29166.67, 40% respondents had monthly income between Rs.29166.67 to Rs.46250 and 24% respondents had monthly income above Rs.46250. Moreover, respondents to whom child's health deterred them

from purchasing an item with toxic material in it, 52% respondents had monthly income between Rs.29166.68 and Rs.46250. Further, 64.3% respondents, to whom others' health deterred them from purchasing an item with toxic material in it, had monthly income above Rs.46250 and only 17.9% respondents had monthly income below Rs.29166.67. While, 46.4% respondents, to whom all of the factors, i.e., own health, child's health, others' health and pets health, deterred them from purchasing an item with toxic material in it, had monthly income above Rs.46250. Furthermore, high significant difference (Chi-Square Value = 28.276 & p Value = 0.000) in opinions, regarding factor deterring purchase of an item with toxic material in it, was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250.

• In Rajkot, respondents to whom own health deterred them from purchasing an item with toxic material in it, 26.7% respondents had monthly income no more than Rs.29166.67, 40% respondents had monthly income between Rs.29166.67 to Rs.46250 and 33.3% respondents had monthly income above Rs.46250. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, only 11.5% respondents had monthly income below Rs.29166.67. Further, 58.8% respondents, to whom others' health deterred them from purchasing an item with toxic material in it, had monthly income between Rs.29166.67 and Rs.46250. While, 46.7% respondents, to whom all of the factors, i.e., own health, child's health, others' health and pets health, deterred them from purchasing an item with toxic material in it, had monthly income between Rs.29166.67 and Rs.46250. Furthermore, no significant difference (Chi-Square Value = 4.361 & p Value = 0.823) in opinions, regarding factor deterring purchase of an item with toxic material in it, was observed between respondents from three monthly income groups i.e. below or equal to Rs.29166.67, Rs.29166.68 to Rs.46250 and above Rs.46250. (Ref. Table 5.4.28)

Table 5.4.29: Respondents' city wise opinions on factor deterring from purchase of item containing toxic material in it across their Per Capita Income groups

					F	actors	deterr	ing P	urchas	e							
Citv*	PCI**	Ov	vH ⁺	C	H ⁺	0	tH ⁺	I	PH ⁺	Al	LL^{+}	NO	NE ⁺	To	otal	Significa	nce #
City"	rci	N	%	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	Low	14	46.7	18	35.3	2	40.0	0	.0	31	28.4	4	80.0	69	34.5		
\mathbf{V}	Mod.	9	30.0	17	33.3	0	.0	0	.0	34	31.2	1	20.0	61	30.5	12.259	0.140
	High	7	23.3	16	31.4	3	60.0	0	.0	44	40.4	0	.0	70	35.0		
	Total	30	100	51	100	5	100	0	100	109	100	5	100	200	100		
	Low	16	53.3	18	47.4	1	33.3	3	37.5	44	41.1	12	85.7	94	47.0		
A	Mod.	7	23.3	7	18.4	2	66.7	2	25.0	25	23.4	2	14.3	45	22.5	16.022	0.099
	High	7	23.3	13	34.2	0	.0	3	37.5	38	35.5	0	.0	61	30.5		
Total 30 100 38 100 3 100 8 100 107 100 14 100 200 100 Low 10 40.0 9 36.0 4 14.3 0 0.0 28 28.9 14 56.0 65 32.5																	
Low 10 40.0 9 36.0 4 14.3 0 0.0 28 28.9 14 56.0 65 32.5																	
S	S Mod. 8 32.0 11 44.0 8 28.6 0 0.0 24 24.7 10 40.0 61 30.5 26.609 0.00															0.001	
	Total	25	100	25	100	28	100	0	100	97	100	25	100	200	100		
	Low	2	13.3	9	17.3	7	41.2	0	0.0	24	26.7	7	26.9	49	24.5		
R	Mod.	9	60.0	27	51.9	9	52.9	0	0.0	39	43.3	11	42.3	95	47.5	8.638	0.374
	High	4	26.7	16	30.8	1	5.9	0	0.0	27	30.0	8	30.8	56	28.0		
	Total	15	100	52	100	17	100	0	100	90	100	26	100	200	100		
	Low	42	42.0	54	32.5	14	26.4	3	37.5	127	31.5	37	52.9	277	34.6		
О	Mod.	33	33.0	62	37.3	19	35.8	2	25.0	122	30.3	24	34.3	262	32.8	27.687	0.002
	High	25	25.0	50	30.1	20	37.7	3	37.5	154	38.2	9	12.9	261	32.6		
	Total	100	100	166	100	53	100	8	100	403	100	70	100	800	100		
* V = '	Vadodara,	A=Ahı	nedabad	d, S=Su	ırat, R=I	Rajkot	t, O=Ov	verall	,								
** PEI	R CAPITA	INCO	ME: N	lod.= N	Ioderate	9											
$+ \Omega w H$	I = Oxyn H	ealth: C	$^{\circ}H = Ch$	ild's H	ealth: O	tH = 0	Others'	Healt	h· PH· I	Pet's H	ealth: A	II =	Δ11 Fact	ors: NC	MF = N	None of the give	n Factor

OwH = Own Health; CH = Child's Health; OtH = Others' Health; PH: Pet's Health; ALL = All Factors; NONE

Statistic is significant at 0.05 level

In overall, respondents to whom own health deterred them from purchasing an item with toxic material in it, 42% respondents had low per capita income, 33% respondents had moderate per capita income and 25% respondents had high per capita income. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, 37.3% respondents had moderate per capita income. Further, 37.7% respondents to whom others' health deterred them from purchasing an item with toxic material in it, had high per capita income. While, 38.2% respondents to whom all the factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, had high per capita income. Further, only 12.9% respondents to whom none of the factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, had high per capita income. Furthermore, high significant difference (Chi-Square Value = 27.687 & p Value = 0.002) in opinions regarding factor deterring respondents from purchasing an item with toxic material in it, was observed between respondents from three per capita income groups i.e. low, moderate and high.

- In Vadodara, respondents to whom own health deterred them from purchasing an item with toxic material in it, 46.7% respondents had low per capita income, 30% respondents had moderate per capita income and 23.3% respondents had high per capita income. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, 35.3% respondents had low per capita income. Further, 60% respondents to whom others' health deterred them from purchasing an item with toxic material in it, had high per capita income. While, 40.4% respondents to whom all the factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, had high per capita income. Further, respondents to whom none of the factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, none had high per capita income. Furthermore, no significant difference (Chi-Square Value = 12.259 & p Value = 0.140) in opinions regarding factor deterring respondents of Vadodara from purchasing an item with toxic material in it, was observed between respondents from three per capita income groups i.e. low, moderate and high.
- In Ahmedabad, respondents to whom own health deterred them from purchasing an item with toxic material in it, 53.3% respondents had low per capita income, 23.3% respondents had moderate per capita income and 23.3% respondents had high per capita income. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, 47.4% respondents had low per capita income. Further, 66.7% respondents to whom others' health deterred them from purchasing an item with toxic material in it, had moderate per capita income. While, 41.1% respondents to whom all the factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, had low per capita income. Further, only respondents to whom none of the factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, none had high per capita income. Furthermore, no significant difference (Chi-Square Value = 16.022 & p Value = 0.099) in opinions regarding factor deterring respondents from purchasing an item with toxic material in it, was observed between respondents of Ahmedabad from three per capita income groups i.e. low, moderate and high.
- In Surat, respondents to whom own health deterred them from purchasing an item with toxic material in it, 40% respondents had low per capita income, 32% respondents had moderate per

capita income and 28% respondents had high per capita income. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, 44% respondents had moderate per capita income. Further, 57.1% respondents to whom others' health deterred them from purchasing an item with toxic material in it, had high per capita income. While, 46.4% respondents to whom all the factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, had high per capita income. Further, only 4% respondents to whom none of the factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, had high per capita income. Furthermore, high significant difference (Chi-Square Value = 26.609 & p Value = 0.001) in opinions regarding factor deterring respondents from purchasing an item with toxic material in it, was observed between respondents of Surat from three per capita income groups i.e. low, moderate and high.

• In Rajkot, respondents to whom own health deterred them from purchasing an item with toxic material in it, 13.3% respondents had low per capita income, 60% respondents had moderate per capita income and 26.7% respondents had high per capita income. Moreover, respondents to whom child's health deterred them from purchasing an item with toxic material in it, 51.9% respondents had moderate per capita income. Further, only 5.9% respondents to whom others' health deterred them from purchasing an item with toxic material in it, had high per capita income. While, 43.3% respondents to whom all the factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, had high per capita income. Further, 42.3% respondents to whom none of the factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, had moderate per capita income. Furthermore, no significant difference (Chi-Square Value = 8.638 & p Value = 0.374) in opinions regarding factor deterring respondents from purchasing an item with toxic material in it, was observed between respondents of Rajkot from three per capita income groups i.e. low, moderate and high. (Ref. Table 5.4.29)

Table 5.4.30: Respondents' city wise opinions on factor deterring from purchase of item containing toxic material in it across their Marital Status

						Facto	r deterri	ng P	urchase								
	Marital	Ov	vH ⁺	(CH ⁺	()tH ⁺		PH ⁺	Al	LL^{+}	N	ONE+	To	otal	Signific	ance#
CITY*	Status**	N	%	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Mar.	27	90.0	47	92.2	3	60.0	0	.0	89	81.7	5	100.0	171	85.5	7.007	0.121
v	UM	3	10.0	4	7.8	2	40.0	0	.0	20	18.3	0	.0	29	14.5	7.086	0.131
	Total	30	100	51	100	5	100	0	100	109	100	5	100	200	100		
	Mar.	17	56.7	38	100.0	3	100.0	8	100.0	98	91.6	8	57.1	172	86.0	41 075	0.000
A	UM	13	43.3	0	.0	0	.0	0	.0	9	8.4	6	42.9	28	14.0	41.875	0.000
															100		
S	Mar.	24	96.0	25	100.0	26	92.9	0	0.0	89	91.8	18	72.0	182	91.0	14 440	0.007
3	UM	1	4.0	0	.0	2	7.1	0	0.0	8	8.2	7	28.0	18	9.0	14.440	0.006
	Total	25	100	25	100	28	100	0	100	97	100	25	100	200	100		
D	Mar.	4	26.7	52	100.0	10	58.8	0	0.0	65	72.2	26	100.0	157	78.5	51 242	0.000
R	UM	11	73.3	0	.0	7	41.2	0	0.0	25	27.8	0	.0	43	21.5	51.243	0.000
	Total	15	100	52	100	17	100	0	100	90	100	26	100	200	100		
0	Mar.	72	72.0	162	97.6	42	79.2	8	100.0	341	84.6	57	81.4	682	85.3	37.912	0.000
U	UM	28	28.0	4	2.4	11	20.8	0	.0	62	15.4	13	18.6	118	14.8	37.912	0.000
	Total	100	100	166	100	53	100	8	100	403	100	70	100	800	100		
* V = V	'adodara, A:	=Ahme	dabad,	S=Sur	at, R=Ra	ijkot,	O= Over	rall;									
4434 .	4-1 64-4 1	A .	N	1 1134	TI	• •											

^{**} Marital Status: Mar. = Married; UM: Unmarried

Statistic is significant at 0.05 level

- In overall, 72% respondents to whom own health deterred them from purchasing an item with toxic material in it, were married and 28% were unmarried respondents. Likewise, 97.6% respondents to whom child's health deterred them from purchasing an item with toxic material in it, were married and 2.4% were unmarried respondents. Moreover, 79.2% respondents to whom others' health deterred them from purchasing an item with toxic material in it, were married and 20.8% were unmarried respondents. While, 84.6% respondents to whom all given factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, were married. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 37.912 and p value = 0.000) between opinions of respondents, regarding factors deterring them from purchasing an item with toxic material, of married and unmarried respondents from selected cities of Gujarat state.
- In Vadodara, 90% respondents to whom own health deterred them from purchasing an item with toxic material in it, were married and 10% were unmarried respondents. Likewise, 92.2% respondents to whom child's health deterred them from purchasing an item with toxic material in it, were married and 7.8% were unmarried respondents. Moreover, 60% respondents to

⁺ OwH = Own Health; CH = Child's Health; OtH = Others' Health; PH: Pet's Health; ALL = All Factors; NONE = None of the given Factor

whom others' health deterred them from purchasing an item with toxic material in it, were married and 40% were unmarried respondents. While, 85.5% respondents to whom none of the given factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, were married. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 7.086 and p value = 0.131) between opinions of respondents, regarding factors deterring them from purchasing an item with toxic material, of married and unmarried respondents from Vadodara.

- In Ahmedabad, 56.7% respondents to whom own health deterred them from purchasing an item with toxic material in it, were married and 43.3% were unmarried respondents. Likewise, 100% respondents to whom child's health deterred them from purchasing an item with toxic material in it, were married. Moreover, 100% respondents to whom others' health deterred them from purchasing an item with toxic material in it, were married. While, 91.6% respondents to whom all given factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, were married. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 41.875 and p value = 0.000) between opinions of respondents, regarding factors deterring them from purchasing an item with toxic material, of married and unmarried respondents from Ahmedabad.
- In Surat, 96% respondents to whom own health deterred them from purchasing an item with toxic material in it, were married and 4% were unmarried respondents. Likewise, 100% respondents to whom child's health deterred them from purchasing an item with toxic material in it, were married. Moreover, 92.9% respondents to whom others' health deterred them from purchasing an item with toxic material in it, were married and 7.1% were unmarried respondents. While, 91.8% respondents to whom all given factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, were married. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 14.440 and p value = 0.006) between opinions of respondents, regarding factors deterring them from purchasing an item with toxic material, of married and unmarried respondents from Surat.
- In Rajkot, 26.7% respondents to whom own health deterred them from purchasing an item with toxic material in it, were married and 73.3% were unmarried respondents. Likewise, all

respondents to whom child's health deterred them from purchasing an item with toxic material in it, were married. Moreover, 58.8% respondents to whom others' health deterred them from purchasing an item with toxic material in it, were married and 41.2% were unmarried respondents. While, all respondents to whom none of the given factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material in it, were married. Furthermore, it could be seen from the above table that there was a strong significant difference (Chi-Square value = 51.243 and p value = 0.000) between opinions of respondents, regarding factors deterring them from purchasing an item with toxic material, of married and unmarried respondents from Rajkot. (Ref. Table 5.4.30)

Table 5.4.31: Respondents' city wise opinions on factor deterring from purchase of item containing toxic material in it across their Family Size

					F	actor	s deterri	ng P	urchase								
	Eamily	Ov	vH ⁺	C	H ⁺	()tH⁺	1	PH ⁺	AI	LL^+	NO	NE ⁺	To	otal	Significa	ance #
CITY*	Family Size**	N	%	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	1-4	18	60.0	36	70.6	0	.0	0	.0	96	88.1	4	80.0	154	77.0	30.391	0.000
v	5+	12	40.0	15	29.4	5	100.0	0	.0	13	11.9	1	20.0	46	23.0	30.391	0.000
	Total	30	100	51	100	5	100	0	100	109	100	5	100	200	100		
Α	1-4	26	86.7	34	89.5	1	33.3	7	87.5	70	65.4	9	64.3	147	73.5	16.135	0.010
A	5+	4	13.3	4	10.5	2	66.7	1	12.5	37	34.6	5	35.7	53	26.5	10.135	0.010
	Total	30	100	38	100	3	100	8	100	107	100	14	100	200	100		
S	1-4	16	64.0	13	52.0	18	64.3	0	0.0	65	67.0	12	48.0	124	62.0	4.279	0.370
3	5+	9	36.0	12	48.0	10	35.7	0	0.0	32	33.0	13	52.0	76	38.0	4.279	0.570
	Total	25	100	25	100	28	100	0	100	97	100	25	100	200	100		
R	1-4	8	53.3	28	53.8	4	23.5	0	0.0	58	64.4	17	65.4	115	57.5	10.856	0.028
K	5+	7	46.7	24	46.2	13	76.5	0	0.0	32	35.6	9	34.6	85	42.5	10.850	0.028
	Total	15	100	52	100	17	100	0	100	90	100	26	100	200	100		
0	1-4	68	68.0	111	66.9	23	43.4	7	87.5	289	71.7	42	60.0	540	67.5	20.591	0.001
U	5+	32	32.0	55	33.1	30	56.6	1	12.5	114	28.3	28	40.0	260	32.5	20.391	0.001
	Total	100	100	166	100	53	100	8	100	403	100	70	100	800	100		
* V = Va	adodara, A=	Ahmed	abad, S=	Surat,	R=Rajk	ot, O=	Overall	,									
+ OwH =	Own Health	ı; CH =	Child's	s Health	ı; OtH =	Othe	rs' Healt	h; PF	I: Pet's	Health;	ALL =	All Fa	actors; N	NONE :	= None	of the given	Factor

Statistic is significant at 0.05 level

In overall, 68% respondents to whom own health deterred them from purchasing an item with toxic material had family size up to 4 and 32% respondents had family size more than 4. Likewise, 66.9% respondents to whom child's health deterred them from purchasing an item with toxic material, had family size up to 4 and 33.1% respondents had family size more than 4. Moreover, 43.4% respondents to whom others' health deterred them from purchasing an item with toxic material had family size up to 4 and 56.6% had family size more than 4. While, 71.7% respondents to whom all of the given factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material had family size up to 4 and 28.3% had family size more than 4. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 20.591 and p value = 0.001) between opinions of respondents, regarding factors deterring them from purchasing an item with toxic material, with different family size i.e., family size up to 4 and family size more than 4, from selected cities of Gujarat state.

• In Vadodara, 60% respondents to whom own health deterred them from purchasing an item with toxic material had family size up to 4 and 40% respondents had family size more than 4. Likewise, 70.6% respondents to whom child's health deterred them from purchasing an item with toxic material, had family size up to 4 and 29.4% respondents had family size more than

- 4. Moreover, 100% respondents to whom others' health deterred them from purchasing an item with toxic material had family size more than 4. While, 88.1% respondents to whom all of the given factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material had family size up to 4 and 11.9% had family size more than 4. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 30.391 and p value = 0.000) between opinions of respondents, regarding factors deterring them from purchasing an item with toxic material, with different family size i.e., family size up to 4 and family size more than 4, from Vadodara.
- In Ahmedabad, 86.7% respondents to whom own health deterred them from purchasing an item with toxic material had family size up to 4 and 13.3% respondents had family size more than 4. Likewise, 89.5% respondents to whom child's health deterred them from purchasing an item with toxic material, had family size up to 4 and 10.5% respondents had family size more than 4. Moreover, 33.3% respondents to whom others' health deterred them from purchasing an item with toxic material had family size up to 4 and 66.7% had family size more than 4. While, 65.4% respondents to whom all of the given factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material had family size up to 4 and 34.6% had family size more than 4. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 16.135 and p value = 0.010) between opinions of respondents, regarding factors deterring them from purchasing an item with toxic material, with different family size i.e., family size up to 4 and family size more than 4, from Ahmedabad.
- In Surat, 64% respondents to whom own health deterred them from purchasing an item with toxic material had family size up to 4 and 36% respondents had family size more than 4. Likewise, 52% respondents to whom child's health deterred them from purchasing an item with toxic material, had family size up to 4 and 48% respondents had family size more than 4. Moreover, 64.3% respondents to whom others' health deterred them from purchasing an item with toxic material had family size up to 4 and 35.7% had family size more than 4. While, 67% respondents to whom all of the given factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material had family size up to 4 and 33% had family size more than 4. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 4.279 and p value = 0.370)

between opinions of respondents, regarding factors deterring them from purchasing an item with toxic material, with different family size i.e., family size up to 4 and family size more than 4, from Surat.

In Rajkot, 53.3% respondents to whom own health deterred them from purchasing an item with toxic material had family size up to 4 and 46.7% respondents had family size more than 4. Likewise, 53.8% respondents to whom child's health deterred them from purchasing an item with toxic material, had family size up to 4 and 46.2% respondents had family size more than 4. Moreover, 23.5% respondents to whom others' health deterred them from purchasing an item with toxic material had family size up to 4 and 76.5% had family size more than 4. While, 64.4% respondents to whom all of the given factors i.e., own health, child's health, others' health and pets' health, deterred them from purchasing an item with toxic material had family size up to 4 and 35.6% had family size more than 4. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 10.856 and p value = 0.028) between opinions of respondents, regarding factors deterring them from purchasing an item with toxic material, with different family size i.e., family size up to 4 and family size more than 4, from Rajkot. (Ref. Table 5.4.31)

Table 5.4.32: Respondents' city wise opinions on factor deterring from purchase of item containing toxic material in it across their Family Type

					Facto	rs deterr	ing I	Purchas	e							
Family	Ov	vH ⁺	C	H ⁺	C)tH+	J	PH ⁺	Al	LL^{+}	N	ONE ⁺	To	tal	Signific	ance #
Type**	N	%	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
Nuclear	15	50.0	32	62.7	0	.0	0	.0	89	81.7	2	40.0	138	69.0	27 247	0.000
Joint	15	50.0	19	37.3	5	100.0	0	.0	20	18.3	3	60.0	62	31.0	27.247	0.000
Total	30	100	51	100	5	100	0	100	109	100	5	100	200	100		
Nuclear	26	86.7	34	89.5	0	.0	7	87.5	72	67.3	8	57.1	147	73.5	20.916	0.001
Joint	4	13.3	4	10.5	3	100.0	1	12.5	35	32.7	6	42.9	53	26.5	20.810	0.001
Total	30	100	38	100	3	100	8	100	107	100	14	100	200	100		
Nuclear	19	76.0	13	52.0	20	71.4	0	0.0	67	69.1	10	40.0	129	64.5	11 176	0.025
Joint	6	24.0	12	48.0	8	28.6	0	0.0	30	30.9	15	60.0	71	35.5	11.170	0.023
Total	25	100	25	100	28	100	0	100	97	100	25	100	200	100		
Nuclear	11	73.3	30	57.7	3	17.6	0	0.0	67	74.4	10	38.5	121	60.5	26 976	0.000
Joint	4	26.7	22	42.3	14	82.4	0	0.0	23	25.6	16	61.5	79	39.5	20.870	0.000
Total	15	100	52	100	17	100	0	100	90	100	26	100	200	100		
Nuclear	71	71.0	109	65.7	23	43.4	7	87.5	295	73.2	30	42.9	535	66.9	26 976	0.000
Joint	29	29.0	57	34.3	30	56.6	1	12.5	108	26.8	40	57.1	265	33.1	20.870	0.000
Total	100	100	166	100	53	100	8	100	403	100	70	100	800	100		
adodara, A=	Ahmed	labad, S	=Surat,	R=Rajl	kot, O	= Overal	l;									
Own Healt	h; CH =	= Child'	's Healt	h; OtH	= Oth	ers' Heal	th; Pl	H: Pet's	Health	; ALL =	All F	actors; NO	ONE =	None of	f the given	Factor
	Nuclear Joint Total Nuclear Joint Audear Joint Total Nuclear	Family Type** N	Type*** N % Nuclear 15 50.0 Joint 15 50.0 Total 30 100 Nuclear 26 86.7 Joint 4 13.3 Total 30 100 Nuclear 19 76.0 Joint 6 24.0 Total 25 100 Nuclear 11 73.3 Joint 4 26.7 Total 15 100 Nuclear 71 71.0 Joint 29 29.0 Total 100 100 dodara, A=Ahmedabad, S	Family Type** N % N Nuclear 15 50.0 32 Joint 15 50.0 19 Total 30 100 51 Nuclear 26 86.7 34 Joint 4 13.3 4 Total 30 100 38 Nuclear 19 76.0 13 Joint 6 24.0 12 Total 25 100 25 Nuclear 11 73.3 30 Joint 4 26.7 22 Total 15 100 52 Nuclear 71 71.0 109 Joint 29 29.0 57 Total 100 100 166 doddara, A=Ahmedabad, S=Surat,	Family Type*** OwH⁺ CH⁺ Nuclear 15 50.0 32 62.7 Joint 15 50.0 19 37.3 Total 30 100 51 100 Nuclear 26 86.7 34 89.5 Joint 4 13.3 4 10.5 Total 30 100 38 100 Nuclear 19 76.0 13 52.0 Joint 6 24.0 12 48.0 Total 25 100 25 100 Nuclear 11 73.3 30 57.7 Joint 4 26.7 22 42.3 Total 15 100 52 100 Nuclear 71 71.0 109 65.7 Joint 29 29.0 57 34.3 Total 100 100 166 100 dod	Family Type** OwH⁺ CH⁺ C N % N % N Nuclear 15 50.0 32 62.7 0 Joint 15 50.0 19 37.3 5 Total 30 100 51 100 5 Nuclear 26 86.7 34 89.5 0 Joint 4 13.3 4 10.5 3 Total 30 100 38 100 3 Nuclear 19 76.0 13 52.0 20 Joint 6 24.0 12 48.0 8 Total 25 100 25 100 28 Nuclear 11 73.3 30 57.7 3 Joint 4 26.7 22 42.3 14 Total 15 100 52 100 17 Nuclear 71 <td< td=""><td>Family Type** OwH⁺ CH⁺ OtH⁺ Nuclear 15 50.0 32 62.7 0 .0 Joint 15 50.0 19 37.3 5 100.0 Total 30 100 51 100 5 100 Nuclear 26 86.7 34 89.5 0 .0 Joint 4 13.3 4 10.5 3 100.0 Total 30 100 38 100 3 100.0 Nuclear 19 76.0 13 52.0 20 71.4 Joint 6 24.0 12 48.0 8 28.6 Total 25 100 25 100 28 100 Nuclear 11 73.3 30 57.7 3 17.6 Joint 4 26.7 22 42.3 14 82.4 Total 1</td><td>Family Type** OwH* CH* OtH* I Nuclear 15 50.0 32 62.7 0 .0 0 Joint 15 50.0 19 37.3 5 100.0 0 Total 30 100 51 100 5 100 0 Nuclear 26 86.7 34 89.5 0 .0 7 Joint 4 13.3 4 10.5 3 100.0 1 Total 30 100 38 100 3 100 8 Nuclear 19 76.0 13 52.0 20 71.4 0 Joint 6 24.0 12 48.0 8 28.6 0 Total 25 100 25 100 28 100 0 Nuclear 11 73.3 30 57.7 3 17.6 0 Joint 4</td><td>Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ Nuclear 15 50.0 32 62.7 0 .0 0 .0 Joint 15 50.0 19 37.3 5 100.0 0 .0 Total 30 100 51 100 5 100 0 100 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 Joint 4 13.3 4 10.5 3 100.0 1 12.5 Total 30 100 38 100 3 100.0 1 12.5 Total 30 100 38 100 3 100 8 100 Nuclear 19 76.0 13 52.0 20 71.4 0 0.0 Joint 6 24.0 12 48.0 8 28.6 0 0.0 Nuclear</td><td>Family Type** N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % D .0 .0 .0 20 20 20 20 70 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 Total 30 100 51 100 5 100 0 100 109 100 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 Total 30 100 38 100 3 100 8 100 107 100 Nuclear 19 76.0 13 52.0 20 71.4 0 0.0 67 69.1 Joint 6 24.0 12 48.0 8 <td< td=""><td>Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ N Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 Total 30 100 51 100 5 100 0 100 109 100 5 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 Total 30 100 38 100 3 100 8 100 107 100 14 Nuclear 19 76.0 13 52.0 20 71.4 0 0.0 67 69.1 <</td><td>Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 Total 30 100 51 100 5 100 0 100 109 100 5 100 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 57.1 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 42.9 Total 30 100 3 100 8 100 107 100 14 100 Nuclear 19 76.0 13 52.0 20 71.4 <t< td=""><td>Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Too Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 138 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 62 Total 30 100 51 100 5 100 0 100 109 100 5 100 20 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 57.1 147 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 42.9 53 Total 30 100 38 100 3 100 107 100 14 100 20 Nucle</td><td>Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Total Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 138 69.0 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 62 31.0 Total 30 100 51 100 5 100 0 100 109 100 5 100 200 100 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 57.1 147 73.5 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 42.9 53 26.5 Total 30 100 38 100 3 100 8</td><td>Family Type** OWH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Total Signific Chi-Square Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 138 69.0 27.247 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 62 31.0 27.247 Joint 15 50.0 19 37.3 5 100.0 0 100 100 5 100 20 18.3 3 60.0 62 31.0 27.247 Total 30 100 51 100 5 100 100 109 100 5 100 20 100 100 130 100 20 100 20 110 40.0 20 100 20 100 20 100 20 100 20 100</td></t<></td></td<></td></td<>	Family Type** OwH⁺ CH⁺ OtH⁺ Nuclear 15 50.0 32 62.7 0 .0 Joint 15 50.0 19 37.3 5 100.0 Total 30 100 51 100 5 100 Nuclear 26 86.7 34 89.5 0 .0 Joint 4 13.3 4 10.5 3 100.0 Total 30 100 38 100 3 100.0 Nuclear 19 76.0 13 52.0 20 71.4 Joint 6 24.0 12 48.0 8 28.6 Total 25 100 25 100 28 100 Nuclear 11 73.3 30 57.7 3 17.6 Joint 4 26.7 22 42.3 14 82.4 Total 1	Family Type** OwH* CH* OtH* I Nuclear 15 50.0 32 62.7 0 .0 0 Joint 15 50.0 19 37.3 5 100.0 0 Total 30 100 51 100 5 100 0 Nuclear 26 86.7 34 89.5 0 .0 7 Joint 4 13.3 4 10.5 3 100.0 1 Total 30 100 38 100 3 100 8 Nuclear 19 76.0 13 52.0 20 71.4 0 Joint 6 24.0 12 48.0 8 28.6 0 Total 25 100 25 100 28 100 0 Nuclear 11 73.3 30 57.7 3 17.6 0 Joint 4	Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ Nuclear 15 50.0 32 62.7 0 .0 0 .0 Joint 15 50.0 19 37.3 5 100.0 0 .0 Total 30 100 51 100 5 100 0 100 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 Joint 4 13.3 4 10.5 3 100.0 1 12.5 Total 30 100 38 100 3 100.0 1 12.5 Total 30 100 38 100 3 100 8 100 Nuclear 19 76.0 13 52.0 20 71.4 0 0.0 Joint 6 24.0 12 48.0 8 28.6 0 0.0 Nuclear	Family Type** N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % N % D .0 .0 .0 20 20 20 20 70 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 Total 30 100 51 100 5 100 0 100 109 100 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 Total 30 100 38 100 3 100 8 100 107 100 Nuclear 19 76.0 13 52.0 20 71.4 0 0.0 67 69.1 Joint 6 24.0 12 48.0 8 <td< td=""><td>Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ N Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 Total 30 100 51 100 5 100 0 100 109 100 5 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 Total 30 100 38 100 3 100 8 100 107 100 14 Nuclear 19 76.0 13 52.0 20 71.4 0 0.0 67 69.1 <</td><td>Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 Total 30 100 51 100 5 100 0 100 109 100 5 100 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 57.1 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 42.9 Total 30 100 3 100 8 100 107 100 14 100 Nuclear 19 76.0 13 52.0 20 71.4 <t< td=""><td>Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Too Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 138 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 62 Total 30 100 51 100 5 100 0 100 109 100 5 100 20 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 57.1 147 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 42.9 53 Total 30 100 38 100 3 100 107 100 14 100 20 Nucle</td><td>Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Total Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 138 69.0 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 62 31.0 Total 30 100 51 100 5 100 0 100 109 100 5 100 200 100 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 57.1 147 73.5 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 42.9 53 26.5 Total 30 100 38 100 3 100 8</td><td>Family Type** OWH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Total Signific Chi-Square Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 138 69.0 27.247 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 62 31.0 27.247 Joint 15 50.0 19 37.3 5 100.0 0 100 100 5 100 20 18.3 3 60.0 62 31.0 27.247 Total 30 100 51 100 5 100 100 109 100 5 100 20 100 100 130 100 20 100 20 110 40.0 20 100 20 100 20 100 20 100 20 100</td></t<></td></td<>	Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ N Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 Total 30 100 51 100 5 100 0 100 109 100 5 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 Total 30 100 38 100 3 100 8 100 107 100 14 Nuclear 19 76.0 13 52.0 20 71.4 0 0.0 67 69.1 <	Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 Total 30 100 51 100 5 100 0 100 109 100 5 100 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 57.1 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 42.9 Total 30 100 3 100 8 100 107 100 14 100 Nuclear 19 76.0 13 52.0 20 71.4 <t< td=""><td>Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Too Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 138 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 62 Total 30 100 51 100 5 100 0 100 109 100 5 100 20 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 57.1 147 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 42.9 53 Total 30 100 38 100 3 100 107 100 14 100 20 Nucle</td><td>Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Total Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 138 69.0 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 62 31.0 Total 30 100 51 100 5 100 0 100 109 100 5 100 200 100 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 57.1 147 73.5 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 42.9 53 26.5 Total 30 100 38 100 3 100 8</td><td>Family Type** OWH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Total Signific Chi-Square Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 138 69.0 27.247 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 62 31.0 27.247 Joint 15 50.0 19 37.3 5 100.0 0 100 100 5 100 20 18.3 3 60.0 62 31.0 27.247 Total 30 100 51 100 5 100 100 109 100 5 100 20 100 100 130 100 20 100 20 110 40.0 20 100 20 100 20 100 20 100 20 100</td></t<>	Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Too Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 138 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 62 Total 30 100 51 100 5 100 0 100 109 100 5 100 20 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 57.1 147 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 42.9 53 Total 30 100 38 100 3 100 107 100 14 100 20 Nucle	Family Type** OwH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Total Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 138 69.0 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 62 31.0 Total 30 100 51 100 5 100 0 100 109 100 5 100 200 100 Nuclear 26 86.7 34 89.5 0 .0 7 87.5 72 67.3 8 57.1 147 73.5 Joint 4 13.3 4 10.5 3 100.0 1 12.5 35 32.7 6 42.9 53 26.5 Total 30 100 38 100 3 100 8	Family Type** OWH⁺ CH⁺ OtH⁺ PH⁺ ALL⁺ NONE⁺ Total Signific Chi-Square Nuclear 15 50.0 32 62.7 0 .0 0 .0 89 81.7 2 40.0 138 69.0 27.247 Joint 15 50.0 19 37.3 5 100.0 0 .0 20 18.3 3 60.0 62 31.0 27.247 Joint 15 50.0 19 37.3 5 100.0 0 100 100 5 100 20 18.3 3 60.0 62 31.0 27.247 Total 30 100 51 100 5 100 100 109 100 5 100 20 100 100 130 100 20 100 20 110 40.0 20 100 20 100 20 100 20 100 20 100

Statistic is significant at 0.05 level

• In overall, 71% respondents to whom own health deterred them from purchasing an item with toxic material had nuclear family and 29% respondents had joint family. Likewise, 65.7% respondents to whom their child's health deterred them from purchasing an item with toxic material had nuclear family and 34.3% respondents had joint family. Moreover, 43.4% respondents to whom others' health deterred them from purchasing an item with toxic material had nuclear family and 56.6% had joint family. While, 73.2% respondents to whom all factors, i.e., own health, child's health, others' health and pets health, deterred them from purchasing an item with toxic material had nuclear family and 26.8% had joint family. Furthermore, it could be seen from the table that there was a strong significant difference (Chi-Square value = 26.876 and p value = 0.000) between opinion, regarding factors deterring from purchasing an item with toxic material, of respondents with different family type i.e., nuclear family and joint family, from selected cities of Gujarat state.

• In Vadodara, 50% respondents to whom own health deterred them from purchasing an item with toxic material had nuclear family and 50% respondents had joint family. Likewise, 62.7% respondents to whom their child's health deterred them from purchasing an item with toxic material had nuclear family and 37.3% respondents had joint family. Moreover, respondents to whom others' health deterred them from purchasing an item with toxic material, none of

them had nuclear family. While, 81.7% respondents to whom all factors, i.e. Own health, child's health, others' health and pets health, deterred them from purchasing an item with toxic material had nuclear family and 18.3% had joint family. Furthermore, it could be seen from the table that there was a strong significant difference (Chi-Square value = 27.247 and p value = 0.000) between opinion, regarding factors deterring from purchasing an item with toxic material, of respondents with different family type i.e., nuclear family and joint family, from Vadodara.

- In, Ahmedabad, 86.7% respondents to whom own health deterred them from purchasing an item with toxic material had nuclear family and 13.3% respondents had joint family. Likewise, 89.5% respondents to whom their child's health deterred them from purchasing an item with toxic material had nuclear family and 10.5% respondents had joint family. Moreover, all respondents to whom others' health deterred them from purchasing an item with toxic material had nuclear family. While, 67.3% respondents to whom all factors, i.e. Own health, child's health, others' health and pets health, deterred them from purchasing an item with toxic material had nuclear family and 32.7% had joint family. Furthermore, it could be seen from the table that there was a strong significant difference (Chi-Square value = 20.816 and p value = 0.001) between opinion, regarding factors deterring from purchasing an item with toxic material, of respondents with different family type i.e., nuclear family and joint family, from Ahmedabad.
- In Surat, 76% respondents to whom own health deterred them from purchasing an item with toxic material had nuclear family and 24% respondents had joint family. Likewise, 52% respondents to whom their child's health deterred them from purchasing an item with toxic material had nuclear family and 48% respondents had joint family. Moreover, 71.4% respondents to whom others' health deterred them from purchasing an item with toxic material had nuclear family and 28.6% had joint family. While, 69.1% respondents to whom all factors, i.e. Own health, child's health, others' health and pets health, deterred them from purchasing an item with toxic material had nuclear family and 30.9% had joint family. Furthermore, it could be seen from the table that there was a strong significant difference (Chi-Square value = 11.176 and p value = 0.025) between opinion, regarding factors deterring from purchasing an item with toxic material, of respondents with different family type i.e., nuclear family and joint family, from Surat.

• In Rajkot, 73.3% respondents to whom own health deterred them from purchasing an item with toxic material had nuclear family and 26.7% respondents had joint family. Likewise, 57.7% respondents to whom their child's health deterred them from purchasing an item with toxic material had nuclear family and 42.3% respondents had joint family. Moreover, 17.6% respondents to whom others' health deterred them from purchasing an item with toxic material had nuclear family and 82.4% had joint family. While, 74.4% respondents to whom all factors, i.e. Own health, child's health, others' health and pets health, deterred them from purchasing an item with toxic material had nuclear family and 25.6% had joint family. Furthermore, it could be seen from the table that there was a strong significant difference (Chi-Square value = 26.876 and p value = 0.000) between opinion, regarding factors deterring from purchasing an item with toxic material, of respondents with different family type i.e., nuclear family and joint family, from Rajkot. (Ref. Table 5.4.32)

Table 5.4.33: Respondents' city wise opinions on factor deterring from purchase of item containing toxic material in it across their Children groups.

					F	actors	deterr	ing P	urchase	e							
	Child	Ov	vH ⁺	C	H^+	0	tH ⁺	I	PH ⁺	Al	LL^{+}	NC	NE ⁺	To	otal	Significa	nce #
City*	**	N	%	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	0	3	10.0	5	9.8	2	40.0	0	.0	26	23.9	0	.0	36	18.0		
v	1	8	26.7	11	21.6	0	.0	0	.0	32	29.4	3	60.0	54	27.0	15.103	0.057
·	2	19	63.3	35	68.6	3	60.0	0	.0	51	46.8	2	40.0	110	55.0	15.105	0.057
	3 or +	0	.0	0	.0	0	.0	0	.0	0	.0	0	.0	0	.0		
	Total	30	100	51	100	5	100	0	100	109	100	5	100	200	100		
	0	21	70.0	0	.0	2	66.7	1	12.5	10	9.3	7	50.0	41	20.5		
A	1	3	10.0	9	23.7	0	.0	1	12.5	26	24.3	1	7.1	40	20.0	79.364	0.000
A	2	6	20.0	28	73.7	1	33.3	6	75.0	63	58.9	5	35.7	109	54.5	79.304	0.000
	3 or +	0	.0	1	2.6	0	.0	0	.0	8	7.5	1	7.1	10	5.0		
	Total 30 100 38 100 3 100 8 100 107 100 14 100 200 100 0 1 4.0 0 .0 2 7.1 0 0.0 10 10.3 7 28.0 20 10.0																
	0 1 4.0 0 .0 2 7.1 0 0.0 10 10.3 7 28.0 20 10.0																
6	1 6 24.0 5 20.0 4 14.3 0 0.0 20 20.6 1 4.0 36 18.0 23 088 0.027																
3	2	15	60.0	20	80.0	20	71.4	0	0.0	65	67.0	16	64.0	136	68.0	23.000	0.027
	3 or +	3	12.0	0	.0	2	7.1	0	0.0	2	2.1	1	4.0	8	4.0		
	Total	25	100	25	100	28	100	0	100	97	100	25	100	200	100		
	0	13	86.7	0	.0	9	52.9	0	0.0	30	33.3	1	3.8	53	26.5		
R	1	0	.0	1	1.9	2	11.8	0	0.0	4	4.4	3	11.5	10	5.0	69.741	0.000
K	2	2	13.3	49	94.2	5	29.4	0	0.0	54	60.0	21	80.8	131	65.5	05.741	0.000
	3 or +	0	.0	2	3.8	1	5.9	0	0.0	2	2.2	1	3.8	6	3.0		
	Total	15	100	52	100	17	100	0	100	90	100	26	100	200	100		
	0	38	38.0	5	3.0	15	28.3	1	12.5	76	18.9	15	21.4	150	18.8		
o	1	17	17.0	26	15.7	6	11.3	1	12.5	82	20.3	8	11.4	140	17.5	68.937	0.000
	2	42	42.0	132	79.5	29	54.7	6	75.0	233	57.8	44	62.9	486	60.8	00.757	0.000
	3 or +	3	3.0	3	1.8	3	5.7	0	.0	12	3.0	3	4.3	24	3.0		
	Total	100	100	166	100	53	100	8	100	403	100	70	100	800	100		
	Vadodara,			/					,								
	dren : 0 =																
+ OwH	= Own H	ealth; C	CH = Ch	ild's H	ealth; O	tH = 0	Others'	Healt	h; PH: I	et's H	ealth; A	LL = I	All Fact	ors; NC	NE = N	None of the give	en Factor

[#] Statistic is significant at 0.05 level

In overall, 42% respondents to whom own health deterred them from purchasing an item with toxic material had 2 children and 38% respondents had no child. Similarly, respondents to whom child's health deterred them from purchasing an item with toxic material, 79.5% had 2 children and 15.7% respondents had a child. Moreover, 54.7% respondents to whom others' health deterred them from purchasing an item with toxic material had 2 children and 28.3% respondents had no child, 11.3% respondents had 1 child and 5.7% respondents had 3 or more children. Further, 57.8% respondents to whom all factors i.e., own health, child's health, others' health and pet's health, deterred them from purchasing an item with toxic material had 2 children and 18.9% respondents had no child, 20.3% respondents had 1 child and 3% respondents had 3 or more children. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 68.937 and p value = 0.000) between

- opinion of respondents, regarding factors deterring from purchasing an item with toxic material had, with different child group, i.e., no child, 1 child, 2 children and 3 or more children, from selected cities of Gujarat state.
- In Vadodara, 63.3% respondents to whom own health deterred them from purchasing an item with toxic material had 2 children and 26.7% respondents had a child. Similarly, respondents to whom child's health deterred them from purchasing an item with toxic material, 68.6% had 2 children and 21.6% respondents had a child. Moreover, 60% respondents to whom others' health deterred them from purchasing an item with toxic material had 2 children and40% respondents had no child. Further, 46.8% respondents to whom all factors i.e., own health, child's health, others' health and pet's health, deterred them from purchasing an item with toxic material had 2 children and 23.9% respondents had no child and 29.4% respondents had 1 child. Furthermore, it could be seen from the above table that there was no significant difference (Chi-Square value = 15.103 and p value = 0.057) between opinion of respondents, regarding factors deterring from purchasing an item with toxic material had, with different child group, i.e., no child, 1 child, 2 children and 3 or more children, from Vadodara.
- In Ahmedabad, 70% respondents, to whom own health deterred them from purchasing an item with toxic material, didn't have children and 20% respondents had 2 children. Similarly, respondents to whom child's health deterred them from purchasing an item with toxic material, 73.7% had 2 children and 23.7% respondents had a child. Moreover, 66.7% respondents to whom others' health deterred them from purchasing an item with toxic material didn't have a child and33.3% respondents had 2 children. Further, 58.9% respondents to whom all factors i.e., own health, child's health, others' health and pet's health, deterred them from purchasing an item with toxic material had 2 children and only 9.3% respondents didn't have a child. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 79.364 and p value = 0.000) between opinion of respondents, regarding factors deterring from purchasing an item with toxic material had, with different child group, i.e., no child, 1 child, 2 children and 3 or more children, from Ahmedabad,
- In Surat, 60% respondents to whom own health deterred them from purchasing an item with toxic material had 2 children and 24% respondents had a child. Similarly, respondents to whom child's health deterred them from purchasing an item with toxic material, 80% had 2 children and 20% respondents had a child. Moreover, 71.4% respondents to whom others' health

deterred them from purchasing an item with toxic material had 2 children and 14.3% respondents had a child. Further, 67.6% respondents to whom all factors i.e., own health, child's health, others' health and pet's health, deterred them from purchasing an item with toxic material had 2 children and 10.3% respondents didn't have a child, 20.6% respondents had 1 child and 2.1% respondents had 3 or more children. Furthermore, it could be seen from the above table that there was a significant difference (Chi-Square value = 23.088 and p value = 0.027) between opinion of respondents, regarding factors deterring from purchasing an item with toxic material had, with different child group, i.e., no child, 1 child, 2 children and 3 or more children, from Surat.

• In Rajkot, 86.7% respondents to whom own health deterred them from purchasing an item with toxic material didn't have any children and 13.3% respondents had 2 children. Similarly, respondents to whom child's health deterred them from purchasing an item with toxic material, 94.2% had 2 children and 1.9% respondents had a child. Moreover, 52.9% respondents to whom others' health deterred them from purchasing an item with toxic material didn't have a child, 11.8% respondents had 1 child and 5.9% respondents had 3 or more children. Further, 60% respondents to whom all factors i.e., own health, child's health, others' health and pet's health, deterred them from purchasing an item with toxic material had 2 children and 33.3% respondents didn't have a child. Furthermore, it could be seen from the table that there was a significant difference (Chi-Square value = 69.741 and p value = 0.000) between opinion of respondents, regarding factors deterring from purchasing an item with toxic material had, with different child group, i.e., no child, 1 child, 2 children and 3 or more children, from Rajkot. (Ref. Table 5.4.33)

Table 5.4.34: Respondents' opinion regarding their preference of shopping situation for purchasing decorative paints across four selected cities of Gujarat

			Sho	opping Situ	ation					
	Mass N	1erchants	Special	ity Stores	Paint	Agency	О	nline	T	otal
CITY	N	%	N	%	N	%	N	%	N	%
Vadodara	50	17.4	106	28.0	38	34.5	6	25.0	200	25.0
Ahmedabad	71	24.7	97	25.6	29	26.4	3	12.5	200	25.0
Surat	79	27.5	91	24.0	18	16.4	12	50.0	200	25.0
Rajkot	87	30.3	85	22.4	25	22.7	3	12.5	200	25.0
Total	287	100.0	379	100.0	110	100.0	24	100.0	800	100.0
Chi-Square value	29.716		•					•		
p Value	0.000 (3	Statistic is s	ignifican	t at 0.05 le	vel)					

- From above table, it could be observed that majority of the respondents who prefer to buy paint from mass merchants were from Rajkot (30.3%) while people who prefer speciality store, majority were from Vadodara (28%).
- Despite the fact that there were lesser Paint Agencies and online availability of paints in Gujarat, people responded to Paint Agency, majority were from Vadodara (34.5%). While, people who preferred to purchase online, majority were from Surat city (50%).
- Moreover, high Chi-Square value (29.716) and high significance (0.000) proved that there was a significant difference of approach to purchase of paint between respondents from all four selected cities of Gujarat. (Ref. Table 5.4.34)

Table 5.4.35: Respondents' city wise opinion regarding their preference of Shopping Situation for purchasing Decorative Paints across their Age Groups

				Sho	opping Situ	ation									
City*	Ago	Mass M	Ierchants	Special	ity Stores	Paint	Agency	0	nline	TO	TAL	Significa	nce #		
City	Age	N	%	N	%	N	%	Ν	%	N	%	Chi-Square	p value		
	<=37	18	36.0	41	38.7	13	34.2	2	33.3	74	37.0				
V	38-46	12	24.0	41	38.7	17	44.7	3	50.0	73	36.5	8.159	0.227		
	>46	20	40.0	24	22.6	8	21.1	1	16.7	53	26.5				
	Total	50	17.4	106	28.0	38	34.5	6	25.0	200	25.0				
	<=37	26	36.6	31	32.0	10	34.5	0	.0	67	33.5				
A	38-46	18	25.4	29	29.9	9	31.0	3	100	59	29.5	8.000	0.238		
	>46	27	38.0	37	38.1	10	34.5	0	.0	74	37.0				
	Total 71 24.7 97 25.6 29 26.4 3 12.5 200 25.0 <=37														
	<=37 30 38.0 27 29.7 5 27.8 5 41.7 67 33.5														
S	2. 20 200 200 200 200 200 200 200 200 20														
	S 38-46 20 25.3 33 36.3 8 44.4 6 50.0 67 33.5 7.413 0.284 >46 29 36.7 31 34.1 5 27.8 1 8.3 66 33.0														
	Total	79	27.5	91	24.0	18	16.4	12	50.0	200	25.0				
	<=37	37	42.5	33	38.8	6	24.0	2	66.7	78	39.0				
R	38-46	25	28.7	21	24.7	8	32.0	0	.0	54	27.0	5.211	0.517		
	>46	25	28.7	31	36.5	11	44.0	1	33.3	68	34.0				
	Total	87	30.3	85	22.4	25	22.7	3	12.5	200	25.0				
	<=37	111	38.7	132	34.8	34	30.9	9	37.5	286	35.8				
O	38-46	75	26.1	124	32.7	42	38.2	12	50.0	253	31.6	12.119	0.059		
	>46	101	35.2	123	32.5	34	30.9	3	12.5	261	32.6				
	Total	287	100.0	379	100.0	110	100.0	24	100.0	800	100.0				
* V =	Vadod	lara, A=	Ahmedal	oad, S=S	Surat, R=	Rajkot	$O = O_V$	erall	ļ;						
			t 0.05 level												
~															

- In overall, respondents who approached to mass merchants to buy paints, 38.7% respondents were no more than 37 years of age. Moreover, respondents who approached to speciality store to buy paints, only 32.5% respondents were of age above 46 years. Further, 38.2% respondents, who approached to Paint Agencies to buy paints, were of age between 37 years to 46 years. While, only 12.5% respondents who went online to buy paints, were of above 46 years of age. Furthermore, no significant difference (Chi-Square Value = 12.119 & p Value = 0.059), in approach of respondents to buy paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Vadodara, respondents who approached to mass merchants to buy paints, 40% respondents were of age more than 46 years. Moreover, respondents who approached to speciality store to buy paints, only 22.6% respondents were of age above 46 years. Further, 44.7% respondents, who approached to Paint Agencies to buy paints, were of age between 37 years to 46 years. While, only 16.5% respondents who went online to buy paints, were of above 46 years of age. Furthermore, in Vadodara, no significant difference (Chi-Square Value = 8.159 & p Value =

- 0.227), in respondents' buying approach, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Ahmedabad, respondents who approached to mass merchants to buy paints, only 25.4% respondents were of age between 37 years to 46 years. Moreover, respondents who approached to speciality store to buy paints, 38.1% respondents were of age above 46 years. Further, 31% respondents, who approached to Paint Agencies to buy paints, were of age between 37 years to 46 years. While, all of the respondents who went online to buy paints, were of age between 37 years to 46 years. Furthermore, in Ahmedabad, no significant difference (Chi-Square Value = 8.000 & p Value = 0.238), in approach of respondents to buy paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Surat, respondents who approached to mass merchants to buy paints, 38% respondents were no more than 37 years of age. Moreover, respondents who approached to speciality store to buy paints, only 29.7% respondents were of age no more than 37 years. Further, 44.4% respondents, who approached to Paint Agencies to buy paints, were of age between 37 years to 46 years. While, only 8.3% respondents who went online to buy paints, were of above 46 years of age. Furthermore, in Surat, no significant difference (Chi-Square Value = 7.413 & p Value = 0.284), in approach of respondents to buy paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Rajkot, respondents who approached to mass merchants to buy paints, 42.5% respondents were no more than 37 years of age. Moreover, respondents who approached to speciality store to buy paints, only 24.7% respondents were of age between 37 years to 46 years. Further, only 24% respondents, who approached to Paint Agencies to buy paints, were of age no more than 37 years. While, 66.7% respondents who went online to buy paints, were of age no more than 37 years. Furthermore, in Rajkot, no significant difference (Chi-Square Value = 5.211 & p Value = 0.517), in approach of respondents to buy paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years. (Ref. Table 5.4.35)

Table 5.4.36: Respondents' city wise opinion regarding their preference of Shopping Situation for purchasing Decorative Paints across their Gender

				Sl	hopping	Situati	on						
CITY*	Gender		lass chants		ciality ores		aint ency	0	nline	то	TAL	Signific	ance #
CITY"	Gender	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Male	38	76.0	73	68.9	25	65.8	6	100.0	142	71.0	3.793	0.285
v	Female	12	24.0	33	31.1	13	34.2	0	.0	58	29.0	3.793	0.265
	Total	50	17.4	106	28.0	38	34.5	6	25.0	200	25.0		
A	Male	49	69.0	75	77.3	25	86.2	3	100.0	152	76.0	4.596	0.204
A	Female	22	31.0	22	22.7	4	13.8	0	.0	48	24.0	4.590	0.204
	Total	71	24.7	97	25.6	29	26.4	3	12.5	200	25.0		
S	Male	59	74.7	62	68.1	12	66.7	8	66.7	141	70.5	1.122	0.772
3	Female	20	25.3	29	31.9	6	33.3	4	33.3	59	29.5	1.122	0.772
	Total	79	27.5	91	24.0	18	16.4	12	50.0	200	25.0		
R	Male	64	73.6	59	69.4	19	76.0	3	100.0	145	72.5	1.747	0.626
K	Female	23	26.4	26	30.6	6	24.0	0	.0	55	27.5	1./4/	0.020
	Total	87	30.3	85	22.4	25	22.7	3	12.5	200	25.0		
0	Male	210	73.2	269	71.0	81	73.6	20	83.3	580	72.5	1.990	0.574
U	Female	77	26.8	110	29.0	29	26.4	4	16.7	220	27.5	1.990	0.374
	Total	287	100.0	379	100.0	110	100.0	24	100.0	800	100.0		
* V = '	Vadodara	, A=A	hmeda	bad, S	S=Surat	t, R=R	lajkot, (O= C	verall;				
# Statisti	c is signific	ant at	0.05 leve	el	•	-		-	•	-	•		•

- In overall, respondents who liked to buy paints from mass merchants, 73.2% respondents were male. While, respondents who preferred to buy paints from speciality stores, 71% respondents were male and respondents who liked to buy paints from Paint Agencies, 73.6% respondents were male. Only 16.7% respondents were female who preferred to buy paints online. It was also observed that, in overall, there was no significant difference (Chi-Square value = 1.990 and p value = 0.574) between male respondents' approach to buy paints.
- In Vadodara, respondents who liked to buy paints from mass merchants, 76% respondents were male. While, respondents who preferred to buy paints from speciality stores, 68.9% respondents were male and respondents who liked to buy paints from Paint Agencies, 65.8% respondents were male. None of the respondents were female who preferred to buy paints online. It was also observed that, in Vadodara, there was no significant difference (Chi-Square value = 3.793 and p value = 0.285) between male respondents' approach to buy paint and female respondents' approach to buy paints.
- In Ahmedabad, respondents who liked to buy paints from mass merchants, 69% respondents were male. While, respondents who preferred to buy paints from speciality stores, 77.3% respondents were male and respondents who liked to buy paints from Paint Agencies, 86.2%

respondents were male. All of the respondents were male who preferred to buy paints online. It was also observed that, in Ahmedabad, there was no significant difference (Chi-Square value = 4.596 and p value = 0.204) between male respondents' approach to buy paint and female respondents' approach to buy paints.

- In Surat, respondents who liked to buy paints from mass merchants, 74.7% respondents were male. While, respondents who preferred to buy paints from speciality stores, 68.1% respondents were male and respondents who liked to buy paints from Paint Agencies, 66.7% respondents were male. Only 33.3% respondents were female who preferred to buy paints online. It was also observed that, in Surat, there was no significant difference (Chi-Square value = 1.122 and p value = 0.772) between male respondents' approach to buy paint and female respondents' approach to buy paints.
- In Rajkot, respondents who liked to buy paints from mass merchants, 73.6% respondents were male. While, respondents who preferred to buy paints from speciality stores, 69.4% respondents were male and respondents who liked to buy paints from Paint Agencies, 76% respondents were male. None of the respondents were female who preferred to buy paints online. It was also observed that, in Rajkot, there was no significant difference (Chi-Square value = 1.747 and p value = 0.626) between male respondents' approach to buy paint and female respondents' approach to buy paints. (Ref. Table 5.4.36)

Table 5.4.37: Respondents' city wise opinion regarding their preference of Shopping Situation for purchasing Decorative Paints across their Educational Qualification

				Sho	opping Situ	ation									
Citv*	Ed.**	Mass N	Ierchants	Special	ity Stores	Paint	Agency	О	nline	TO	TAL	Significa	nce#		
City.	Eu.""	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value		
	UG	3	6.0	7	6.6	4	10.5	0	.0	14	7.0				
\mathbf{V}	Gr	19	38.0	40	37.7	18	47.4	2	33.3	79	39.5	3.223	0.780		
	PG	28	56.0	59	55.7	16	42.1	4	66.7	107	53.5				
	Total	50	17.4	106	28.0	38	34.5	6	25.0	200	25.0				
	UG	17	23.9	12	12.4	5	17.2	1	33.3	35	17.5				
A	Gr	36	50.7	57	58.8	14	48.3	2	66.7	109	54.5	5.851	0.440		
	PG	18	25.4	28	28.9	10	34.5	0	.0	56	28.0				
	Total	71	24.7	97	25.6	29	26.4	3	12.5	200	25.0				
	UG 16 20.3 16 17.6 2 11.1 4 33.3 38 19.0														
\mathbf{S}	S Gr 46 58.2 51 56.0 14 77.8 5 41.7 116 58.0 5.528 0.478														
	S Gr 46 58.2 51 56.0 14 77.8 5 41.7 116 58.0 5.528 0.478 PG 17 21.5 24 26.4 2 11.1 3 25.0 46 23.0														
	Total	79	27.5	91	24.0	18	16.4	12	50.0	200	25.0				
	UG	15	17.2	14	16.5	5	20.0	1	33.3	35	17.5				
R	Gr	48	55.2	52	61.2	16	64.0	2	66.7	118	59.0	2.963	0.813		
	PG	24	27.6	19	22.4	4	16.0	0	.0	47	23.5				
	Total	87	30.3	85	22.4	25	22.7	3	12.5	200	25.0				
	UG	51	17.8	49	12.9	16	14.5	6	25.0	122	15.3				
O	Gr	149	51.9	200	52.8	62	56.4	11	45.8	422	52.8	5.827	0.443		
	PG	87	30.3	130	34.3	32	29.1	7	29.2	256	32.0				
•	Total	287	100.0	379	100.0	110	100.0	24	100.0	800	100.0				
* V = '	Vadodara,	, A=Ahme	edabad, S=S	Surat, R=I	Rajkot, O= 0	Overall;									
** Edu	cational Q	ualification	on: UG = U	Jnder Gra	duate; Gr. =	Gradua -	ate; PG =	Postgi	raduate						
# Statis	stic is sigr	nificant a	t 0.05 level												

- In overall, respondents who preferred to buy paints from mass merchants, 51.9% respondents were graduates while respondents who liked to buy paints from speciality stores, 52.8% respondents were graduates. Only 14.5% respondents were undergraduates who preferred to buy paints from Paint Agencies. 45.8% respondents, who preferred to buy paints online, were also graduates. However, it was observed that, in overall, there was no significant difference (Chi-Square = 5.827; p value = 0.443) in an approach to buy paints between respondents with different level of educational qualifications.
- In Vadodara, respondents who preferred to buy paints from mass merchants, 56% respondents were postgraduates while respondents who liked to buy paints from speciality stores, only 6.6% respondents were graduates. Only 10.5% respondents were undergraduates who preferred to buy paints from Paint Agencies. 66.7% respondents, who preferred to buy paints online, were postgraduates. However, it was observed that, in Vadodara, there was no significant difference (Chi-Square = 3.223; p value = 0.780) in an approach to buy paints between respondents with different level of educational qualifications.

- In Ahmedabad, respondents who preferred to buy paints from mass merchants, 50.7% respondents were graduates while respondents who liked to buy paints from speciality stores, 58.8% respondents were graduates. Only 17.2% respondents were undergraduates who preferred to buy paints from Paint Agencies. 66.7% respondents, who preferred to buy paints online, were postgraduates. However, it was observed that, in Ahmedabad, there was no significant difference (Chi-Square = 5.851; p value = 0.440) in an approach to buy paints between respondents with different level of educational qualifications.
- In Surat, respondents who preferred to buy paints from mass merchants, 58.2% respondents were graduates while respondents who liked to buy paints from speciality stores, 56% respondents were graduates. 77.8% respondents were graduates who preferred to buy paints from Paint Agencies. 41.7% respondents, who preferred to buy paints online, were also graduates. However, it was observed that, in Surat, there was no significant difference (Chi-Square = 5.528; p value = 0.478) in an approach to buy paints between respondents with different level of educational qualifications.
- In Rajkot, respondents who preferred to buy paints from mass merchants, 55.2% respondents were graduates while respondents who liked to buy paints from speciality stores, 61.2% respondents were graduates. Only 16% respondents were postgraduates who preferred to buy paints from Paint Agencies. 66.7% respondents, who preferred to buy paints online, were also graduates. However, it was observed that, in Rajkot, there was no significant difference (Chi-Square = 2.963; p value = 0.813) in an approach to buy paints between respondents with different level of educational qualifications. (Ref. Table 5.4.37)

Table 5.4.38: Respondents' city wise opinion regarding their preference of Shopping Situation for purchasing Decorative Paints across their Occupation

					Shopp	ing Situ	ation								
City*	Oc.**	Mass M	Ierchants	Special	ity Stores	Paint	Agency	0	nline	TO	TAL	Significa	nce #		
City"	Oc.""	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value		
	S	14	28.0	50	47.2	16	42.1	0	.0	80	40.0				
\mathbf{V}	В	23	46.0	21	19.8	12	31.6	4	66.7	60	30.0	17.042	0.009		
	P	13	26.0	35	33.0	10	26.3	2	33.3	60	30.0				
	Total	50	17.4	106	28.0	38	34.5	6	25.0	200	25.0				
	S	27	38.0	42	43.3	10	34.5	1	33.3	80	40.0				
A	В	21	29.6	30	30.9	8	27.6	1	33.3	60	30.0	2.019	0.918		
	P	23	32.4	25	25.8	11	37.9	1	33.3	60	30.0				
	Total 71 24.7 97 25.6 29 26.4 3 12.5 200 25.0 S 27 34.2 39 42.9 8 44.4 6 50.0 80 40.0														
	S 27 34.2 39 42.9 8 44.4 6 50.0 80 40.0														
\mathbf{S}	S B 25 31.6 29 31.9 4 22.2 2 16.7 60 30.0 3.743 0.711														
	S B 25 31.6 29 31.9 4 22.2 2 16.7 60 30.0 3.743 0.711 P 27 34.2 23 25.3 6 33.3 4 33.3 60 30.0														
	Total	79	27.5	91	24.0	18	16.4	12	50.0	200	25.0				
	S	38	43.7	34	40.0	6	24.0	2	66.7	80	40.0				
R	В	23	26.4	27	31.8	9	36.0	1	33.3	60	30.0	5.017	0.542		
	P	26	29.9	24	28.2	10	40.0	0	.0	60	30.0				
	Total	87	30.3	85	22.4	25	22.7	3	12.5	200	25.0				
	S	106	36.9	165	43.5	40	36.4	9	37.5	320	40.0				
O	В	92	32.1	107	28.2	33	30.0	8	33.3	240	30.0	4.131	0.659		
	P	89	31.0	107	28.2	37	33.6	7	29.2	240	30.0				
	Total	287	100.0	379	100.0	110	100.0	24	100.0	800	100.0				
* V =	Vadodara	, A=Ahme	edabad, S=S	Surat, R=I	Rajkot, O= (Overall;									
** Occ	upation :	S = Servic	e Class; B	= Busines	s class; P =	Profess	ionals								
# Statis	stic is sign	nificant at	t 0.05 level												

[•] In overall, respondents who preferred to buy paints from mass merchants, 36.9% respondents were service class people while respondents who liked to buy paints from speciality stores, 43.5% respondents were service class people. 30% respondents were business class people

who preferred to buy paints from Paint Agencies. 37.5% respondents, who preferred to buy paints online, were also service class people. However, it was observed that, in overall, there

was no significant difference (Chi-Square = 4.131; p value = 0.659) in an approach to buy

paints between respondents with different occupations.

• In Vadodara, respondents who preferred to buy paints from mass merchants, 46% respondents were business class people while respondents who liked to buy paints from speciality stores, 47.2% respondents were service class people. 42.1% respondents were service class people who preferred to buy paints from Paint Agencies. 66.7% respondents, who preferred to buy paints online, were business class people. However, it was observed that, in Vadodara, there was a significant difference (Chi-Square = 17.042; p value = 0.009) in an approach to buy paints between respondents with different occupations.

- In Ahmedabad, respondents who preferred to buy paints from mass merchants, 38% respondents were service class people while respondents who liked to buy paints from speciality stores, 43.3% respondents were service class people. Only, 27.6% respondents were business class people who preferred to buy paints from Paint Agencies. However, it was observed that, in Ahmedabad, there was no significant difference (Chi-Square = 2.019; p value = 0.918) in an approach to buy paints between respondents with different occupations.
- In Surat, respondents who preferred to buy paints from mass merchants, 34.2% respondents were service class people and professionals each. While respondents who liked to buy paints from speciality stores, 42.9% respondents were service class people. 44.4% respondents were also service class people class people who preferred to buy paints from Paint Agencies. 50% respondents, who preferred to buy paints online, were also service class people. However, it was observed that, in Surat, there was no significant difference (Chi-Square = 3.743; p value = 0.711) in an approach to buy paints between respondents with different occupations.
- In Rajkot, respondents who preferred to buy paints from mass merchants, 43.7% respondents were service class people while respondents who liked to buy paints from speciality stores, 40% respondents were service class people. 40% respondents were professionals who preferred to buy paints from Paint Agencies. 66.7% respondents, who preferred to buy paints online, were also service class people. However, it was observed that, in Rajkot, there was no significant difference (Chi-Square = 5.017; p value = 0.542) in an approach to buy paints between respondents with different occupations. (Ref. Table 5.4.38)

Table 5.4.39: Respondents' city wise opinion regarding their preference of Shopping Situation for purchasing Decorative Paints across their Monthly Income Groups

City* M1*** Mass February Specialty Stores Paint Agency O-line TO-L Significate # W M1 % N % N % N % Chi-Square p value W MI - 1 18 36.0 44 41.5 14 36.8 0 0 64 32.0 7.058 0.316 MI - 2 19 38.0 25 23.6 10 26.3 3 50.0 57 28.5 0.316 MI - 3 19 38.0 25 23.6 10 26.3 3 50.0 57 28.5 0.316 2.0 MI - 3 29 45.1 49 50.5 15 51.7 1 33.3 97 48.5 3.951 0.683 MI - 3 26 36.6 27 27.8 10 34.5 2 66.7 55 32.5 2.0 25.0 2.0 2.0 2.0 2.0 <t< th=""><th></th><th></th><th></th><th></th><th></th><th>Shopp</th><th>ing Situ</th><th>ation</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>						Shopp	ing Situ	ation								
MI - 1	City*	MI**	Mass N	1erchants	Special	lity Stores	Paint	Agency	О	nline	TO	TAL	Significa	nce #		
V MI − 2 13 26.0 37 34.9 14 36.8 0 .0 64 32.0 7.058 0.316 MI − 3 19 38.0 25 23.6 10 26.3 3 50.0 57 28.5 Total 50 17.4 106 28.0 38 34.5 6 25.0 200 25.0 MI − 1 32 45.1 49 50.5 15 51.7 1 33.3 97 48.5 MI − 2 13 18.3 21 21.6 4 13.8 0 .0 38 19.0 3.951 0.683 MI − 2 13 18.3 21 21.6 4 13.8 0 .0 38 19.0 3.951 0.683 MI − 3 26 36.6 27 27.8 10 34.5 2 66.7 65 32.5 MI − 1 24 30.4 28 30.8	City"	WII""	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value		
MI - 3		MI – 1	18	36.0	44	41.5	14	36.8	3	50.0	79	39.5				
Total S0	V	MI - 2	13	26.0	37	34.9	14	36.8	0	.0	64	32.0	7.058	0.316		
MI − 1 32 45.1 49 50.5 15 51.7 1 33.3 97 48.5 3.951 0.683 MI − 2 13 18.3 21 21.6 4 13.8 0 .0 38 19.0 3.951 0.683 MI − 3 26 36.6 27 27.8 10 34.5 2 66.7 65 32.5 0.683 MI − 1 24 30.4 28 30.8 3 16.7 7 58.3 62 31.0 6.954 0.325 MI − 2 23 29.1 28 30.8 8 44.4 3 25.0 62 31.0 6.954 0.325 MI − 3 32 40.5 35 38.5 7 38.9 2 16.7 76 38.0 6.954 0.325 R MI − 1 13 14.9 15 17.6 4 16.0 2 66.7 34 17.0 47.0 48.6 49.0 6.315 0.389 MI − 3 29 33.3 3		MI – 3	19	38.0	25	23.6	10	26.3	3	50.0	57	28.5				
A MI − 2 13 18.3 21 21.6 4 13.8 0 .0 38 19.0 3.951 0.683 MI − 3 26 36.6 27 27.8 10 34.5 2 66.7 65 32.5		Total	50	17.4	106	28.0	38	34.5	6	25.0	200	25.0				
MI - 3 26 36.6 27 27.8 10 34.5 2 66.7 65 32.5		MI – 1	32	45.1	49	50.5	15	51.7	1	33.3	97	48.5				
Total 71 24.7 97 25.6 29 26.4 3 12.5 200 25.0 25.0 25.0 25.0 200 25.0 <td>A</td> <td>MI – 2</td> <td>13</td> <td>18.3</td> <td>21</td> <td>21.6</td> <td>4</td> <td>13.8</td> <td>0</td> <td>.0</td> <td>38</td> <td>19.0</td> <td>3.951</td> <td>0.683</td>	A	MI – 2	13	18.3	21	21.6	4	13.8	0	.0	38	19.0	3.951	0.683		
MI – 1 24 30.4 28 30.8 3 16.7 7 58.3 62 31.0 6.954 0.325 MI – 2 23 29.1 28 30.8 8 44.4 3 25.0 62 31.0 6.954 0.325 MI – 3 32 40.5 35 38.5 7 38.9 2 16.7 76 38.0 0 0.325 Total 79 27.5 91 24.0 18 16.4 12 50.0 200 25.0 0 MI – 1 13 14.9 15 17.6 4 16.0 2 66.7 34 17.0 0 0.389 MI – 2 45 51.7 39 45.9 13 52.0 1 33.3 98 49.0 6.315 0.389 MI – 3 29 33.3 31 36.5 8 32.0 0 .0 68 34.0 34.0 0.389 MI – 1 87 30.3 136 35.9 36 32.7		MI – 3	26	36.6	27	27.8	10	34.5	2	66.7	65	32.5				
S MI - 2 23 29.1 28 30.8 8 44.4 3 25.0 62 31.0 6.954 0.325 MI - 3 32 40.5 35 38.5 7 38.9 2 16.7 76 38.0 8 44.4 3 25.0 20 25.0 <t< td=""><td></td><td>Total</td><td>71</td><td>24.7</td><td>97</td><td>25.6</td><td>29</td><td>26.4</td><td>3</td><td>12.5</td><td>200</td><td>25.0</td><td></td><td></td></t<>		Total	71	24.7	97	25.6	29	26.4	3	12.5	200	25.0				
MI - 3 32 40.5 35 38.5 7 38.9 2 16.7 76 38.0		MI – 1 24 30.4 28 30.8 3 16.7 7 58.3 62 31.0														
Total 79 27.5 91 24.0 18 16.4 12 50.0 200 25.0	\mathbf{S}															
MI – 1 13 14.9 15 17.6 4 16.0 2 66.7 34 17.0 0.389 MI – 2 45 51.7 39 45.9 13 52.0 1 33.3 98 49.0 6.315 MI – 3 29 33.3 31 36.5 8 32.0 0 .0 68 34.0 Total 87 30.3 85 22.4 25 22.7 3 12.5 200 25.0 MI – 1 87 30.3 136 35.9 36 32.7 13 54.2 272 34.0 MI – 2 94 32.8 125 33.0 39 35.5 4 16.7 262 32.8 8.483 0.205 MI – 3 106 36.9 118 31.1 35 31.8 7 29.2 266 33.3 * V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall; ** ** ** **		MI – 3	32	40.5	35	38.5	7	38.9	2	16.7	76	38.0				
MI - 2 45 51.7 39 45.9 13 52.0 1 33.3 98 49.0 6.315 0.389 MI - 3 29 33.3 31 36.5 8 32.0 0 .0 68 34.0 Total 87 30.3 186 35.9 36 32.7 13 54.2 272 34.0 MI - 1 87 30.3 136 35.9 36 32.7 13 54.2 272 34.0 MI - 2 94 32.8 125 33.0 39 35.5 4 16.7 262 32.8 8.483 0.205 MI - 3 106 36.9 118 31.1 35 31.8 7 29.2 266 33.3 483 0.205 * V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall: ** ** ** ** ** ** ** ** ** ** **		Total	79	27.5	91	24.0	18	16.4	12	50.0	200	25.0				
MI - 3 29 33.3 31 36.5 8 32.0 0 .0 68 34.0 Total 87 30.3 85 22.4 25 22.7 3 12.5 200 25.0 MI - 1 87 30.3 136 35.9 36 32.7 13 54.2 272 34.0 MI - 2 94 32.8 125 33.0 39 35.5 4 16.7 262 32.8 8.483 0.205 MI - 3 106 36.9 118 31.1 35 31.8 7 29.2 266 33.3 Total 287 100.0 379 100.0 110 100.0 24 100.0 800 100.0 * V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall; ** Monthly Income: MI - 1: <=29166.67, MI - 2: 29166.68-46250.00, MI - 3: >46250.00		MI – 1	13	14.9	15	17.6	4	16.0	2	66.7	34	17.0				
Total 87 30.3 85 22.4 25 22.7 3 12.5 200 25.0 MI - 1 87 30.3 136 35.9 36 32.7 13 54.2 272 34.0 MI - 2 94 32.8 125 33.0 39 35.5 4 16.7 262 32.8 8.483 0.205 MI - 3 106 36.9 118 31.1 35 31.8 7 29.2 266 33.3 Total 287 100.0 379 100.0 110 100.0 24 100.0 800 100.0 * V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall; ** Monthly Income: MI - 1: <=29166.67, MI - 2: 29166.68-46250.00, MI - 3: >46250.00	R	MI - 2	45	51.7	39	45.9	13	52.0	1	33.3	98	49.0	6.315	0.389		
MI - 1 87 30.3 136 35.9 36 32.7 13 54.2 272 34.0 MI - 2 94 32.8 125 33.0 39 35.5 4 16.7 262 32.8 MI - 3 106 36.9 118 31.1 35 31.8 7 29.2 266 33.3 Total 287 100.0 379 100.0 110 100.0 24 100.0 800 100.0 * V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall; ** Monthly Income: MI - 1: <=29166.67, MI - 2: 29166.68-46250.00, MI - 3: >46250.00		MI – 3	29	33.3	31	36.5	8	32.0	0	.0	68	34.0				
MI - 2 94 32.8 125 33.0 39 35.5 4 16.7 262 32.8 8.483 0.205 MI - 3 106 36.9 118 31.1 35 31.8 7 29.2 266 33.3 8.483 Total 287 100.0 379 100.0 110 100.0 24 100.0 800 100.0 * V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall; ** Monthly Income: MI - 1: <=29166.67, MI - 2: 29166.68-46250.00, MI - 3: >46250.00		Total	87	30.3	85	22.4	25	22.7	3	12.5	200	25.0				
MI - 3 106 36.9 118 31.1 35 31.8 7 29.2 266 33.3 Total 287 100.0 379 100.0 110 100.0 24 100.0 800 100.0 * V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall; ** Monthly Income: MI - 1: <=29166.67, MI - 2: 29166.68-46250.00, MI - 3: >46250.00		MI – 1	87	30.3	136	35.9	36	32.7	13	54.2	272	34.0				
Total 287 100.0 379 100.0 110 100.0 24 100.0 800 100.0 * V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall; ** Monthly Income : MI − 1: <=29166.67, MI − 2: 29166.68-46250.00, MI − 3: >46250.00	O	MI - 2	94	32.8	125	33.0	39	35.5	4	16.7	262	32.8	8.483	0.205		
* V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall; ** Monthly Income: MI – 1: <=29166.67, MI – 2: 29166.68-46250.00, MI – 3: >46250.00		$\overline{MI} - 3$	106	36.9	118	31.1	35	31.8	7	29.2	266	33.3				
** Monthly Income: MI – 1: <=29166.67, MI – 2: 29166.68-46250.00, MI – 3: >46250.00		Total	287	100.0	379	100.0	110	100.0	24	100.0	800	100.0				
	* V = V	Vadodara,	A=Ahme	dabad, S=S	urat, R=R	ajkot, O= O	verall;									
# Statistic is significant at 0.05 level	** Mo	nthly Incor	me: MI-	- 1: <=2916	6.67, MI	- 2: 29166. 6	68-4625	0.00, MI -	- 3: >4	46250.00						
	# Statis	stic is signi	ificant at	0.05 level												

- In overall, respondents who preferred to buy paint from mass merchants, majority i.e., 36.9%, respondents had monthly income more than Rs.46250.00. While, respondents who preferred to buy paint from speciality store, majority i.e., 35.9%, respondents had monthly income no more than Rs.29166.67. Moreover, respondents who preferred to buy paint from Paint Agency, majority i.e., 35.5% respondents had monthly income between Rs.29166.68 to Rs.46250.00. Only, 16.7% respondents, who preferred to buy pains online, had monthly income between Rs.29166.68 to Rs.46250.00. However, in overall, no significant difference was observed (Chi-Square = 8.483; p value = 0.205), regarding buying approach towards paints, between respondents with three different monthly income group i.e. monthly income less or equal to Rs.29166.67, from Rs.29166.68 to Rs.46250.00 and above Rs.46250.00.
- In Vadodara, respondents who preferred to buy paint from mass merchants, majority i.e., 38%, respondents had monthly income more than Rs.46250.00. While, respondents who preferred to buy paint from speciality store, majority i.e., 41.5%, respondents had monthly income no more than Rs.29166.67. Moreover, respondents who preferred to buy paint from Paint Agency, majority i.e., 36.8% respondents had monthly income between Rs.29166.68 to Rs.46250.00.

None of the respondents, who preferred to buy pains online, had monthly income between Rs.29166.68 to Rs.46250.00. However, in Vadodara, no significant difference was observed (Chi-Square = 7.058; p value = 0.316), regarding buying approach towards paints, between respondents with three different monthly income group i.e. monthly income less or equal to Rs.29166.67, from Rs.29166.68 to Rs.46250.00 and above Rs.46250.00.

- In Ahmedabad, respondents who preferred to buy paint from mass merchants, majority i.e., 45.1%, respondents and respondents who preferred to buy paint from speciality store, majority i.e., 50.5%, respondents had monthly income no more than Rs.29166.67. Moreover, respondents who preferred to buy paint from Paint Agency, the least i.e., 13.8%, respondents had monthly income between Rs.29166.68 to Rs.46250.00. None of the respondents, who preferred to buy pains online, had monthly income between Rs.29166.68 to Rs.46250.00. However, in Ahmedabad, no significant difference was observed (Chi-Square = 3.951; p value = 0.683), regarding buying approach towards paints, between respondents with three different monthly income group i.e. monthly income less or equal to Rs.29166.67, from Rs.29166.68 to Rs.46250.00 and above Rs.46250.00.
- In Surat, respondents who preferred to buy paint from mass merchants, majority i.e., 40.5%, respondents had monthly income more than Rs.46250.00. While, respondents who preferred to buy paint from speciality store, majority i.e., 38.5%, respondents had monthly income no more than Rs.29166.67. Moreover, respondents who preferred to buy paint from Paint Agency, majority i.e., 44.4% respondents had monthly income between Rs.29166.68 to Rs.46250.00. Majority i.e.,58.3%, respondents, who preferred to buy pains online, had monthly income below Rs.29166.68. However, in Surat, no significant difference was observed (Chi-Square = 6.954; p value = 0.325), regarding buying approach towards paints, between respondents with three different monthly income group i.e. monthly income less or equal to Rs.29166.67, from Rs.29166.68 to Rs.46250.00 and above Rs.46250.00.
- In Rajkot, respondents who preferred to buy paint from mass merchants, majority i.e., 51.7%, respondents and respondents who preferred to buy paint from speciality store, majority i.e., 45.9%, respondents had monthly income between Rs.29166.67 and Rs.46250.00. Moreover, respondents who preferred to buy paint from Paint Agency, majority i.e., 52% respondents had monthly income between Rs.29166.68 to Rs.46250.00. none of the respondents, who preferred to buy pains online, had monthly income above Rs.46250.00. However, in Rajkot, no

significant difference was observed (Chi-Square = 6.315; p value = 0.389), regarding buying approach towards paints, between respondents with three different monthly income group i.e. monthly income less or equal to Rs.29166.67, from Rs.29166.68 to Rs.46250.00 and above Rs.46250.00. (Ref. Table 5.4.39)

Table 5.4.40: Respondents' city wise opinion regarding their preference of Shopping Situation for purchasing Decorative Paints across their Per Capita Income Groups

				She	opping Situ	ation							
Citv*	PCI**	Mass N	Ierchants	Special	lity Stores	Paint	Agency	0	nline	Т	otal	Significa	nce#
City"	PCI""	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	Low	14	28.0	38	35.8	14	36.8	3	50.0	69	34.5		
\mathbf{V}	Mod.	16	32.0	34	32.1	11	28.9	0	.0	61	30.5	4.138	0.658
	High	20	40.0	34	32.1	13	34.2	3	50.0	70	35.0		
	Total	50	17.4	106	28.0	38	34.5	6	25.0	200	25.0		
	Low	31	43.7	48	49.5	14	48.3	1	33.3	94	47.0		
A	Mod.	13	18.3	23	23.7	8	27.6	1	33.3	45	22.5	3.679	0.720
	High	27	38.0	26	26.8	7	24.1	1	33.3	61	30.5		
	Total	71	24.7	97	25.6	29	26.4	3	12.5	200	25.0		
	Low	27	34.2	26	28.6	5	27.8	7	58.3	65	32.5		
S	Mod.	26	32.9	29	31.9	5	27.8	1	8.3	61	30.5	6.103	0.412
	High	26	32.9	36	39.6	8	44.4	4	33.3	74	37.0		
	Total	79	27.5	91	24.0	18	16.4	12	50.0	200	25.0		
	Low	16	18.4	24	28.2	8	32.0	1	33.3	49	24.5		
R	Mod.	41	47.1	40	47.1	12	48.0	2	66.7	95	47.5	5.765	0.450
	High	30	34.5	21	24.7	5	20.0	0	.0	56	28.0		
	Total	87	30.3	85	22.4	25	22.7	3	12.5	200	25.0		
	Low	88	30.7	136	35.9	41	37.3	12	50.0	277	34.6		
О	Mod.	96	33.4	126	33.2	36	32.7	4	16.7	262	32.8	6.834	0.336
	High	103	35.9	117	30.9	33	30.0	8	33.3	261	32.6		
	Total	287	100.0	379	100.0	110	100.0	24	100.0	800	100.0		
* V = V	Vadodara,	A=Ahme	edabad, S=S	urat, R=R	Rajkot, O= C	overall;							
** PCI	= Per Cap	ita incom	e; Mod.= M	oderate			•						
# Statis	stic is sign	ificant at	t 0.05 level										

- In overall, respondents who preferred to buy paint from mass merchants, majority i.e., 35.9%, respondents had high per capita income. While, respondents who preferred to buy paint from speciality store, majority i.e., 35.9%, respondents had low per capita income. Moreover, respondents who preferred to buy paint from Paint Agency, majority i.e., 37.3% respondents had also low per capita income level. Only, 16.7% respondents, who preferred to buy paints online, were with moderate per capita income level. However, in overall, no significant difference was observed (Chi-Square = 6.834; p value = 0.336), regarding buying approach towards paints, between respondents with three different per capita income level i.e., low, moderate and high.
- In Vadodara, respondents who preferred to buy paint from mass merchants, majority i.e., 40%, respondents had high per capita income. While, respondents who preferred to buy paint from speciality store, majority i.e., 35.8%, respondents had low per capita income. Moreover, respondents who preferred to buy paint from Paint Agency, majority i.e., 36.8% respondents had also low per capita income level. None of the respondents, who preferred to buy paints online, were with moderate per capita income level. However, in Vadodara, no significant

- difference was observed (Chi-Square = 4.138; p value = 0.658), regarding buying approach towards paints, between respondents with three different per capita income level i.e., low, moderate and high.
- In Ahmedabad, respondents who preferred to buy paint from mass merchants, majority i.e., 43.7%, respondents and respondents who preferred to buy paint from speciality store, majority i.e., 49.5%, respondents had low per capita income. Moreover, respondents who preferred to buy paint from Paint Agency, majority i.e., 48.3% respondents had also low per capita income level. However, in Ahmedabad, no significant difference was observed (Chi-Square = 3.679; p value = 0.720), regarding buying approach towards paints, between respondents with three different per capita income level i.e., low, moderate and high.
- In Surat, respondents who preferred to buy paint from mass merchants, majority i.e., 34.2%, respondents had low per capita income. While, respondents who preferred to buy paint from speciality store, majority i.e., 39.6%, respondents had high per capita income. Moreover, respondents who preferred to buy paint from Paint Agency, majority i.e., 44.4% respondents also had high per capita income level. Only, 58.3% respondents, who preferred to buy paints online, were with low per capita income level. However, in Surat, no significant difference was observed (Chi-Square = 6.103; p value = 0.412), regarding buying approach towards paints, between respondents with three different per capita income level i.e., low, moderate and high.
- In Rajkot, respondents who preferred to buy paint from mass merchants, majority i.e., 47.1%, respondents had moderate per capita income. While, respondents who preferred to buy paint from speciality store, majority i.e., 47.1%, respondents had moderate per capita income. Moreover, respondents who preferred to buy paint from Paint Agency, majority i.e., 48% respondents also had moderate per capita income level. None of the respondents, who preferred to buy paints online, were with high per capita income level. However, in Rajkot, no significant difference was observed (Chi-Square = 5.765; p value = 0.450), regarding buying approach towards paints, between respondents with three different per capita income level i.e., low, moderate and high. (Ref. Table 5.4.40)

Table 5.4.41: Respondents' city wise opinion regarding their preference of Shopping Situation for purchasing Decorative Paints across their Marital Status

		Shopping Situation											
CITY*	Marital	Mass arital Merchants		Speciality Stores		Paint Agency		Online		TOTAL		Significance #	
	Status**	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
v	Mar.	44	88.0	88	83.0	33	86.8	6	100.0	171	85.5	1.851	0.604
V	UM	6	12.0	18	17.0	5	13.2	0	.0	29	14.5	1.051	
	Total	50	17.4	106	28.0	38	34.5	6	25.0	200	25.0		
	Mar.	59	83.1	84	86.6	26	89.7	3	100.0	172	86.0	1.335	0.721
A	UM	12	16.9	13	13.4	3	10.3	0	.0	28	14.0	1.555	0.721
	Total	71	24.7	97	25.6	29	26.4	3	12.5	200	25.0		
S	Mar.	74	93.7	84	92.3	13	72.2	11	91.7	182	91.0	8.634	0.001
3	UM	5	6.3	7	7.7	5	27.8	1	8.3	18	9.0		
	Total	79	27.5	91	24.0	18	16.4	12	50.0	200	25.0		
R	Mar.	67	77.0	64	75.3	23	92.0	3	100.0	157	78.5	4.153	0.245
K	UM	20	23.0	21	24.7	2	8.0	0	.0	43	21.5	4.155	
	Total	87	30.3	85	22.4	25	22.7	3	12.5	200	25.0		
0	Mar.	244	85.0	320	84.4	95	86.4	23	95.8	682	85.3	2.460	0.483
U	UM	43	15.0	59	15.6	15	13.6	1	4.2	118	14.8	2.460	0.465
	Total	287	100.0	379	100.0	110	100.0	24	100.0	800	100.0		
* V = V	adodara, A=	Ahmed	abad, S=	Surat, F	R=Rajkot	, O= O	verall;						
** Marita	al Status: Ma	$r_{\rm c} = Ma$	arried; Ul	M: Unn	narried								•
# Statisti	ic is significa	ant at 0	0.05 level										

- In overall, respondents who liked to buy paints from mass merchants, 85% respondents were married. While, respondents who preferred to buy paints from speciality stores, 84.4% respondents were married and respondents who liked to buy paints from Paint Agencies, 86.4% respondents were married. Only 4.2% respondents were unmarried who preferred to buy paints online. It was also observed that, in overall, there was no significant difference (Chi-Square value = 2.460 and p value = 0.483) between married respondents' approach to buy paint and unmarried respondents' approach to buy paints.
- In Vadodara, respondents who liked to buy paints from mass merchants, 88% respondents were married. While, respondents who preferred to buy paints from speciality stores, 83% respondents were married and respondents who liked to buy paints from Paint Agencies, 86.8% respondents were also married. None of the respondents were unmarried who preferred to buy paints online. It was also observed that, in Vadodara, there was no significant difference (Chi-Square value = 1.851 and p value = 0.604) between married respondents' approach to buy paint and unmarried respondents' approach to buy paints.
- In Ahmedabad, respondents who liked to buy paints from mass merchants, 83.1% respondents were married. While, respondents who preferred to buy paints from speciality stores, 86.6% respondents were married and respondents who liked to buy paints from Paint Agencies, 89.7%

respondents were married. All of the respondents were married who preferred to buy paints online. It was also observed that, in Ahmedabad, there was no significant difference (Chi-Square value = 1.335 and p value = 0.721) between married respondents' approach to buy paint and unmarried respondents' approach to buy paints.

- In Surat, respondents who liked to buy paints from mass merchants, 93.7% respondents were married. While, respondents who preferred to buy paints from speciality stores, 92.3% respondents were married and respondents who liked to buy paints from Paint Agencies, 72.2% respondents were also married. Only 8.3% respondents were unmarried who preferred to buy paints online. It was also observed that, in Surat, there was a significant difference (Chi-Square value = 8.634 and p value = 0.001) between married respondents' approach to buy paint and unmarried respondents' approach to buy paints.
- In Rajkot, respondents who liked to buy paints from mass merchants, 77% respondents were married. While, respondents who preferred to buy paints from speciality stores, 75.3% respondents were married and respondents who liked to buy paints from Paint Agencies, 92% respondents were married. None of the respondents were unmarried who preferred to buy paints online. It was also observed that, in Rajkot, there was no significant difference (Chi-Square value = 4.153 and p value = 0.245) between married respondents' approach to buy paint and unmarried respondents' approach to buy paints. (Ref. Table 5.4.41)

Table 5.4.42: Respondents' city wise opinion regarding their preference of Shopping Situation for purchasing Decorative Paints across their Size of Family

		Shopping Situation											
CITY*	Family	Mass ily Merchants		Speciality Stores			Paint Agency		Online		TAL	Significance #	
	Size**	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	1-4	40	80.0	81	76.4	28	73.7	5	83.3	154	77.0	0.646	0.886
V	5+	10	20.0	25	23.6	10	26.3	1	16.7	46	23.0	0.040	
	Total	50	17.4	106	28.0	38	34.5	6	25.0	200	25.0		
	1-4	57	80.3	66	68.0	22	75.9	2	66.7	147	73.5	3.315	0.345
A	5+	14	19.7	31	32.0	7	24.1	1	33.3	53	26.5		
	Total	71	24.7	97	25.6	29	26.4	3	12.5	200	25.0		
S	1-4	44	55.7	60	65.9	13	72.2	7	58.3	124	62.0	2.797	0.424
3	5+	35	44.3	31	34.1	5	27.8	5	41.7	76	38.0		0.424
	Total	79	27.5	91	24.0	18	16.4	12	50.0	200	25.0		
R	1-4	57	65.5	45	52.9	11	44.0	2	66.7	115	57.5	4.070	0.172
K	5+	30	34.5	40	47.1	14	56.0	1	33.3	85	42.5	4.979	0.173
	Total	87	30.3	85	22.4	25	22.7	3	12.5	200	25.0		
0	1-4	198	69.0	252	66.5	74	67.3	16	66.7	540	67.5	0.476	0.924
O	5+	89	31.0	127	33.5	36	32.7	8	33.3	260	32.5	0.476	0.924
	Total	287	100.0	379	100.0	110	100.0	24	100.0	800	100.0		
* V = Va	adodara, A	=Ahme	dabad, S=	=Surat,	R=Rajko	t, O= 0	verall;						
# Statisti	ic is signifi	cant at	0.05 leve	el									

- In overall, respondents who liked to buy paints from mass merchants, 69% respondents' family size was up to 4. While, respondents who preferred to buy paints from speciality stores, 66.5% respondents and respondents who liked to buy paints from Paint Agencies, 67.3% respondents' family size was up to 4. 66.7% of the respondents' family size was also up to 4, who preferred to buy paints online. It was also observed that, in overall, there was no significant difference (Chi-Square value = 0.476 and p value = 0.924) between respondents with family size up to 4 and respondents with family size above 4.
- In Vadodara, respondents who liked to buy paints from mass merchants, 80% respondents' family size was up to 4. While, respondents who preferred to buy paints from speciality stores, 76.4% respondents and respondents who liked to buy paints from Paint Agencies, 73.7% respondents' family size was up to 4. 83.3% of the respondents' family size was also up to 4, who preferred to buy paints online. It was also observed that, in Vadodara, there was no significant difference (Chi-Square value = 0.646 and p value = 0.886) between respondents with family size up to 4 and respondents with family size above 4.
- In Ahmedabad, respondents who liked to buy paints from mass merchants, 80.3% respondents' family size was up to 4. While, respondents who preferred to buy paints from speciality stores, 68% respondents and respondents who liked to buy paints from Paint Agencies, 75.9%

respondents' family size was up to 4.66.7% of the respondents' family size was also up to 4, who preferred to buy paints online. It was also observed that, in Ahmedabad, there was no significant difference (Chi-Square value = 3.315 and p value = 0.345) between respondents with family size up to 4 and respondents with family size above 4.

- In Surat, respondents who liked to buy paints from mass merchants, 55.7% respondents' family size was up to 4. While, respondents who preferred to buy paints from speciality stores, 65.9% respondents and respondents who liked to buy paints from Paint Agencies, 72.2% respondents' family size was up to 4. 58.3% of the respondents' family size was also up to 4, who preferred to buy paints online. It was also observed that, in Surat, there was no significant difference (Chi-Square value = 2.797 and p value = 0.424) between respondents with family size up to 4 and respondents with family size above 4.
- In Rajkot, respondents who liked to buy paints from mass merchants, 65.5% respondents' family size was up to 4. While, respondents who preferred to buy paints from speciality stores, 52.9% respondents and respondents who liked to buy paints from Paint Agencies, 44% respondents' family size was up to 4. 66.7% of the respondents' family size was also up to 4, who preferred to buy paints online. It was also observed that, in Rajkot, there was no significant difference (Chi-Square value = 4.979 and p value = 0.173) between respondents with family size up to 4 and respondents with family size above 4. (Ref. Table 5.4.42)

Table 5.4.43: Respondents' city wise opinion regarding their preference of Shopping Situation for purchasing Decorative Paints across their Family Type

		Shopping Situation											
CITY*	Family	Mass Merchants		Speciality Stores		Paint Agency		Online		Total		Significance#	
	Type**	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Nuclear	33	66.0	75	70.8	25	65.8	5	83.3	138	69.0	1.122	0.772
v	Joint	17	34.0	31	29.2	13	34.2	1	16.7	62	31.0		0.772
	Total	50	17.4	106	28.0	38	34.5	6	25.0	200	25.0		
A	Nuclear	56	78.9	67	69.1	22	75.9	2	66.7	147	73.5	2.184	0.535
A	Joint	15	21.1	30	30.9	7	24.1	1	33.3	53	26.5		
	Total	71	24.7	97	25.6	29	26.4	3	12.5	200	25.0		
S	Nuclear	47	59.5	62	68.1	13	72.2	7	58.3	129	64.5	2.057	0.561
2	Joint	32	40.5	29	31.9	5	27.8	5	41.7	71	35.5		0.301
	Total	79	27.5	91	24.0	18	16.4	12	50.0	200	25.0		
R	Nuclear	62	71.3	45	52.9	13	52.0	1	33.3	121	60.5	7.633	0.057
ĸ	Joint	25	28.7	40	47.1	12	48.0	2	66.7	79	39.5	7.033	
	Total	87	30.3	85	22.4	25	22.7	3	12.5	200	25.0		
0	Nuclear	198	69.0	249	65.7	73	66.4	15	62.5	535	66.9	1.026	0.792
b	Joint	89	31.0	130	34.3	37	33.6	9	37.5	265	33.1	1.036	0.792
	Total	287	100.0	379	100.0	110	100.0	24	100.0	800	100.0		
* V = V	adodara, A=	Ahmed	abad, S=	Surat, F	R=Rajkot,	O=Ov	verall;						
# Statisti	ic is signific	ant at (0.05 level										

- In overall, respondents who liked to buy paints from mass merchants, 69% respondents had nuclear family. While, respondents who preferred to buy paints from speciality stores, 65.7% respondents and respondents who liked to buy paints from Paint Agencies, 66.4% respondents had nuclear family. 62.5% of the respondents also had nuclear family, who preferred to buy paints online. It was also observed that, in overall, there was no significant difference (Chi-Square value = 1.036 and p value = 0.792) between respondents with nuclear family type and respondents with joint family.
- In Vadodara, respondents who liked to buy paints from mass merchants, 66% respondents had nuclear family. While, respondents who preferred to buy paints from speciality stores, 70.8% respondents and respondents who liked to buy paints from Paint Agencies, 65.8% respondents had nuclear family. 83.3% of the respondents also had nuclear family, who preferred to buy paints online. It was also observed that, in Vadodara, there was no significant difference (Chi-Square value = 1.122 and p value = 0.772) between respondents with nuclear family type and respondents with joint family.
- In Ahmedabad, respondents who liked to buy paints from mass merchants, 78.9% respondents had nuclear family. While, respondents who preferred to buy paints from speciality stores, 69.1% respondents and respondents who liked to buy paints from Paint Agencies, 75.9%

respondents had nuclear family. 66.7% of the respondents also had nuclear family, who preferred to buy paints online. It was also observed that, in Ahmedabad, there was no significant difference (Chi-Square value = 2.184 and p value = 0.535) between respondents with nuclear family type and respondents with joint family.

- In Surat, respondents who liked to buy paints from mass merchants, 59.5% respondents had nuclear family. While, respondents who preferred to buy paints from speciality stores, 68.1% respondents and respondents who liked to buy paints from Paint Agencies, 72.2% respondents had nuclear family. 58.3% of the respondents also had nuclear family, who preferred to buy paints online. It was also observed that, in Surat, there was no significant difference (Chi-Square value = 2.057 and p value = 0.561) between respondents with nuclear family type and respondents with joint family.
- In Rajkot, respondents who liked to buy paints from mass merchants, 71.3% respondents had nuclear family. While, respondents who preferred to buy paints from speciality stores, 52.9% respondents and respondents who liked to buy paints from Paint Agencies, 52% respondents had nuclear family. Only 33.3% of the respondents also had nuclear family, who preferred to buy paints online. It was also observed that, in Rajkot, there was no significant difference (Chi-Square value = 7.633 and p value = 0.057) between respondents with nuclear family type and respondents with joint family. (Ref. Table 5.4.43)

more children.

Table 5.4.44: Respondents' city wise opinion regarding their preference of Shopping Situation for purchasing Decorative Paints across their Children Group

				Sh	opping Situ	ation							
Citv*	Child	Mass N	1erchants	nants Speciality Stores			Agency	0	Online		otal	Significance#	
City	**	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
v	0	8	16.0	21	19.8	7	18.4	0	.0	36	18.0		0.645
	1	17	34.0	25	23.6	11	28.9	1	16.7	54	27.0	4.235	
	2	25	50.0	60	56.6	20	52.6	5	83.3	110	55.0	4.255	
	3 or +	0	.0	0	.0	0	.0	0	.0	0	.0		
	Total	50	17.4	106	28.0	38	34.5	6	25.0	200	25.0		
	0	16	22.5	21	21.6	4	13.8	0	.0	41	20.5		
A	1	16	22.5	18	18.6	5	17.2	1	33.3	40	20.0	3.946	0.915
A	2	37	52.1	52	53.6	18	62.1	2	66.7	109	54.5	3.540	
	3 or +	2	2.8	6	6.2	2	6.9	0	.0	10	5.0		
	Total	71	24.7	97	25.6	29	26.4	3	12.5	200	25.0		
	0	6	7.6	8	8.8	5	27.8	1	8.3	20	10.0		0.066
S	1	9	11.4	21	23.1	4	22.2	2	16.7	36	18.0	16.048	
3	2	61	77.2	59	64.8	7	38.9	9	75.0	136	68.0		
	3 or +	3	3.8	3	3.3	2	11.1	0	.0	8	4.0		
	Total	79	27.5	91	24.0	18	16.4	12	50.0	200	25.0		
	0	24	27.6	25	29.4	3	12.0	1	33.3	53	26.5		0.745
R	1	4	4.6	3	3.5	3	12.0	0	.0	10	5.0	5.950	
K	2	57	65.5	54	63.5	18	72.0	2	66.7	131	65.5		
	3 or +	2	2.3	3	3.5	1	4.0	0	.0	6	3.0		
	Total	87	30.3	85	22.4	25	22.7	3	12.5	200	25.0		
	0	54	18.8	75	19.8	19	17.3	2	8.3	150	18.8		
0	1	46	16.0	67	17.7	23	20.9	4	16.7	140	17.5	6.093	0.731
U	2	180	62.7	225	59.4	63	57.3	18	75.0	486	60.8	0.033	0.731
	3 or +	7	2.4	12	3.2	5	4.5	0	.0	24	3.0		
	Total	287	100.0	379	100.0	110	100.0	24	100.0	800	100.0		
					Rajkot, O= (
			,	d; $2 = 2$ C	hildren; 3+	= 3 or r	nore than	3					
# Statis	stic is sign	nificant a	t 0.05 level										

• In overall, respondents who preferred to buy paints from mass merchants, majority i.e., 62.7% respondents had 2 children while only 2.4% respondents had 3 or more children.

Further, respondents who preferred to buy paints from speciality store, majority i.e., 59.4% respondents had 2 children while only 17.7% respondents had one child. Moreover, respondents who preferred to buy paints from Paint Agency, majority i.e., 57.3% respondents had 2 children while only 17.3% respondents didn't have a child. While, respondents who preferred to buy paints online, majority i.e., 75% respondents had 2 children while no respondents had children more than 2. However, in overall, there was not a significant difference (Chi-Square = 6.093; p value = 0.731) in approach to buy paints between respondents with their child group i.e., no child, one child, 2 children and 3 or

- In Vadodara, respondents who preferred to buy paints from mass merchants, majority i.e., 50% respondents had 2 children while only 16% respondents didn't have a child. Further, respondents who preferred to buy paints from speciality store, majority i.e., 56.6% respondents had 2 children while only 23.6% respondents had one child. Moreover, respondents who preferred to buy paints from Paint Agency, majority i.e., 52.6% respondents had 2 children while only 28.9% respondents didn't have a child. While, respondents who preferred to buy paints online, majority i.e., 83.3% respondents had 2 children while no respondents had children more than 2. However, in Vadodara, there was not a significant difference (Chi-Square = 4.235; p value = 0.645) in approach to buy paints between respondents with their child group i.e., no child, one child, 2 children and 3 or more children.
- In Ahmedabad, respondents who preferred to buy paints from mass merchants, majority i.e., 52.1% respondents had 2 children while only 2.8% respondents had 3 or more children. Further, respondents who preferred to buy paints from speciality store, majority i.e., 53.6% respondents had 2 children while only 18.6% respondents had one child. Moreover, respondents who preferred to buy paints from Paint Agency, majority i.e., 62.1% respondents had 2 children while only 13.8% respondents didn't have a child. While, respondents who preferred to buy paints online, majority i.e., 66.7% respondents had 2 children while no respondents had children more than 2. However, in Ahmedabad, there was not a significant difference (Chi-Square = 3.946; p value = 0.915) in approach to buy paints between respondents with their child group i.e., no child, one child, 2 children and 3 or more children.
- In Surat, respondents who preferred to buy paints from mass merchants, majority i.e., 77.2% respondents had 2 children while only 3.8% respondents had 3 or more children. Further, respondents who preferred to buy paints from speciality store, majority i.e., 64.8% respondents had 2 children while 23.1% respondents had one child. Moreover, respondents who preferred to buy paints from Paint Agency, only 38.9% respondents had 2 children while 27.8% respondents didn't have a child. While, respondents who preferred to buy paints online, majority i.e., 75% respondents had 2 children while no respondents had children more than 2. However, in Surat, there was not a significant difference (Chi-Square

- = 16.048; p value = 0.066) in approach to buy paints between respondents with their child group i.e., no child, one child, 2 children and 3 or more children.
- In Rajkot, respondents who preferred to buy paints from mass merchants, majority i.e., 65.5% respondents had 2 children while only 2.3% respondents had 3 or more children. Further, respondents who preferred to buy paints from speciality store, majority i.e., 63.5% respondents had 2 children while only 3.5% respondents had one child. Moreover, respondents who preferred to buy paints from Paint Agency, majority i.e., 72% respondents had 2 children while only 12% respondents didn't have a child. While, respondents who preferred to buy paints online, majority i.e., 66.7% respondents had 2 children while no respondents had children more than 2. However, in Rajkot also, there was not a significant difference (Chi-Square = 5.950; p value = 0.745) in approach to buy paints between respondents with their child group i.e., no child, one child, 2 children and 3 or more children. (Ref. Table 5.4.44)

Table 5.4.45: Respondents' opinion regarding their frequency of purchasing Decorative

Paints across four selected cities of Gujrat

			Paint							
CITY	1-3	years	4-5	years	5-10	years	>10) years	T	otal
	N	%	N	%	N	%	N	%	N	%
Vadodara	13	9.4	111	32.7	64	26.6	12	14.6	200	25.0
Ahmedabad	26	18.8	56	16.5	86	35.7	32	39.0	200	25.0
Surat	72	52.2	66	19.5	35	14.5	27	32.9	200	25.0
Rajkot	27	19.6	106	31.3	56	23.2	11	13.4	200	25.0
Total	138	100.0	339	100.0	241	100.0	82	100.0	800	100.0
	Chi-	Square '	Value:	123.803	3					
	p Va	lue: 0.00	00 (Stat	tistic is sig	nificant	at 0.05 le	vel)			

- From above table, it could be observed that majority (52.2%) respondents who purchase decorative paints in 1 to 3 years for their houses were from Surat followed by Rajkot (19.6%), Ahmedabad (18.8%) and Vadodara (9.4%).
- Further, majority (32.7%) respondents who purchase decorative paints in 4 to 5 years for their houses were from Vadodara followed by Rajkot (31.3%), Surat (19.5%) and Ahmedabad (16.5%).
- Moreover, majority (35.7%) respondents who purchase decorative paints in 6 to 10 years for their houses, and majority (39%) respondents who purchase decorative paints after 10 years for their houses, were from Ahmedabad.
- It was also observed from high Chi-Square value (123.803) that there was a significant (p = 0.000) difference between opinions of respondents from all four cities of Gujarat state regarding their frequency of painting their places after first paint. (Ref. Table 5.4.45)

Table 5.4.46: Respondents' city wise opinion regarding their Frequency of Purchasing

Decorative Paints across their Age Groups

				Pain	t Purcha	se Freq	uency						
		1-3	years	4-5	years	5-10	years	>10	years	Te	otal	Signific	ance #
CITY*	AGE	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
V	<=37	6	46.2	46	41.4	22	34.4	0	.0	74	37.0	34.107	0.000
	38-46	3	23.1	47	42.3	22	34.4	1	8.3	73	36.5		
	>46	4	30.8	18	16.2	20	31.3	11	91.7	53	26.5		
	Total	13	9.4	111	32.7	64	26.6	12	14.6	200	25.0		
A	<=37	8	30.8	20	35.7	30	34.9	9	28.1	67	33.5	3.345	0.764
	38-46	11	42.3	16	28.6	23	26.7	9	28.1	59	29.5		
	>46	7	26.9	20	35.7	33	38.4	14	43.8	74	37.0		
	Total	26	18.8	56	16.5	86	35.7	32	39.0	200	25.0		
S	<=37	33	45.8	25	37.9	7	20.0	2	7.4	67	33.5	22.469	0.001
	38-46	20	27.8	24	36.4	15	42.9	8	29.6	67	33.5		
	>46	19	26.4	17	25.8	13	37.1	17	63.0	66	33.0		
	Total	72	52.2	66	19.5	35	14.5	27	32.9	200	25.0		
R	<=37	11	40.7	52	49.1	15	26.8	0	.0	78	39.0	29.755	0.000
	38-46	12	44.4	27	25.5	13	23.2	2	18.2	54	27.0		
	>46	4	14.8	27	25.5	28	50.0	9	81.8	68	34.0		
	Total	27	19.6	106	31.3	56	23.2	11	13.4	200	25.0		
0	<=37	58	42.0	143	42.2	74	30.7	11	13.4	286	35.8	55.731	0.000
	38-46	46	33.3	114	33.6	73	30.3	20	24.4	253	31.6		
	>46	34	24.6	82	24.2	94	39.0	51	62.2	261	32.6		
	Total	138	100.0	339	100.0	241	100.0	82	100.0	800	100.0		
* $V = Vadod$	ara, A=Ahmeda	abad, S=	Surat, R	=Rajkot	, O= Ove	rall;							
# Statistic is	significant at 0	.05 leve	l	•	•			•		•	•		•

- In overall, respondents who purchase paints within 3 years, majority i.e., 42% respondents were of age no more than 37. Moreover, respondents who purchase paints every 4 to 5 years, only 24.2% respondents were of age more than 46 years while 42.2% respondents were of age 37 years or less. Further, 39% respondents, who paint their houses between 5 to 10 years, and 62.2% respondents, who paint their houses after 10 years, were above 46 years of age. Furthermore, in overall, high significant difference (Chi-Square Value = 55.731 & p Value = 0.000) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Vadodara, respondents who purchase paints within 3 years, majority i.e., 46.2% respondents were of age no more than 37. Moreover, respondents who purchase paints every 4 to 5 years, only 16.2% respondents were of age more than 46 years while 42.3% respondents were of age between 37 years to 46 years. Further, 34.4% respondents, who paint their houses between 5 to 10 years, were of age below or 37 years and 38 years to 46 years, each. Furthermore, 91.7% respondents, who paint their houses after 10 years, were

- above 46 years of age. Furthermore, in Vadodara, high significant difference (Chi-Square Value = 34.107 & p Value = 0.000) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Ahmedabad, respondents who purchase paints within 3 years, majority i.e., 42.3% respondents were of age between 37 to 46 years. Moreover, respondents who purchase paints every 4 to 5 years, only 28.6% respondents were of age between 37 to 46 years. Further, 38.4% respondents, who paint their houses between 5 to 10 years, and 43.8% respondents, who paint their houses after 10 years, were above 46 years of age. Furthermore, in Ahmedabad, no significant difference (Chi-Square Value = 3.345 & p Value = 0.764) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Surat, respondents who purchase paints within 3 years, majority i.e., 45.8% respondents were of age no more than 37. Moreover, respondents who purchase paints every 4 to 5 years, only 25.8% respondents were of age more than 46 years while 37.9% respondents were of age 37 years or less. Further, 37.1% respondents, who paint their houses between 5 to 10 years, and 63% respondents, who paint their houses after 10 years, were above 46 years of age. Furthermore, in Surat, high significant difference (Chi-Square Value = 22.469 & p Value = 0.001) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Rajkot, respondents who purchase paints within 3 years, majority i.e., 44.4% respondents were of age between 37 years up to 46 years. Moreover, respondents who purchase paints every 4 to 5 years, 49.1% respondents were of age no more than 37 years. Further, 50% respondents, who paint their houses between 5 to 10 years, and 81.8% respondents, who paint their houses after 10 years, were above 46 years of age. Furthermore, in Rajkot, high significant difference (Chi-Square Value = 29.755 & p Value = 0.000) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years. (Ref. Table 5.4.46)

Table 5.4.47: Respondents' city wise opinion regarding their Frequency of Purchasing

Decorative Paints across their Gender

				Pain	t Purcha	se Frequ	iency			Т-	4-1	C::C	#
CITY	GENDER	1-3 y	ears	4-5 y	years	5-10	years	>10	years	10	tal	Signiti	cance #
CITT	GENDER	N	%	N	%	N	%	N	%	N	%	Chi- Square	p Value
V	Male	9	69.2	82	73.9	46	71.9	5	41.7	142	71.0	5.504	0.138
v	Female	4	30.8	29	26.1	18	28.1	7	58.3	58	29.0	5.504	0.138
	Total	13	9.4	111	32.7	64	26.6	12	14.6	200	25.0		
A	Male	17	65.4	37	66.1	72	83.7	26	81.3	152	76.0	7.627	0.057
А	Female	9	34.6	19	33.9	14	16.3	6	18.8	48	24.0	7.027	0.057
	Total	26	18.8	56	16.5	86	35.7	32	39.0	200	25.0		
S	Male	53	73.6	46	69.7	20	57.1	22	81.5	141	70.5	4.924	0.177
ъ	Female	19	26.4	20	30.3	15	42.9	5	18.5	59	29.5	4.924	0.177
	Total	72	52.2	66	19.5	35	14.5	27	32.9	200	25.0		
R	Male	18	66.7	74	69.8	43	76.8	10	90.9	145	72.5	3.231	0.357
K	Female	9	33.3	32	30.2	13	23.2	1	9.1	55	27.5	3.231	0.337
	Total	27	19.6	106	31.3	56	23.2	11	13.4	200	25.0		
0	Male	97	70.3	239	70.5	181	75.1	63	76.8	580	72.5	2.608	0.456
U	Female	41	29.7	100	29.5	60	24.9	19	23.2	220	27.5	2.000	0.430
	Total	138	100.0	339	100.0	241	100.0	82	100.0	800	100.0		
* V = Vadodai	a, A=Ahmedaba	d, S=Sura	at, R=Raj	kot, O=	Overall;	•			•				
# Statistic is si	gnificant at 0.05	level	•		•	•			•				

- In overall, respondents who purchase paints within 3 years, majority i.e., 70.3% respondents were male. Moreover, respondents who purchase paints every 4 to 5 years, 70.5% respondents were male while 29.5% respondents were female. Further, only 24.9% respondents, who paint their houses between 5 to 10 years, and 23.2% respondents, who paint their houses after 10 years, were female. Furthermore, no significant difference (Chi-Square Value = 2.608 & p Value = 0.456) of opinions, regarding frequency of respondents to paint their houses, was observed between male and female respondents from selected cities of Gujarat.
- In Vadodara, respondents who purchase paints within 3 years, majority i.e., 30.8% respondents were female. Moreover, respondents who purchase paints every 4 to 5 years, 73.9% respondents were male while 26.1% respondents were female. Further, only 28.1% respondents, who paint their houses between 5 to 10 years, were female. However, only 41.7% respondents, who paint their houses after 10 years, were male. Furthermore, no significant difference (Chi-Square Value = 5.504 & p Value = 0.138) of opinions, regarding frequency of respondents to paint their houses, was observed between male and female respondents from Vadodara.

- In Ahmedabad, respondents who purchase paints within 3 years, majority i.e., 34.6% respondents were female. Moreover, respondents who purchase paints every 4 to 5 years, 66.1% respondents were male while 33.9% respondents were female. Further, only 16.3% respondents, who paint their houses between 5 to 10 years, and 18.8% respondents, who paint their houses after 10 years, were female. Furthermore, no significant difference (Chi-Square Value = 7.627 & p Value = 0.057) of opinions, regarding frequency of respondents to paint their houses, was observed between male and female respondents from Ahmedabad.
- In Surat, respondents who purchase paints within 3 years, majority i.e., 73.6% respondents were male. Moreover, respondents who purchase paints every 4 to 5 years, 69.7% respondents were male while 30.3% respondents were female. Further, only 57.1% respondents, who paint their houses between 5 to 10 years, were male. While, only 18.5% respondents, who paint their houses after 10 years, were female. Furthermore, no significant difference (Chi-Square Value = 4.924 & p Value = 0.177) of opinions, regarding frequency of respondents to paint their houses, was observed between male and female respondents from Surat.
- In Rajkot, respondents who purchase paints within 3 years, majority i.e., 33.3% respondents were female. Moreover, respondents who purchase paints every 4 to 5 years, 69.8% respondents were male while 30.2% respondents were female. Further, only 23.2% respondents, who paint their houses between 5 to 10 years, and 9.1% respondents, who paint their houses after 10 years, were female. Furthermore, no significant difference (Chi-Square Value = 3.231 & p Value = 0.357) of opinions, regarding frequency of respondents to paint their houses, was observed between male and female respondents from Rajkot. (Ref. Table 5.4.47)

Table 5.4.48: Respondents' city wise opinion regarding their Frequency of Purchasing

Decorative Paints across their Educational Qualification

					Paint	Purch	ase Frequ	uency					
		1-3	years	4-5	years	5-10	years	>10	years	T	otal	Signifi	cance#
CITY*	Ed.**	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	UG	0	.0	4	3.6	2	3.1	8	66.7	14	7.0	72.742	0.000
	Gr	5	38.5	42	37.8	28	43.8	4	33.3	79	39.5		
	PG	8	61.5	65	58.6	34	53.1	0	.0	107	53.5		
	Total	13	9.4	111	32.7	64	26.6	12	14.6	200	25.0		
A	UG	3	11.5	8	14.3	12	14.0	12	37.5	35	17.5	11.290	0.080
	Gr	14	53.8	31	55.4	51	59.3	13	40.6	109	54.5		
	PG	9	34.6	17	30.4	23	26.7	7	21.9	56	28.0		
	Total	26	18.8	56	16.5	86	35.7	32	39.0	200	25.0		
S	UG	15	20.8	12	18.2	4	11.4	7	25.9	38	19.0	9.630	0.141
	Gr	35	48.6	38	57.6	25	71.4	18	66.7	116	58.0		
	PG	22	30.6	16	24.2	6	17.1	2	7.4	46	23.0		
	Total	72	52.2	66	19.5	35	14.5	27	32.9	200	25.0		
R	UG	4	14.8	13	12.3	14	25.0	4	36.4	35	17.5	10.417	0.108
	Gr	15	55.6	64	60.4	32	57.1	7	63.6	118	59.0		
	PG	8	29.6	29	27.4	10	17.9	0	.0	47	23.5		
	Total	27	19.6	106	31.3	56	23.2	11	13.4	200	25.0		
О	UG	22	15.9	37	10.9	32	13.3	31	37.8	122	15.3	48.017	0.000
	Gr	69	50.0	175	51.6	136	56.4	42	51.2	422	52.8		
	PG	47	34.1	127	37.5	73	30.3	9	11.0	256	32.0		
	Total	138	100.0	339	100.0	241	100.0	82	100.0	800	100.0		
* V = Vadoo	dara, A=Ahmeda	bad, S	Surat, I	R=Rajk	ot, O= O	verall;	-		-		·		
** Education	nal Qualification	: UG=	Under (Gradua	te; Gr. =	Gradu	ate; PG	= Postg	graduate				
# Statistic is	significant at 0.0	5 level											

- In overall, it was observed that 34.1% respondents, who liked to paint their houses within three years, were postgraduate while 50% respondents were graduate. Moreover, it was seen that 37.5% respondents, who preferred to paint their houses every 4 to 5 years, were postgraduate while 51.6% respondents were graduate. Further, respondents, who preferred to paint their house every 6 to 10 years, only 13.3% respondents were undergraduates while 56.4% respondents were graduate. Furthermore, respondents, who paint their houses after 10 years, 37.8% respondents were undergraduate while only 11% respondents were postgraduate. There was a significant opinion difference (Chi-Square = 48.017; p value = 0.000) between respondents, from four selected cities of Gujarat, with different level of education, i.e., undergraduate, graduate and postgraduate, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.
- In Vadodara, it was observed that 38.5% respondents, who liked to paint their houses within three years, were graduate while 61.5% respondents were postgraduate. Moreover,

it was seen that only 3.6% respondents, who preferred to paint their houses every 4 to 5 years, were undergraduate while 58.6% respondents were postgraduate. Further, respondents, who preferred to paint their house every 6 to 10 years, only 3.1% respondents were undergraduates while 43.8% respondents were graduate. Furthermore, respondents, who paint their houses after 10 years, 66.7% respondents were undergraduate while none of the respondents were postgraduate. There was a significant opinion difference (Chi-Square = 72.742; p value = 0.000) between respondents, from Vadodara, with different level of education, i.e., undergraduate, graduate and postgraduate, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.

- In Ahmedabad, it was observed that 34.6% respondents, who liked to paint their houses within three years, were postgraduate while 53.8% respondents were graduate. Moreover, it was seen that 30.4% respondents, who preferred to paint their houses every 4 to 5 years, were postgraduate while 55.4% respondents were graduate. Further, respondents, who preferred to paint their house every 6 to 10 years, only 14% respondents were undergraduates while 59.3% respondents were graduate. Furthermore, respondents, who paint their houses after 10 years, 37.5% respondents were undergraduate while only 21.9% respondents were postgraduate. There was not a significant opinion difference (Chi-Square = 11.290; p value = 0.080) between respondents, from Ahmedabad, with different level of education, i.e., undergraduate, graduate and postgraduate, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.
- In Surat, it was observed that 30.6% respondents, who liked to paint their houses within three years, were postgraduate while 48.6% respondents were graduate. Moreover, it was seen that 24.2% respondents, who preferred to paint their houses every 4 to 5 years, were postgraduate while 57.6% respondents were graduate. Further, respondents, who preferred to paint their house every 6 to 10 years, only 11.4% respondents were undergraduates while 71.4% respondents were graduate. Furthermore, respondents, who paint their houses after 10 years, 25.9% respondents were undergraduate while only 7.4% respondents were postgraduate. There was not a significant opinion difference (Chi-Square = 9.630; p value = 0.141) between respondents, from Surat, with different level of education, i.e.,

- undergraduate, graduate and postgraduate, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.
- In Rajkot, it was observed that 29.6% respondents, who liked to paint their houses within three years, were postgraduate while 55.6% respondents were graduate. Moreover, it was seen that 27.4% respondents, who preferred to paint their houses every 4 to 5 years, were postgraduate while 60.4% respondents were graduate. Further, respondents, who preferred to paint their house every 6 to 10 years, only 17.9% respondents were postgraduates while 57.1% respondents were graduate. Furthermore, respondents, who paint their houses after 10 years, 36.4% respondents were undergraduate while none of the respondents were postgraduate. There was not a significant opinion difference (Chi-Square = 10.417; p value = 0.108) between respondents, from Rajkot, with different level of education, i.e., undergraduate, graduate and postgraduate, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years. (Ref. Table 5.4.48)

Table 5.4.49: Respondents' city wise opinion regarding their Frequency of Purchasing **Decorative Paints across their Occupation**

					Paint	purch	ase Freq	uency					
		1-3	years	4-5	years		years		years	T	otal	Signific	ance #
CITY*	Oc.**	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
V	S	0	.0	39	35.1	32	50.0	9	75.0	80	40.0	24.675	0.000
	В	4	30.8	36	32.4	20	31.3	0	.0	60	30.0		
	P	9	69.2	36	32.4	12	18.8	3	25.0	60	30.0		
	Total	13	9.4	111	32.7	64	26.6	12	14.6	200	25.0		
A	S	8	30.8	13	23.2	31	36.0	28	87.5	80	40.0	39.454	0.000
	В	11	42.3	20	35.7	27	31.4	2	6.3	60	30.0		
	P	7	26.9	23	41.1	28	32.6	2	6.3	60	30.0		
	Total	26	18.8	56	16.5	86	35.7	32	39.0	200	25.0		
S	S	23	31.9	24	36.4	17	48.6	16	59.3	80	40.0	14.142	0.028
	В	30	41.7	21	31.8	7	20.0	2	7.4	60	30.0		
	P	19	26.4	21	31.8	11	31.4	9	33.3	60	30.0		
	Total	72	52.2	66	19.5	35	14.5	27	32.9	200	25.0		
R	S	11	40.7	40	37.7	23	41.1	6	54.5	80	40.0	3.911	0.689
	В	10	37.0	34	32.1	15	26.8	1	9.1	60	30.0		
	P	6	22.2	32	30.2	18	32.1	4	36.4	60	30.0		
	Total	27	19.6	106	31.3	56	23.2	11	13.4	200	25.0		
0	S	42	30.4	116	34.2	103	42.7	59	72.0	320	40.0	51.423	0.000
	В	55	39.9	111	32.7	69	28.6	5	6.1	240	30.0		
	P	41	29.7	112	33.0	69	28.6	18	22.0	240	30.0		
	Total	138	100.0	339	100.0	241	100.0	82	100.0	800	100.0		
V = Vadod	ara, A=Ahmed	labad, S	Surat, R	=Rajko	, O= Ove	rall;	-	-		-	-		
* Occupation	n : S = Service	Class; I	3 = Busin	ess clas	s; P = Pro	ofession	als						
Statistic is s	ignificant at	0.05 leve	al .										

- In overall, it was observed that majority i.e., 39.9%, respondents, who liked to paint their houses within three years, were business class people. Moreover, it was seen that 34.2% respondents, who preferred to paint their houses every 4 to 5 years, were service class people while 33% respondents were professionals. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 42.7% respondents were service class people. Furthermore, respondents, who paint their houses after 10 years, only 6.1% respondents were business class people while 72% respondents were service class people. There was a significant opinion difference (Chi-Square = 51.423; p value = 0.000) between respondents, from four selected cities of Gujarat, with different occupations i.e., service, business and other profession, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.
- In Vadodara, it was observed that majority i.e., 69.2%, respondents, who liked to paint their houses within three years, were professionals while none of the respondents were service class people. Moreover, it was seen that 35.1% respondents, who preferred to paint their houses every 4 to 5 years, were service class people. Further, respondents, who

preferred to paint their house every 6 to 10 years, majority i.e., 50% respondents were service class people. Furthermore, respondents, who paint their houses after 10 years, none of the respondents were business class people while 75% respondents were service class people. There was a significant opinion difference (Chi-Square = 24.675; p value = 0.000) between respondents, from Vadodara, with different occupations i.e., service, business and other profession, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.

- In Ahmedabad, it was observed that majority i.e., 42.3%, respondents, who liked to paint their houses within three years, were business class people. Moreover, it was seen that 41.1% respondents, who preferred to paint their houses every 4 to 5 years, were professionals while 35.7% respondents were business people. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 36% respondents were service class people. Furthermore, respondents, who paint their houses after 10 years, only 6.3% respondents were business class people and 6.3% respondents were professionals while 72% respondents were service class people. There was a significant opinion difference (Chi-Square = 39.454; p value = 0.000) between respondents, from Ahmedabad, with different occupations i.e., service, business and other profession, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.
- In Surat, it was observed that majority i.e., 41.7%, respondents, who liked to paint their houses within three years, were business class people. Moreover, it was seen that 36.4% respondents, who preferred to paint their houses every 4 to 5 years, were service class people. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 48.6% respondents were service class people. Furthermore, respondents, who paint their houses after 10 years, only 7.4% respondents were business class people while 59.3% respondents were service class people. There was a significant opinion difference (Chi-Square = 14.142; p value = 0.0280) between respondents, from Surat, with different occupations i.e., service, business and other profession, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.

In Rajkot, it was observed that majority i.e., 40.7%, respondents, who liked to paint their houses within three years, were service class people. Moreover, it was seen that 37.7% respondents, who preferred to paint their houses every 4 to 5 years, were service class people while 30.2% respondents were professionals. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 41.1% respondents were service class people. Furthermore, respondents, who paint their houses after 10 years, only 9.1% respondents were business class people while 54.5% respondents were service class people. There wasn't a significant opinion difference (Chi-Square = 3.911; p value = 0.689) between respondents, from Rajkot, with different occupations i.e., service, business and other profession, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years. (Ref. Table 5.4.49)

Table 5.4.50: Respondents' city wise opinion regarding their Frequency of Purchasing

Decorative Paints across their Monthly Income Group

					Paint	Purch	ase Freq	uency					
		1-3	years	4-5	years	5-10	years	>10) years	T	otal	Signifi	cance #
CITY*	MI**	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	MI – 1	6	46.2	37	33.3	26	40.6	10	83.3	79	39.5	15.464	0.017
	MI – 2	6	46.2	36	32.4	20	31.3	2	16.7	64	32.0		
	MI – 3	1	7.7	38	34.2	18	28.1	0	.0	57	28.5		
	Total	13	9.4	111	32.7	64	26.6	12	14.6	200	25.0		
A	MI – 1	7	26.9	23	41.1	46	53.5	21	65.6	97	48.5	13.695	0.033
	MI – 2	7	26.9	12	21.4	12	14.0	7	21.9	38	19.0		
	MI – 3	12	46.2	21	37.5	28	32.6	4	12.5	65	32.5		
	Total	26	18.8	56	16.5	86	35.7	32	39.0	200	25.0		
S	MI – 1	19	26.4	18	27.3	14	40.0	11	40.7	62	31.0	14.370	0.026
	MI – 2	18	25.0	20	30.3	11	31.4	13	48.1	62	31.0		
	MI – 3	35	48.6	28	42.4	10	28.6	3	11.1	76	38.0		
	Total	72	52.2	66	19.5	35	14.5	27	32.9	200	25.0		
R	MI – 1	3	11.1	20	18.9	9	16.1	2	18.2	34	17.0	3.707	0.716
	MI – 2	15	55.6	52	49.1	24	42.9	7	63.6	98	49.0		
	MI – 3	9	33.3	34	32.1	23	41.1	2	18.2	68	34.0		
	Total	27	19.6	106	31.3	56	23.2	11	13.4	200	25.0		
0	MI – 1	35	25.4	98	28.9	95	39.4	44	53.7	272	34.0	35.282	0.000
	MI – 2	46	33.3	120	35.4	67	27.8	29	35.4	262	32.8		
	MI – 3	57	41.3	121	35.7	79	32.8	9	11.0	266	33.3		
	Total	138	100.0	339	100.0	241	100.0	82	100.0	800	100.0		
* V = Vadoo	lara, A=Ahmed	labad, S	=Surat, R	=Rajkot	, O= Ove	rall;							
** Monthly	Income: MI –	1: <=29	0166.67, I	MI – 2: 2	29166.68-	46250.	00, MI – 1	3:>462	250.00				
# Statistic is	significant at	0.05 lev	el										

In overall, it was observed that majority i.e., 41.3%, respondents, who liked to paint their houses within three years, had monthly income more than Rs.46250. Moreover, it was seen that 35.7% respondents, who preferred to paint their houses every 4 to 5 years, had monthly income more than Rs.46250 while 35.4% respondents had monthly income between Rs.29166.68 to Rs.46250. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 39.4% respondents had monthly income no more than Rs.29166.67. Furthermore, respondents, who paint their houses after 10 years, only 11% respondents had monthly income more than Rs.46250 while 53.7% respondents didn't have income more than Rs.29166.67. There was a significant opinion difference (Chi-Square = 35.292; p value = 0.000) between respondents, from four selected cities of Gujrat, with different level of monthly income i.e., less than or equal to Rs.29166.67, Rs.2966.68 to Rs.46250.00 and above Rs.46250.00, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.

- In Vadodara, it was observed that only 7.7%, respondents, who liked to paint their houses within three years, had monthly income more than Rs.46250. Moreover, it was seen that 34.2% respondents, who preferred to paint their houses every 4 to 5 years, had monthly income more than Rs.46250 while 32.4% respondents had monthly income between Rs.29166.68 to Rs.46250. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 40.6% respondents had monthly income no more than Rs.29166.67. Furthermore, respondents, who paint their houses after 10 years, none of the respondents had monthly income more than Rs.46250 while 83.3% respondents didn't have income more than Rs.29166.67. There was a significant opinion difference (Chi-Square = 15.464; p value = 0.017) between respondents from Vadodara with different level of monthly income i.e., less than or equal to Rs.29166.67, Rs.2966.68 to Rs.46250.00 and above Rs.46250.00, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.
- In Ahmedabad, it was observed that majority i.e., 46.2%, respondents, who liked to paint their houses within three years, had monthly income more than Rs.46250. Moreover, it was seen that 37.5% respondents, who preferred to paint their houses every 4 to 5 years, had monthly income more than Rs.46250 while 41.1% respondents had monthly income below Rs.29166.68. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 53.5% respondents had monthly income no more than Rs.29166.67. Furthermore, respondents, who paint their houses after 10 years, only 12.5% respondents had monthly income more than Rs.46250 while 65.6% respondents didn't have income more than Rs.29166.67. There was a significant opinion difference (Chi-Square = 13.695; p value = 0.033) between respondents from Vadodara with different level of monthly income i.e., less than or equal to Rs.29166.67, Rs.2966.68 to Rs.46250.00 and above Rs.46250.00, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.
- In Surat, it was observed that majority i.e., 48.6%, respondents, who liked to paint their houses within three years, had monthly income more than Rs.46250. Moreover, it was seen that 42.4% respondents, who preferred to paint their houses every 4 to 5 years, had monthly income more than Rs.46250 while 27.3% respondents had monthly income below Rs.29166.68. Further, respondents, who preferred to paint their house every 6 to 10 years,

majority i.e., 40% respondents had monthly income no more than Rs.29166.67. Furthermore, respondents, who paint their houses after 10 years, only 11.1% respondents had monthly income more than Rs.46250 while 48.1% respondents had income between Rs.29166.67 to Rs.46250. There was a significant opinion difference (Chi-Square = 14.370; p value = 0.026) between respondents from Surat, with different level of monthly income i.e., less than or equal to Rs.29166.67, Rs.2966.68 to Rs.46250.00 and above Rs.46250.00, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.

• In Rajkot, it was observed that majority i.e., 55.6%, respondents, who liked to paint their houses within three years, had monthly income between Rs.29166.67 to Rs.46250. Moreover, it was seen that 32.1% respondents, who preferred to paint their houses every 4 to 5 years, had monthly income more than Rs.46250 while 49.1% respondents had monthly income between Rs.29166.68 to Rs.46250. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 42.9% respondents had monthly income between Rs.29166.67 to Rs.46250. Furthermore, respondents, who paint their houses after 10 years, only 18.2% respondents had monthly income more than Rs.46250 while 63.6% respondents had income between Rs.29166.67and Rs.46250. There wasn't a significant opinion difference (Chi-Square = 3.7072; p value = 0.716) between respondents from Rajkot, with different level of monthly income i.e., less than or equal to Rs.29166.67, Rs.2966.68 to Rs.46250.00 and above Rs.46250.00, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years. (Ref. Table 5.4.50)

Table 5.4.51: Respondents' city wise opinion regarding their Frequency of Purchasing

Decorative Paints across their Per Capita Income Groups

					Paint	Purch	ase Frequ	iency					
		1-3	years	4-5	years	5-10	years	>10	years	To	otal	Signific	cance #
CITY*	PCI**	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Low	5	38.5	32	28.8	22	34.4	10	83.3	69	34.5	17.819	0.007
	Mod.	6	46.2	34	30.6	19	29.7	2	16.7	61	30.5		
	High	2	15.4	45	40.5	23	35.9	0	.0	70	35.0		
	Total	13	9.4	111	32.7	64	26.6	12	14.6	200	25.0		
A	Low	6	23.1	22	39.3	45	52.3	21	65.6	94	47.0	13.815	0.032
	Mod.	9	34.6	15	26.8	15	17.4	6	18.8	45	22.5		
	High	11	42.3	19	33.9	26	30.2	5	15.6	61	30.5		
	Total	26	18.8	56	16.5	86	35.7	32	39.0	200	25.0		
S	Low	19	26.4	20	30.3	14	40.0	12	44.4	65	32.5	14.562	0.024
	Mod.	17	23.6	23	34.8	9	25.7	12	44.4	61	30.5		
	High	36	50.0	23	34.8	12	34.3	3	11.1	74	37.0		
	Total	72	52.2	66	19.5	35	14.5	27	32.9	200	25.0		
R	Low	7	25.9	24	22.6	14	25.0	4	36.4	49	24.5	5.737	0.453
	Mod.	16	59.3	48	45.3	25	44.6	6	54.5	95	47.5		
	High	4	14.8	34	32.1	17	30.4	1	9.1	56	28.0		
	Total	27	19.6	106	31.3	56	23.2	11	13.4	200	25.0		
0	Low	37	26.8	98	28.9	95	39.4	47	57.3	277	34.6	36.044	0.000
	Mod.	48	34.8	120	35.4	68	28.2	26	31.7	262	32.8		
	High	53	38.4	121	35.7	78	32.4	9	11.0	261	32.6		
	Total	138	100.0	339	100.0	241	100.0	82	100.0	800	100.0		
* V = Vadod	lara, A=Ahmed	abad, S	=Surat, R	=Rajkot	, O= Ove	rall;							
** PER CAI	PITA INCOME	: Mod.	= Modera	ate									
# Statistic is	significant at (0.05 lev	el										

- In overall, it was observed that majority i.e., 38.4%, respondents, who liked to paint their houses within three years, had high per capita income level. Moreover, it was seen that 35.7% respondents, who preferred to paint their houses every 4 to 5 years, also had high per capita income level while 35.4% respondents had moderate per capita income. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 39.4% respondents had low per capita income level. Furthermore, respondents, who paint their houses after 10 years, only 11% respondents had high per capita income while 57.3% respondents had low per capita income level. There was a significant opinion difference (Chi-Square = 36.044; p value = 0.000) between respondents, from four selected cities of Gujrat, with low, moderate and high per capita income level, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.
- In Vadodara, it was observed that majority i.e., 46.2%, respondents, who liked to paint their houses within three years, had moderate per capita income level. Moreover, it was

seen that 40.5% respondents, who preferred to paint their houses every 4 to 5 years, had high per capita income level while 30.6% respondents had moderate per capita income. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 35.9% respondents had high per capita income level. Furthermore, respondents, who paint their houses after 10 years, none of the respondents had high per capita income while 83.3% respondents had low per capita income level. There was a significant opinion difference (Chi-Square = 17.819; p value = 0.007) between respondents, from Vadodara, with low, moderate and high per capita income level, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.

- In Ahmedabad, it was observed that majority i.e., 42.3%, respondents, who liked to paint their houses within three years, had high per capita income level. Moreover, it was seen that 39.3% respondents, who preferred to paint their houses every 4 to 5 years, also had low per capita income level while 26.8% respondents had moderate per capita income. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 40% respondents had low per capita income level. Furthermore, respondents, who paint their houses after 10 years, only 15.6% respondents had high per capita income while 65.6% respondents had low per capita income level. There was a significant opinion difference (Chi-Square = 13.815; p value = 0.032) between respondents, from Ahmedabad, with low, moderate and high per capita income level, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.
- In Surat, it was observed that majority i.e., 50%, respondents, who liked to paint their houses within three years, had high per capita income level. Moreover, it was seen that 34.8% respondents, who preferred to paint their houses every 4 to 5 years, also had high per capita income level and34.8% respondents had moderate per capita income. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 40% respondents had low per capita income level. Furthermore, respondents, who paint their houses after 10 years, only 11.1% respondents had high per capita income while 44.4% respondents had low per capita income level. There was a significant opinion difference (Chi-Square = 14.562; p value = 0.024) between respondents, from Surat, with low, moderate and high per capita income level, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years.

• In Rajkot, it was observed that majority i.e., 59.3%, respondents, who liked to paint their houses within three years, had moderate per capita income level. Moreover, it was seen that 45.3% respondents, who preferred to paint their houses every 4 to 5 years, also had moderate per capita income level while 22.6% respondents had low per capita income. Further, respondents, who preferred to paint their house every 6 to 10 years, majority i.e., 44.6% respondents had moderate per capita income level. Furthermore, respondents, who paint their houses after 10 years, only 9.1% respondents had high per capita income while 54.5% respondents had moderate per capita income level. There wasn't a significant opinion difference (Chi-Square = 5.737; p value = 0.453) between respondents, from Rajkot, with low, moderate and high per capita income level, regarding their frequency to purchase paints i.e., within 3 year, between 4 to 5 years, between 6 to 10 years and after 10 years. (Ref. Table 5.4.51)

Table 5.4.52: Respondents' city wise opinion regarding their Frequency of Purchasing

Decorative Paints across their Marital Status

					Paint	Purcha	se Frequ	ency					
		1-3 y	ears	4-5	years	5-10	years	>10	years	To	otal	Signifi	cance #
CITY	Marital Status**	N	%	N	%	N	%	N	%	N	%	Chi- Square	p Value
V	Mar.	12	92.3	95	85.6	55	85.9	9	75.0	171	85.5	1.564	0.668
	UM	1	7.7	16	14.4	9	14.1	3	25.0	29	14.5		
	Total	13	9.4	111	32.7	64	26.6	12	14.6	200	25.0		
A	Mar.	22	84.6	48	85.7	79	91.9	23	71.9	172	86.0	7.889	0.045
	UM	4	15.4	8	14.3	7	8.1	9	28.1	28	14.0		
	Total	26	18.8	56	16.5	86	35.7	32	39.0	200	25.0		
S	Mar.	67	93.1	60	90.9	32	91.4	23	85.2	182	91.0	1.495	0.684
	UM	5	6.9	6	9.1	3	8.6	4	14.8	18	9.0		
	Total	72	52.2	66	19.5	35	14.5	27	32.9	200	25.0		
R	Mar.	22	81.5	75	70.8	49	87.5	11	100.0	157	78.5	9.610	0.022
	UM	5	18.5	31	29.2	7	12.5	0	.0	43	21.5		
	Total	27	19.6	106	31.3	56	23.2	11	13.4	200	25.0		
0	Mar.	123	89.1	278	82.0	215	89.2	66	80.5	682	85.3	8.977	0.030
	UM	15	10.9	61	18.0	26	10.8	16	19.5	118	14.8		
	Total	138	100.0	339	100.0	241	100.0	82	100.0	800	100.0		
* V = Vadoda	ıra, A=Ahmedaba	d, S=Sura	at, R=Raj	kot, O=	Overall;		•		•	•	•		
** Marital Sta	tus: Mar. = Marrie	ed; UM:	Unmarrie	d			•		•	•	•		
# Statistic is s	ignificant at 0.05	level					·		·	<u> </u>	·		

- In overall, respondents who purchase paints within 3 years, majority i.e., 89.1% respondents were married. Moreover, respondents who purchase paints every 4 to 5 years, 82% respondents were married while 18% respondents were unmarried. Further, only 10.8% respondents, who paint their houses between 5 to 10 years, and 19.5% respondents, who paint their houses after 10 years, were unmarried. Furthermore, a significant difference (Chi-Square Value = 8.977 & p Value = 0.030) of opinions, regarding frequency of respondents to paint their houses, was observed between married and unmarried respondents from selected cities i.e., Vadodara, Ahmedabad, Surat and Rajkot, of Gujarat.
- In Vadodara, respondents who purchase paints within 3 years, majority i.e., 92.3% respondents were married. Moreover, respondents who purchase paints every 4 to 5 years, 85.6% respondents were married while 14.4% respondents were unmarried. Further, only 14.1% respondents, who paint their houses between 5 to 10 years, and 25% respondents, who paint their houses after 10 years, were unmarried. Furthermore, no significant difference (Chi-Square Value = 1.564 & p Value = 0.668) of opinions, regarding frequency of respondents to paint their houses, was observed between married and unmarried respondents from Vadodara.
- In Ahmedabad, respondents who purchase paints within 3 years, majority i.e., 84.6% respondents were married. Moreover, respondents who purchase paints every 4 to 5 years,

- 85.7% respondents were married while 14.3% respondents were unmarried. Further, only 8.1% respondents, who paint their houses between 5 to 10 years, and 28.1% respondents, who paint their houses after 10 years, were unmarried. Furthermore, a significant difference (Chi-Square Value = 7.889 & p Value = 0.045) of opinions, regarding frequency of respondents to paint their houses, was observed between married and unmarried respondents from Ahmedabad.
- In Surat, respondents who purchase paints within 3 years, majority i.e., 93.1% respondents were married. Moreover, respondents who purchase paints every 4 to 5 years, 90.9% respondents were married while 9.1% respondents were unmarried. Further, only 8.6% respondents, who paint their houses between 5 to 10 years, and 14.8% respondents, who paint their houses after 10 years, were unmarried. Furthermore, no significant difference (Chi-Square Value = 1.495 & p Value = 0.684) of opinions, regarding frequency of respondents to paint their houses, was observed between married and unmarried respondents from Surat.
- In Rajkot, respondents who purchase paints within 3 years, majority i.e., 81.5% respondents were married. Moreover, respondents who purchase paints every 4 to 5 years, 70.8% respondents were married while 29.2% respondents were unmarried. Further, only 12.5% respondents, who paint their houses between 5 to 10 years, and none of the respondents, who paint their houses after 10 years, were unmarried. Furthermore, a significant difference (Chi-Square Value = 9.610 & p Value = 0.022) of opinions, regarding frequency of respondents to paint their houses, was observed between married and unmarried respondents from Rajkot. (Ref. Table 5.4.52)

Table 5.4.53: Respondents' city wise opinion regarding their Frequency of Purchasing

Decorative Paints across their Family Size

					Paint	Purcha	se Frequ	ency					
		1-3	years	4-5	years	5-10	years	>10	years	To	tal	Signifi	icance#
CITY	Family Size **	N	%	N	%	N	%	N	%	N	%	Chi- Square	p Value
V	1-4	12	92.3	90	81.1	45	70.3	7	58.3	154	77.0	6.741	0.081
	5+	1	7.7	21	18.9	19	29.7	5	41.7	46	23.0		
	Total	13	9.4	111	32.7	64	26.6	12	14.6	200	25.0		
A	1-4	16	61.5	40	71.4	66	76.7	25	78.1	147	73.5	2.849	0.415
	5+	10	38.5	16	28.6	20	23.3	7	21.9	53	26.5		
	Total	26	18.8	56	16.5	86	35.7	32	39.0	200	25.0		
S	1-4	48	66.7	40	60.6	21	60.0	15	55.6	124	62.0	1.255	0.740
	5+	24	33.3	26	39.4	14	40.0	12	44.4	76	38.0		
	Total	72	52.2	66	19.5	35	14.5	27	32.9	200	25.0		
R	1-4	16	59.3	63	59.4	31	55.4	5	45.5	115	57.5	0.955	0.812
	5+	11	40.7	43	40.6	25	44.6	6	54.5	85	42.5		
	Total	27	19.6	106	31.3	56	23.2	11	13.4	200	25.0		
0	1-4	92	66.7	233	68.7	163	67.6	52	63.4	540	67.5	0.904	0.824
	5+	46	33.3	106	31.3	78	32.4	30	36.6	260	32.5		
	Total	138	100.0	339	100.0	241	100.0	82	100.0	800	100.0		
* V = Vadoda	ra, A=Ahmedaba	d, S=Sur	at, R=Raj	kot, O=	Overall;								
# Statistic is si	gnificant at 0.05	level	•	•	•	•	•			•	•	•	

- In overall, respondents who purchase paints within 3 years, majority i.e., 66.7% respondents had 4 or less family members. Moreover, respondents who purchase paints every 4 to 5 years, 68.7% respondents had 4 or less family members while 31.3% respondents had more than 4 family members. Further, only 32.4% respondents, who paint their houses between 5 to 10 years, and 36.6% respondents, who paint their houses after 10 years, had family members more than 4. Furthermore, no significant difference (Chi-Square Value = 0.904 & p Value = 0.824) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents, with family size up to 4, and respondents, with family size more than 4, from selected cities of Gujarat.
- In Vadodara, respondents who purchase paints within 3 years, majority i.e., 92.3% respondents had 4 or less family members. Moreover, respondents who purchase paints every 4 to 5 years, 81.1% respondents had 4 or less family members while 18.9% respondents had more than 4 family members. Further, only 29.4% respondents, who paint their houses between 5 to 10 years, and 41.7% respondents, who paint their houses after 10 years, had family members more than 4. Furthermore, no significant difference (Chi-Square Value = 6.741 & p Value = 0.081) of opinions, regarding frequency of respondents to paint their

- houses, was observed between respondents, with family size up to 4, and respondents, with family size more than 4, from Vadodara.
- In Ahmedabad, respondents who purchase paints within 3 years, majority i.e., 61.5% respondents had 4 or less family members. Moreover, respondents who purchase paints every 4 to 5 years, 71.4% respondents had 4 or less family members while 28.6% respondents had more than 4 family members. Further, only 23.3% respondents, who paint their houses between 5 to 10 years, and 21.9% respondents, who paint their houses after 10 years, had family members more than 4. Furthermore, no significant difference (Chi-Square Value = 2.849 & p Value = 0.415) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents, with family size up to 4, and respondents, with family size more than 4, from Ahmedabad.
- In Surat, respondents who purchase paints within 3 years, majority i.e., 66.7% respondents had 4 or less family members. Moreover, respondents who purchase paints every 4 to 5 years, 60.6% respondents had 4 or less family members while 39.4% respondents had more than 4 family members. Further, only 40% respondents, who paint their houses between 5 to 10 years, and 44.4% respondents, who paint their houses after 10 years, had family members more than 4. Furthermore, no significant difference (Chi-Square Value = 1.255 & p Value = 0.740) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents, with family size up to 4, and respondents, with family size more than 4, from Surat.
- In Rajkot, respondents who purchase paints within 3 years, majority i.e., 59.3% respondents had 4 or less family members. Moreover, respondents who purchase paints every 4 to 5 years, 59.4% respondents had 4 or less family members while 40.6% respondents had more than 4 family members. Further, only 44.6% respondents, who paint their houses between 5 to 10 years, and 54.5% respondents, who paint their houses after 10 years, had family members more than 4. Furthermore, no significant difference (Chi-Square Value = 0.955 & p Value = 0.812) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents, with family size up to 4, and respondents, with family size more than 4, from Rajkot. (Ref. Table 5.4.53)

Table 5.4.54: Respondents' city wise opinion regarding their Frequency of Purchasing

Decorative Paints across their Family Type

					Pain	t Purcha	ase Frequ	iency					
		1-3	years	4-5	years	5-10	years	>10	years	To	otal	Signifi	cance #
CITY	Family Type	N	%	N	%	N	%	N	%	N	%	Chi- Square	p Value
V	Nuclear	12	92.3	84	75.7	38	59.4	4	33.3	138	69.0	15.523	0.001
	Joint	1	7.7	27	24.3	26	40.6	8	66.7	62	31.0		
	Total	13	9.4	111	32.7	64	26.6	12	14.6	200	25.0		
A	Nuclear	16	61.5	40	71.4	64	74.4	27	84.4	147	73.5	4.014	0.260
	Joint	10	38.5	16	28.6	22	25.6	5	15.6	53	26.5		
	Total	26	18.8	56	16.5	86	35.7	32	39.0	200	25.0		
S	Nuclear	50	69.4	44	66.7	21	60.0	14	51.9	129	64.5	3.100	0.376
	Joint	22	30.6	22	33.3	14	40.0	13	48.1	71	35.5		
	Total	72	52.2	66	19.5	35	14.5	27	32.9	200	25.0		
R	Nuclear	20	74.1	69	65.1	29	51.8	3	27.3	121	60.5	9.879	0.020
	Joint	7	25.9	37	34.9	27	48.2	8	72.7	79	39.5		
	Total	27	19.6	106	31.3	56	23.2	11	13.4	200	25.0		
0	Nuclear	98	71.0	237	69.9	152	63.1	48	58.5	535	66.9	6.627	0.085
	Joint	40	29.0	102	30.1	89	36.9	34	41.5	265	33.1		
	Total	138	100.0	339	100.0	241	100.0	82	100.0	800	100.0		
* V = Vadoda	ra, A=Ahmedaba	d, S=Sur	at, R=Raj	jkot, O=	Overall;	•		•	•			•	
# Statistic is si	ignificant at 0.05	level		•	•	•		•	•			•	

- In overall, respondents who purchase paints within 3 years, majority i.e., 71% respondents had nuclear family type. Moreover, respondents who purchase paints every 4 to 5 years, 69.9% respondents had nuclear family while 30.1% respondents had joint family. Further, only 36.9% respondents, who paint their houses between 5 to 10 years, and 41.5% respondents, who paint their houses after 10 years, had joint family. Furthermore, no significant difference (Chi-Square Value = 6.627 & p Value = 0.085) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents, with nuclear family and joint family, from selected cities of Gujarat.
- In Vadodara, respondents who purchase paints within 3 years, majority i.e., 92.3% respondents had nuclear family type. Moreover, respondents who purchase paints every 4 to 5 years, 75.7% respondents had nuclear family while 24.3% respondents had joint family. Further, only 40.6% respondents, who paint their houses between 5 to 10 years, and 66.7% respondents, who paint their houses after 10 years, had joint family. Furthermore, significant difference (Chi-Square Value = 15.523 & p Value = 0.001) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents, with nuclear family and joint family, from Vadodara.

- In Ahmedabad, respondents who purchase paints within 3 years, majority i.e., 61.5% respondents had nuclear family type. Moreover, respondents who purchase paints every 4 to 5 years, 71.4% respondents had nuclear family while 28.6% respondents had joint family. Further, only 25.6% respondents, who paint their houses between 5 to 10 years, and 15.6% respondents, who paint their houses after 10 years, had joint family. Furthermore, no significant difference (Chi-Square Value = 4.014 & p Value = 0.260) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents, with nuclear family and joint family, from Ahmedabad.
- In Surat, respondents who purchase paints within 3 years, majority i.e., 69.4% respondents had nuclear family type. Moreover, respondents who purchase paints every 4 to 5 years, 66.7% respondents had nuclear family while 33.3% respondents had joint family. Further, only 40% respondents, who paint their houses between 5 to 10 years, and 48.1% respondents, who paint their houses after 10 years, had joint family. Furthermore, no significant difference (Chi-Square Value = 3.100 & p Value = 0.376) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents, with nuclear family and joint family, from Surat.
- In Rajkot, respondents who purchase paints within 3 years, majority i.e., 74.1% respondents had nuclear family type. Moreover, respondents who purchase paints every 4 to 5 years, 65.1% respondents had nuclear family while 34.9% respondents had joint family. Further, only 48.2% respondents, who paint their houses between 5 to 10 years, and 72.7% respondents, who paint their houses after 10 years, had joint family. Furthermore, a significant difference (Chi-Square Value = 9.879 & p Value = 0.020) of opinions, regarding frequency of respondents to paint their houses, was observed between respondents, with nuclear family and joint family, from Rajkot. (Ref. Table 5.4.54)

Table 5.4.55: Respondents' city wise opinion regarding their Frequency of Purchasing

Decorative Paints across their Children Group

					Paint	Purcha	se Frequ	ency					
		1-3	years	4-5	years	5-10	years	>10	years	To	otal	Signific	cance#
City	Child**	N	%	N	%	N	%	N	%	N	%	Chi- Square	p Value
V	0	1	7.7	21	18.9	11	17.2	3	25.0	36	18.0	4.264	0.641
	1	2	15.4	28	25.2	21	32.8	3	25.0	54	27.0		
	2	10	76.9	62	55.9	32	50.0	6	50.0	110	55.0		
	3 or +	0	.0	0	.0	0	.0	0	.0	0	.0		
	Total	13	9.4	111	32.7	64	26.6	12	14.6	200	25.0		
A	0	4	15.4	14	25.0	11	12.8	12	37.5	41	20.5	17.503	0.041
	1	5	19.2	9	16.1	20	23.3	6	18.8	40	20.0		
	2	16	61.5	32	57.1	51	59.3	10	31.3	109	54.5		
	3 or +	1	3.8	1	1.8	4	4.7	4	12.5	10	5.0		
	Total	26	18.8	56	16.5	86	35.7	32	39.0	200	25.0		
S	0	7	9.7	6	9.1	3	8.6	4	14.8	20	10.0	6.982	0.639
	1	10	13.9	14	21.2	9	25.7	3	11.1	36	18.0		
	2	53	73.6	42	63.6	21	60.0	20	74.1	136	68.0		
	3 or +	2	2.8	4	6.1	2	5.7	0	.0	8	4.0		
	Total	72	52.2	66	19.5	35	14.5	27	32.9	200	25.0		
R	0	5	18.5	37	34.9	11	19.6	0	.0	53	26.5	16.026	0.066
	1	1	3.7	5	4.7	2	3.6	2	18.2	10	5.0		
	2	21	77.8	61	57.5	41	73.2	8	72.7	131	65.5		
	3 or +	0	.0	3	2.8	2	3.6	1	9.1	6	3.0		
	Total	27	19.6	106	31.3	56	23.2	11	13.4	200	25.0		
0	0	17	12.3	78	23.0	36	14.9	19	23.2	150	18.8	20.775	0.014
	1	18	13.0	56	16.5	52	21.6	14	17.1	140	17.5		
	2	100	72.5	197	58.1	145	60.2	44	53.7	486	60.8		
	3 or +	3	2.2	8	2.4	8	3.3	5	6.1	24	3.0		
	Total	138	100.0	339	100.0	241	100.0	82	100.0	800	100.0		
* $\overline{V = Vadoda}$	ara, A=Ahmedab	ad, S=S	urat, R=I	Rajkot,	O= Over	all;							
** Children:	0 = No child; 1 =	1 Child	; 2 = 2 Cl	hildren;	3+=30	r more t	han 3				•		
# Statistic is s	ignificant at 0.05	level											

In account majority of the manney denter who maint their become within 2 years 72.50/

- In overall, majority of the respondents, who paint their houses within 3 years, 72.5% had two children while only 2.2% respondents had three or more children. Moreover, majority i.e., 58.1%, respondents who preferred to paint their house from 4 to 5 years had two children while 23% respondents didn't have any child. Further, majority i.e., 60.2%, respondents who preferred to paint their house from 6 to 10 years had two children while 21.6% respondents had only one child. Furthermore, majority i.e., 53.7%, respondents who preferred to paint their house after 10 years had two children while 23.2% respondents didn't have any child. In overall, significant difference (Chi-Square Value = 20.775 & p Value = 0.014) was also observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their frequency to paint their houses.
- In Vadodara, majority of the respondents, who paint their houses within 3 years, 76.9% had two children while only 7.7% respondents didn't have any child. Moreover, majority i.e.,

55.9%, respondents who preferred to paint their house from 4 to 5 years had two children while 18.9% respondents didn't have any child. Further, majority i.e., 50%, respondents who preferred to paint their house from 6 to 10 years had two children while 32.8% respondents had only one child. Furthermore, majority i.e., 50%, respondents who preferred to paint their house after 10 years had two children while 25% respondents didn't have any child. In Vadodara, no significant difference (Chi-Square Value = 4.264 & p Value = 0.641) was also observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their frequency to paint their houses.

- In Ahmedabad, majority of the respondents, who paint their houses within 3 years, 61.5% had two children while only 3.8% respondents had three or more children. Moreover, majority i.e., 57.1%, respondents who preferred to paint their house from 4 to 5 years had two children while 25% respondents didn't have any child. Further, majority i.e., 59.3%, respondents who preferred to paint their house from 6 to 10 years had two children while 23.3% respondents had only one child. Furthermore, majority i.e., 37.5%, respondents who preferred to paint their house after 10 years didn't have a child while 12.5% respondents had 4 or more children. In Ahmedabad, significant difference (Chi-Square Value = 17.503 & p Value = 0.041) was also observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their frequency to paint their houses.
- In Surat, majority of the respondents, who paint their houses within 3 years, 73.6% had two children while only 2.8% respondents had three or more children. Moreover, majority i.e., 63.6%, respondents who preferred to paint their house from 4 to 5 years had two children while 9.1% respondents didn't have any child. Further, majority i.e., 60%, respondents who preferred to paint their house from 6 to 10 years had two children while 25.7% respondents had only one child. Furthermore, majority i.e., 74.1%, respondents who preferred to paint their house after 10 years had two children while none of the respondents had 3 or more children. In Surat, significant difference (Chi-Square Value = 6.982 & p Value = 0.639) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their frequency to paint their houses.
- In Rajkot, majority of the respondents, who paint their houses within 3 years, 77.8% had two children while none of the respondents had three or more children. Moreover, majority i.e., 57.5%, respondents who preferred to paint their house from 4 to 5 years had two children

while 34.9% respondents didn't have any child. Further, majority i.e., 73.2%, respondents who preferred to paint their house from 6 to 10 years had two children while 3.6% respondents had only one child. Furthermore, majority i.e., 72.7%, respondents who preferred to paint their house after 10 years had two children while none of the respondents didn't have any child. In Rajkot, significant difference (Chi-Square Value = 16.026 & p Value = 0.066) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their frequency to paint their houses. (Ref. Table 5.4.55)

Table 5.4.56: Respondents' opinion regarding their Consistency of Purchasing Distemper

Paints across four selected cities of Gujarat

	Purc	hasing (Consis	tency								
	Neve	er	Rare	ely	Some	etime	Ofte	n	Alv	ays	Tota	l
CITY	N	%	N	%	N	%	N	%	N	%	N	%
Vadodara	28	14.1	127	44.6	38	25.7	6	4.8	1	2.2	200	25.0
Ahmedabad	52	26.3	46	16.1	57	38.5	28	22.6	17	37.8	200	25.0
Surat	55	27.8	42	14.7	12	8.1	70	56.5	21	46.7	200	25.0
Rajkot	63	31.8	70	24.6	41	27.7	20	16.1	6	13.3	200	25.0
Total	198	100.0	285	100.0	148	100.0	124	100.0	45	100.0	800	100.0
Chi-Square value	203.1	117										
p Value	0.000) (Statisti	c is sign	ificant at	0.05 lev	el)						

- It could be observed from above table that respondents from Surat and Ahmedabad were more likely to buy distemper paints, when they wanted to paint their places, compare to respondents from Vadodara and Rajkot.
- 56.5% respondents who purchase distemper paints often were from Surat and 22.6% respondents were from Ahmedabad. While, in this case respondents from Vadodara were only 4.8% and 16.1% respondents were from Rajkot.
- 46.7% respondents who always purchase distemper paints were from Surat and 37.8% respondents were from Ahmedabad. While, in this case respondents from Vadodara were only 2.2% and 13.3% respondents were from Rajkot.
- 31.8% respondents who never purchase distemper paints were from Rajkot while 24.6% respondents and 44.6% respondents who purchase distempers rarely were from Rajkot and Vadodara respectively.
- With high Chi-Square value (203.117) and high significance level (p = 0.000), it could be said that there was a significant difference in purchase of distemper paints between respondents of all four cities of Gujarat state. (Ref. Table 5.4.56)

Table 5.4.57: Respondents' city wise opinion regarding their Consistency of Purchasing

Distemper Paints across their Age Group

		Purchasing Consistency													
City*	Age	Never		Rarely		Sometime		Often		Always		Total		Significance #	
	8.	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	<=37	7	25.0	50	39.4	13	34.2	3	50.0	1	100	74	37.0		0.000
V	38-46	2	7.1	53	41.7	17	44.7	1	16.7	0	.0	73	36.5	33.629	
	>46	19	67.9	24	18.9	8	21.1	2	33.3	0	.0	53	26.5		
	Total	28	14.1	127	44.6	38	25.7	6	4.8	1	2.2	200	25.0		
	<=37	11	21.2	17	37.0	23	40.4	9	32.1	7	41.2	67	33.5		0.184
A	38-46	16	30.8	15	32.6	11	19.3	10	35.7	7	41.2	59	29.5	11.318	
	>46	25	48.1	14	30.4	23	40.4	9	32.1	3	17.6	74	37.0		
	Total	52	26.3	46	16.1	57	38.5	28	22.6	17	37.8	200	25.0		
	<=37	12	21.8	18	42.9	6	50.0	27	38.6	4	19.0	67	33.5	30.430	0.000
S	38-46	12	21.8	14	33.3	5	41.7	22	31.4	14	66.7	67	33.5		
	>46	31	56.4	10	23.8	1	8.3	21	30.0	3	14.3	66	33.0		
	Total	55	27.8	42	14.7	12	8.1	70	56.5	21	46.7	200	25.0		
	<=37	14	22.2	32	45.7	22	53.7	7	35.0	3	50.0	78	39.0		0.004
R	38-46	14	22.2	20	28.6	12	29.3	7	35.0	1	16.7	54	27.0	22.843	
	>46	35	55.6	18	25.7	7	17.1	6	30.0	2	33.3	68	34.0		
	Total	63	31.8	70	24.6	41	27.7	20	16.1	6	13.3	200	25.0		
	<=37	44	22.2	117	41.1	64	43.2	46	37.1	15	33.3	286	35.8		0.000
O	38-46	44	22.2	102	35.8	45	30.4	40	32.3	22	48.9	253	31.6	70.978	
	>46	110	55.6	66	23.2	39	26.4	38	30.6	8	17.8	261	32.6		
	Total	198	100.0	285	100.0	148	100.0	124	100.0	45	100.0	800	100.0		
* V = V	* V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall;														
# Statis	stic is sign	nifican	t at 0.05	level											

- In overall, respondents who never purchase distempers, majority i.e., 55.6% respondents were of age above 46 years. Moreover, respondents who purchase distemper paints rarely, only 23.2% respondents were of age more than 46 years while 41.1% respondents were of age 37 years or less. Further, 43.2% respondents, who buy distemper paints sometimes, and 37.1% respondents, who often buy distemper paints, were of age 37 years or less. Respondents who always buy distemper paints, 48.9% were of age between 37 years and 46 years. Furthermore, in overall, high significant difference (Chi-Square Value = 70.978 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy distemper paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Vadodara, respondents who never purchase distempers, majority i.e., 67.9% respondents were of age above 46 years. Moreover, respondents who purchase distemper paints rarely, only 18.9% respondents were of age more than 46 years while 41.7% respondents were of age between 37 years and 46 years. Further, 50 % respondents, who often buy distemper paints, and all of the respondents, who always buy distemper paints, were of age 37 years or less.

Respondents who sometimes buy distemper paints, 44.7% were of age between 37 years and 46 years. Furthermore, in Vadodara, high significant difference (Chi-Square Value = 33.629 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy distemper paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.

- In Ahmedabad, respondents who never purchase distempers, majority i.e., 48.1% respondents were of age above 46 years. Moreover, respondents who purchase distemper paints rarely, only 30.4% respondents were of age more than 46 years while 37% respondents were of age 37 years or less. Further, only19.3% respondents, who buy distemper paints sometimes, and 35.7% respondents, who often buy distemper paints, were of age between 37 years to 46 years. Respondents who always buy distemper paints, only 17.6% were of age above 46 years. Furthermore, in Ahmedabad, no significant difference (Chi-Square Value = 11.318 & p Value = 0.184) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy distemper paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Surat, respondents who never purchase distempers, majority i.e., 56.4% respondents were of age above 46 years. Moreover, respondents who purchase distemper paints rarely, only 23.8% respondents were of age more than 46 years while 42.9% respondents were of age 37 years or less. Further, 50% respondents, who buy distemper paints sometimes, and 38.6% respondents, who often buy distemper paints, were of age 37 years or less. Respondents who always buy distemper paints, 66.7% were of age between 37 years and 46 years. Furthermore, in Surat, high significant difference (Chi-Square Value = 30.430 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy distemper paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Rajkot, respondents who never purchase distempers, majority i.e., 55.6% respondents were of age above 46 years. Moreover, respondents who purchase distemper paints rarely, only 25.7% respondents were of age more than 46 years while 45.7% respondents were of age 37 years or less. Further, 53.7% respondents, who buy distemper paints sometimes, and 35% respondents, who often buy distemper paints, were of age 37 years or less. Respondents who always buy distemper paints, only 16.7% were of age between 37 years and 46 years while

50% respondents were of age 37 years or less. Furthermore, in Rajkot, high significant difference (Chi-Square Value = 22.843 & p Value = 0.004) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy distemper paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years. (Ref. Table 5.4.57)

Table 5.4.58: Respondents' city wise opinion regarding their Consistency of Purchasing distemper paints across their Gender

		Purchasing Consistency													
CITY*	Gender	Never		Rarely		Son	Sometime		Often		Always		otal	Significance #	
		N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Male	16	57.1	95	74.8	25	65.8	5	83.3	1	100.0	142	71.0	4.856	0.202
V	Female	12	42.9	32	25.2	13	34.2	1	16.7	0	.0	58	29.0		0.302
	Total	28	14.1	127	44.6	38	25.7	6	4.8	1	2.2	200	25.0		
	Male	48	92.3	31	67.4	44	77.2	17	60.7	12	70.6	152	76.0	13.355	0.010
A	Female	4	7.7	15	32.6	13	22.8	11	39.3	5	29.4	48	24.0		
	Total	52	26.3	46	16.1	57	38.5	28	22.6	17	37.8	200	25.0		
S	Male	50	90.9	28	66.7	6	50.0	46	65.7	11	52.4	141	70.5	17.823	0.001
3	Female	5	9.1	14	33.3	6	50.0	24	34.3	10	47.6	59	29.5		0.001
	Total	55	27.8	42	14.7	12	8.1	70	56.5	21	46.7	200	25.0		
R	Male	51	81.0	48	68.6	26	63.4	17	85.0	3	50.0	145	72.5	7.588	0.108
N	Female	12	19.0	22	31.4	15	36.6	3	15.0	3	50.0	55	27.5		
	Total	63	31.8	70	24.6	41	27.7	20	16.1	6	13.3	200	25.0		
0	Male	165	83.3	202	70.9	101	68.2	85	68.5	27	60.0	580	72.5	17.875	0.001
U	Female	33	16.7	83	29.1	47	31.8	39	31.5	18	40.0	220	27.5		0.001
	Total	198	100.0	285	100.0	148	100.0	124	100.0	45	100.0	800	100.0		
* V = Va	dodara, A=A	Ahmeda	bad, S=Si	urat, R=	Rajkot, C	= Over	all;		•		•	•		•	
# Statistic	c is significa	nt at 0.	05 level	•		-			•		•	•		•	

- In overall, it was observed that majority i.e., 83.3% male respondents never purchase distemper paint while 70.9% male respondents rarely purchase distemper paints. Moreover, compared to total 27.5% female respondents from Gujarat, 31.8% female respondents sometimes purchase distemper paints while 40% female respondents always prefer to buy distemper paints for their houses. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 17.875; p value = 0.001) between male and female respondents regarding their regularity of distemper paint purchase.
- In Vadodara, it was observed that majority i.e., 83.3% male respondents often purchase distemper paint while only 57.1% male respondents never purchase distemper paints. Moreover, compared to total 29% female respondents from Vadodara, 42.9% female respondents never purchase distemper paints while 34.2% female respondents sometimes prefer to buy distemper paints for their houses. Further, in Vadodara, there wasn't a significant difference (Chi-Square = 4.856; p value = 0.302) between male and female respondents regarding their regularity of distemper paint purchase.
- In Ahmedabad, it was observed that majority i.e., 92.3% male respondents never purchase distemper paint while 67.4% male respondents rarely purchase distemper paints.

Moreover, compared to total 24% female respondents from Ahmedabad, 39.3% female respondents often purchase distemper paints while 29.4% female respondents always prefer to buy distemper paints for their houses. Further, in Ahmedabad, there was a significant difference (Chi-Square = 13.355; p value = 0.010) between male and female respondents regarding their regularity of distemper paint purchase.

- In Surat, it was observed that majority i.e., 90.9% male respondents never purchase distemper paint while 66.7% male respondents rarely purchase distemper paints. Moreover, compared to total 29.5% female respondents from Surat, 50% female respondents sometimes purchase distemper paints while 47.6% female respondents always prefer to buy distemper paints for their houses. Further, in Surat, there was a significant difference (Chi-Square = 17.823; p value = 0.001) between male and female respondents regarding their regularity of distemper paint purchase.
- In Rajkot, it was observed that majority i.e., 81% male respondents never purchase distemper paint while 68.6% male respondents rarely purchase distemper paints. Moreover, compared to total 27.5% female respondents from Rajkot, 36.6% female respondents sometimes purchase distemper paints while 50% female respondents always prefer to buy distemper paints for their houses. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 7.588; p value = 0.108) between male and female respondents regarding their regularity of distemper paint purchase. (Ref. Table 5.4.58)

Table 5.4.59: Respondents' city wise opinion regarding their Consistency of Purchasing

Distemper Paints across their Educational Qualifications

		Purchasing Consistency													
City*	Ed.**	Never		Rarely		Sometime		Often		Always		Total		Significance #	
		N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
V	UG	10	35.7	3	2.4	0	.0	0	.0	1	100	14	7.0		0.000
	Gr	14	50.0	44	34.6	18	47.4	3	50.0	0	.0	79	39.5	65.757	
	PG	4	14.3	80	63.0	20	52.6	3	50.0	0	.0	107	53.5		
	Total	28	14.1	127	44.6	38	25.7	6	4.8	1	2.2	200	25.0		
	UG	18	34.6	7	15.2	5	8.8	3	10.7	2	11.8	35	17.5		0.004
A	Gr	20	38.5	30	65.2	38	66.7	13	46.4	8	47.1	109	54.5	22.551	
	PG	14	26.9	9	19.6	14	24.6	12	42.9	7	41.2	56	28.0		
	Total	52	26.3	46	16.1	57	38.5	28	22.6	17	37.8	200	25.0		
	UG	13	23.6	6	14.3	1	8.3	17	24.3	1	4.8	38	19.0	21.130	0.007
\mathbf{S}	Gr	38	69.1	27	64.3	9	75.0	30	42.9	12	57.1	116	58.0		
	PG	4	7.3	9	21.4	2	16.7	23	32.9	8	38.1	46	23.0		
	Total	55	27.8	42	14.7	12	8.1	70	56.5	21	46.7	200	25.0		
	UG	17	27.0	9	12.9	3	7.3	4	20.0	2	33.3	35	17.5		0.076
R	Gr	34	54.0	41	58.6	25	61.0	15	75.0	3	50.0	118	59.0	14.215	
	PG	12	19.0	20	28.6	13	31.7	1	5.0	1	16.7	47	23.5		
	Total	63	31.8	70	24.6	41	27.7	20	16.1	6	13.3	200	25.0		
	UG	58	29.3	25	8.8	9	6.1	24	19.4	6	13.3	122	15.3		0.000
O	Gr	106	53.5	142	49.8	90	60.8	61	49.2	23	51.1	422	52.8	67.440	
	PG	34	17.2	118	41.4	49	33.1	39	31.5	16	35.6	256	32.0		
	Total	198	100.0	285	100.0	148	100.0	124	100.0	45	100.0	800	100.0		
* V = 1	Vadodara,	A=Ah	medabad	l, S=Su	rat, R=Ra	jkot, O	= Overal	1;							
** Edu	cational Q	ualifica	ation: U	G = Un	der Gradı	uate; G	r. = Grad	uate; P	G = Postg	gradua	ite				
	stic is sigr														

- In overall, it was observed that majority i.e., 53.5% of the respondents who never purchase distemper paints were graduates while 17.2% respondents were postgraduates. Out of total 15.3% undergraduate respondents, 29.3% respondents never buy distemper paints. Moreover, 41.4% respondents, who rarely purchase distemper paints, were postgraduate respondents while only 8.8% respondents were undergraduates. 19.4% respondents were undergraduates who liked to buy distemper paints often. While, 35.6% respondents were postgraduate respondents who always preferred to buy distemper paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 67.440; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of distemper paints.
- In Vadodara, it was observed that majority i.e., 50% of the respondents who never purchase distemper paints were graduates while 14.3% respondents were postgraduates. Out of total 7% undergraduate respondents from Vadodara, 35.7% respondents never buy distemper paints. Moreover, 63% respondents, who rarely purchase distemper paints, were

postgraduate respondents while only 2.4% respondents were undergraduates. None of the respondents were undergraduates who liked to buy distemper paints often. While, 52.6% respondents were postgraduate respondents who sometimes preferred to buy distemper paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 65.757; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of distemper paints.

- In Ahmedabad. it was observed that majority i.e., 38.5% of the respondents who never purchase distemper paints were graduates while 26.9% respondents were postgraduates. Out of total 17.5% undergraduate respondents, 34.6% respondents never buy distemper paints. Moreover, 65.2% respondents, who rarely purchase distemper paints, were graduate respondents while only 19.6% respondents were postgraduates. 10.7% respondents were undergraduates who liked to buy distemper paints often. While, 47.1% respondents were graduate respondents who always preferred to buy distemper paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 22.551; p value = 0.004) between respondents with different educational qualifications regarding their regularity in purchase of distemper paints.
- In Surat, it was observed that majority i.e., 69.1% of the respondents who never purchase distemper paints were graduates while 7.3% respondents were postgraduates. Out of total 19% undergraduate respondents, 23.6% respondents never buy distemper paints. Moreover, 64.3% respondents, who rarely purchase distemper paints, were graduate respondents while only 14.3% respondents were undergraduates. 24.3% respondents were undergraduates who liked to buy distemper paints often. While, 38.1% respondents were postgraduate respondents who always preferred to buy distemper paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 21.130; p value = 0.007) between respondents with different educational qualifications regarding their regularity in purchase of distemper paints.
- In Rajkot, it was observed that majority i.e., 54% of the respondents who never purchase distemper paints were graduates while 19% respondents were postgraduates. Out of total 17.5% undergraduate respondents, 27% respondents never buy distemper paints. Moreover, 28.6% respondents, who rarely purchase distemper paints, were postgraduate respondents while only 12.9% respondents were undergraduates. 75% respondents were

graduates who liked to buy distemper paints often. While, 33.3% respondents were undergraduate respondents who always preferred to buy distemper paints. Furthermore, it was also observed that there wasn't a significant difference (Chi-Square = 14.215; p value = 0.076) between respondents with different educational qualifications regarding their regularity in purchase of distemper paints. (Ref. Table 5.4.59)

Table 5.4.60: Respondents' city wise opinion regarding their Consistency of Purchasing distemper paints across their Occupation

						Pur	chasing (Consist	ency						
City*	Oc.**	No	ever	Ra	rely	Som	etime	0	ften	A	lways	Т	otal	Significa	nce#
٠		N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	S	16	57.1	49	38.6	10	26.3	4	66.7	1	100	80	40.0		
V	В	4	14.3	44	34.6	11	28.9	1	16.7	0	.0	60	30.0	13.621	0.092
	P	8	28.6	34	26.8	17	44.7	1	16.7	0	.0	60	30.0		
	Total	28	14.1	127	44.6	38	25.7	6	4.8	1	2.2	200	25.0		
	S	28	53.8	12	26.1	31	54.4	8	28.6	1	5.9	80	40.0		
A	В	8	15.4	21	45.7	14	24.6	10	35.7	7	41.2	60	30.0	27.427	0.001
	P	16	30.8	13	28.3	12	21.1	10	35.7	9	52.9	60	30.0		
	Total	52	26.3	46	16.1	57	38.5	28	22.6	17	37.8	200	25.0		
	S	33	60.0	24	57.1	7	58.3	13	18.6	3	14.3	80	40.0		
\mathbf{S}	В	8	14.5	10	23.8	4	33.3	30	42.9	8	38.1	60	30.0	38.200	0.000
	P	14	25.5	8	19.0	1	8.3	27	38.6	10	47.6	60	30.0		
	Total	55	27.8	42	14.7	12	8.1	70	56.5	21	46.7	200	25.0		
	S	38	60.3	25	35.7	14	34.1	2	10.0	1	16.7	80	40.0		
R	В	14	22.2	20	28.6	13	31.7	10	50.0	3	50.0	60	30.0	22.303	0.004
	P	11	17.5	25	35.7	14	34.1	8	40.0	2	33.3	60	30.0		
	Total	63	31.8	70	24.6	41	27.7	20	16.1	6	13.3	200	25.0		
	S	115	58.1	110	38.6	62	41.9	27	21.8	6	13.3	320	40.0		
O	В	34	17.2	95	33.3	42	28.4	51	41.1	18	40.0	240	30.0	61.845	0.000
	P	49	24.7	80	28.1	44	29.7	46	37.1	21	46.7	240	30.0		
	Total	198	100.0	285	100.0	148	100.0	124	100.0	45	100.0	800	100.0		
* V = V	Vadodara,	A=Ah	medabad	, S=Su	rat, R=Ra	jkot, O	= Overal	1;							
** Occi	upation : S	S = Ser	vice Clas	s; B = 1	Business	class; F	Profes	ssionals							
# Statis	stic is sigr	nificant	at 0.05	level										<u> </u>	

- In overall, it was observed that majority i.e., 58.1% of the respondents who never purchase distemper paints were service class people while 24.7% respondents were professionals. Out of total 30% business class respondents, only 17.2% respondents never buy distemper paints. Moreover, 41.9% respondents, who sometimes purchase distemper paints, were service class respondents. 41.1% respondents were business class people who liked to buy distemper paints often. While, 46.7% respondents were professional respondents who always preferred to buy distemper paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 61.845; p value = 0.000) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of distemper paints.
- In Vadodara, it was observed that majority i.e., 57.1% of the respondents who never purchase distemper paints were service class people while 28.6% respondents were professionals. Out of total 30% business class respondents, only 14.3% respondents never buy distemper paints. Moreover, 38.6% respondents, who sometimes purchase distemper

paints, were service class respondents. 66.7% respondents were service class people who liked to buy distemper paints often. Furthermore, it was also observed that there wasn't a significant difference (Chi-Square = 13.621; p value = 0.092) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of distemper paints.

- In Ahmedabad, it was observed that majority i.e., 53.8% of the respondents who never purchase distemper paints were service class people while 30.8% respondents were professionals. Out of total 30% business class respondents, only 15.4% respondents never buy distemper paints. Moreover, only 26.1% respondents, who sometimes purchase distemper paints, were service class respondents and 45.7% respondents were business class people. While, 52.9% respondents were professional respondents who always preferred to buy distemper paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 27.427; p value = 0.001) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of distemper paints.
- In Surat, it was observed that majority i.e., 60.0% of the respondents who never purchase distemper paints were service class people while 25.5% respondents were professionals. Out of total 30% business class respondents, only 14.5% respondents never buy distemper paints. Moreover, 58.3% respondents, who sometimes purchase distemper paints, were service class respondents. 42.9% respondents were business class people who liked to buy distemper paints often. While, 47.6% respondents were professional respondents who always preferred to buy distemper paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 38.200; p value = 0.000) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of distemper paints.
- In Rajkot, it was observed that majority i.e., 60.3% of the respondents who never purchase distemper paints were service class people while 17.5% respondents were professionals. Out of total 30% business class respondents, only 22.2% respondents never buy distemper paints. Moreover, 34.1% respondents, who sometimes purchase distemper paints, were service class and professional respondents each. 50% respondents were business class people who liked to buy distemper paints often. While, 50% respondents were business

class respondents who always preferred to buy distemper paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 22.303; p value = 0.004) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of distemper paints. (Ref. Table 5.4.60)

Table 5.4.61: Respondents' city wise opinion regarding their Consistency of Purchasing

Distemper Paints across their Monthly Income

						Pur	chasing (Consist	ency						
Citv*	MI**	No	ever	Ra	rely	Som	etime	0	ften	A	lways	Т	otal	Significa	nce #
·		N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	MI – 1	14	50.0	48	37.8	13	34.2	4	66.7	0	.0	79	39.5		
V	MI - 2	9	32.1	47	37.0	7	18.4	1	16.7	0	.0	64	32.0	15.041	0.058
	MI - 3	5	17.9	32	25.2	18	47.4	1	16.7	1	100	57	28.5		
	Total	28	14.1	127	44.6	38	25.7	6	4.8	1	2.2	200	25.0		
	MI – 1	25	48.1	27	58.7	28	49.1	13	46.4	4	23.5	97	48.5		
A	MI - 2	13	25.0	8	17.4	12	21.1	3	10.7	2	11.8	38	19.0	13.874	0.085
	MI - 3	14	26.9	11	23.9	17	29.8	12	42.9	11	64.7	65	32.5		
	Total	52	26.3	46	16.1	57	38.5	28	22.6	17	37.8	200	25.0		
	MI – 1	27	49.1	10	23.8	6	50.0	17	24.3	2	9.5	62	31.0		
S	MI - 2	20	36.4	15	35.7	3	25.0	18	25.7	6	28.6	62	31.0	28.043	0.000
	MI - 3	8	14.5	17	40.5	3	25.0	35	50.0	13	61.9	76	38.0		
	Total	55	27.8	42	14.7	12	8.1	70	56.5	21	46.7	200	25.0		
	MI – 1	13	20.6	9	12.9	10	24.4	1	5.0	1	16.7	34	17.0		
R	MI - 2	32	50.8	38	54.3	18	43.9	6	30.0	4	66.7	98	49.0	13.541	0.095
	MI - 3	18	28.6	23	32.9	13	31.7	13	65.0	1	16.7	68	34.0		
	Total	63	31.8	70	24.6	41	27.7	20	16.1	6	13.3	200	25.0		
	MI – 1	79	39.9	94	33.0	57	38.5	35	28.2	7	15.6	272	34.0		
o	MI - 2	74	37.4	108	37.9	40	27.0	28	22.6	12	26.7	262	32.8	43.959	0.000
	MI – 3	45	22.7	83	29.1	51	34.5	61	49.2	26	57.8	266	33.3		
	Total	198	100.0	285	100.0	148	100.0	124	100.0	45	100.0	800	100.0		
* V = V	Vadodara,	A=Ahı	nedabad.	S=Sur	at, R=Ra	kot, O	Overall	,	-	•	-	•	-		
	nthly Inco								MI – 3:	>4625	0.00				
# Statis	tic is sign	ificant	at 0.05 l	evel											

- In overall, it was observed that majority i.e., 39.9%, respondents, with monthly income Rs.29166.67 or less, never buy distemper paints. While, 37.9% respondents, with monthly income between Rs.29166.67 to Rs.46250.00, rarely buy distemper paints. Moreover, majority i.e., 38.5%, respondents who buy distemper paint sometimes, had monthly income Rs.29166.67 or less. Further, 49.2% respondents who often buy distemper paints and 57.8% respondents who always buy distemper paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Gujarat state i.e., collectively from Vadodara, Ahmedabad, Surat and Rajkot, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, had significant difference (Chi-Square = 43.959; p value = 0.000) in regularity of purchasing distemper paints.
- In Vadodara, it was observed that majority i.e., 50%, respondents, with monthly income Rs.29166.67 or less, never buy distemper paints. While, 37.8% respondents, with monthly income Rs.29166.67 or less, rarely buy distemper paints. Moreover, majority i.e., 47.4%,

respondents who buy distemper paint sometimes, had monthly income above Rs.46250. Further, 66.7% respondents who often buy distemper paints and none of the respondents who always buy distemper paints had monthly income Rs.29166.67 or less. Furthermore, it was also observed that in Vadodara, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 15.041; p value = 0.058) in regularity of purchasing distemper paints.

- In Ahmedabad, it was observed that majority i.e., 48.1%, respondents, with monthly income Rs.29166.67 or less, never buy distemper paints. While, only 17.4% respondents, with monthly income between Rs.29166.67 to Rs.46250.00, rarely buy distemper paints. Moreover, majority i.e., 49.1%, respondents who buy distemper paint sometimes, had monthly income Rs.29166.67 or less. Further, 42.9% respondents who often buy distemper paints and 64.9% respondents who always buy distemper paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Ahmedabad, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 13.874; p value = 0.085) in regularity of purchasing distemper paints.
- In Surat, it was observed that majority i.e., 49.1%, respondents, with monthly income Rs.29166.67 or less, never buy distemper paints. While, 40.5% respondents, with monthly income between above Rs.46250.00, rarely buy distemper paints. Moreover, majority i.e., 50%, respondents who buy distemper paint sometimes, had monthly income Rs.29166.67 or less. Further, 50% respondents who often buy distemper paints and 61.9% respondents who always buy distemper paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Surat, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, had significant difference (Chi-Square = 28.043; p value = 0.000) in regularity of purchasing distemper paints.
- In Rajkot, it was observed that majority i.e., 50.8%, respondents, with monthly income Rs.29166.67 or less, never buy distemper paints. While, 54.3% respondents, with monthly income between Rs.29166.67 to Rs.46250.00, rarely buy distemper paints. Moreover, only 24.4%, respondents who buy distemper paint sometimes, had monthly income Rs.29166.67

or less. Further, 65% respondents who often buy distemper paints had monthly income above Rs.46250.00 while 66.7% respondents who always buy distemper paints had monthly income between Rs.29166.67 to Rs.46250. Furthermore, it was also observed that in Rajkot, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have significant difference (Chi-Square = 13.541; p value = 0.095) in regularity of purchasing distemper paints. (Ref. Table 5.4.61)

Table 5.4.62: Respondents' city wise opinion regarding their Consistency of Purchasing

Distemper Paints across their Age Group

						Pur	chasing (Consist	ency						
City*	PCI**	No	ever	Ra	rely	Som	etime	0	ften	A	lways	Т	otal	Significa	nce#
·		N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	Low	16	57.1	38	29.9	12	31.6	3	50.0	0	.0	69	34.5		
V	Mod.	6	21.4	43	33.9	11	28.9	1	16.7	0	.0	61	30.5	10.683	0.220
	High	6	21.4	46	36.2	15	39.5	2	33.3	1	100	70	35.0		
	Total	28	14.1	127	44.6	38	25.7	6	4.8	1	2.2	200	25.0		
	Low	24	46.2	26	56.5	30	52.6	10	35.7	4	23.5	94	47.0		
A	Mod.	15	28.8	11	23.9	10	17.5	6	21.4	3	17.6	45	22.5	14.018	0.081
	High	13	25.0	9	19.6	17	29.8	12	42.9	10	58.8	61	30.5		
	Total	52	26.3	46	16.1	57	38.5	28	22.6	17	37.8	200	25.0		
	Low	30	54.5	10	23.8	7	58.3	15	21.4	3	14.3	65	32.5		
S	Mod.	15	27.3	17	40.5	2	16.7	21	30.0	6	28.6	61	30.5	29.377	0.000
	High	10	18.2	15	35.7	3	25.0	34	48.6	12	57.1	74	37.0		
	Total	55	27.8	42	14.7	12	8.1	70	56.5	21	46.7	200	25.0		
	Low	21	33.3	16	22.9	10	24.4	2	10.0	0	.0	49	24.5		
R	Mod.	28	44.4	36	51.4	20	48.8	8	40.0	3	50.0	95	47.5	11.276	0.187
	High	14	22.2	18	25.7	11	26.8	10	50.0	3	50.0	56	28.0		
	Total	63	31.8	70	24.6	41	27.7	20	16.1	6	13.3	200	25.0		
	Low	91	46.0	90	31.6	59	39.9	30	24.2	7	15.6	277	34.6		
O	Mod.	64	32.3	107	37.5	43	29.1	36	29.0	12	26.7	262	32.8	45.498	0.000
	High	43	21.7	88	30.9	46	31.1	58	46.8	26	57.8	261	32.6		
	Total	198	100.0	285	100.0	148	100.0	124	100.0	45	100.0	800	100.0		
* V = V	Vadodara,	A=Ahı	nedabad,	S=Sur	at, R=Ra	jkot, O	= Overall	;							
** PEF	R CAPITA	INCO	ME: Mo	od.= M	oderate										
# Statis	tic is sign	ificant	at 0.05 l	evel										<u> </u>	

- In overall, it was observed that majority i.e., 46%, respondents, with low per capita income level, never buy distemper paints. While, 37.5% respondents, with moderate per capita income level, rarely buy distemper paints. Moreover, majority i.e., 39.9%, respondents who buy distemper paint sometimes, had low per capita income. Further, 46.8% respondents who often buy distemper paints and 57.8% respondents who always buy distemper paints had high per capita income. Furthermore, it was also observed that in Gujarat state i.e., collectively from Vadodara, Ahmedabad, Surat and Rajkot, respondents with different per capita income group i.e., low, moderate and high, had significant difference (Chi-Square = 45.498; p value = 0.000) in regularity of purchasing distemper paints.
- In Vadodara, it was observed that majority i.e., 57.1%, respondents, with low per capita income level, never buy distemper paints. While, 36.2% respondents, with high per capita income level, rarely buy distemper paints. Moreover, majority i.e., 39.5%, respondents who buy distemper paint sometimes, had high per capita income. Further, 50% respondents who often buy distemper paints and none of the respondents who always buy distemper paints

had low per capita income. Furthermore, it was also observed that in Vadodara, respondents with different per capita income group i.e., low, moderate and high, didn't have significant difference (Chi-Square = 10.683; p value = 0.220) in regularity of purchasing distemper paints.

- In Ahmedabad, it was observed that majority i.e., 46.2%, respondents, with low per capita income level, never buy distemper paints. While, 56.5% respondents, with low per capita income level, rarely buy distemper paints. Moreover, majority i.e., 52.6%, respondents, who buy distemper paint sometimes, also had low per capita income. Further, 42.9% respondents who often buy distemper paints and 58.8% respondents who always buy distemper paints had high per capita income. Furthermore, it was also observed that in Ahmedabad, respondents with different per capita income group i.e., low, moderate and high, didn't have a significant difference (Chi-Square = 14.018; p value = 0.081) in regularity of purchasing distemper paints.
- In Surat, it was observed that majority i.e., 54.5%, respondents, with low per capita income level, never buy distemper paints. While, 40.5% respondents, with moderate per capita income level, rarely buy distemper paints. Moreover, majority i.e., 58.3%, respondents who buy distemper paint sometimes, had low per capita income. Further, 48.6% respondents who often buy distemper paints and 57.1% respondents who always buy distemper paints had high per capita income. Furthermore, it was also observed that in Surat, respondents with different per capita income group i.e., low, moderate and high, had significant difference (Chi-Square = 29.377; p value = 0.000) in regularity of purchasing distemper paints.
- In Rajkot, it was observed that majority i.e., 44.4%, respondents, with moderate per capita income level, never buy distemper paints. While, 51.4% respondents, with moderate per capita income level, rarely buy distemper paints. Moreover, majority i.e., 48.8%, respondents who buy distemper paint sometimes, had moderate per capita income. Further, 50% respondents who often buy distemper paints and 50% respondents who always buy distemper paints had high per capita income. Furthermore, it was also observed that in Rajkot, respondents with different per capita income group i.e., low, moderate and high, didn't have a significant difference (Chi-Square = 11.276; p value = 0.187) in regularity of purchasing distemper paints. (Ref. Table 5.4.62)

Table 5.4.63: Respondents' city wise opinion regarding their Consistency of Purchasing distemper paints across their Marital Status

						Pur	chasing (Consist	ency						
Grant.	Marital	N	ever	Ra	rely	Som	etime	o	ften	Al	ways	Т	otal	Signific	ance #
CITY*	Status**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
v	Mar.	20	71.4	110	86.6	36	94.7	5	83.3	0	.0	171	85.5	12.124	0.011
V	UM	8	28.6	17	13.4	2	5.3	1	16.7	1	100.0	29	14.5	13.134	0.011
	Total	28	14.1	127	44.6	38	25.7	6	4.8	1	2.2	200	25.0		
Α	Mar.	41	78.8	39	84.8	52	91.2	25	89.3	15	88.2	172	86.0	3.883	0.422
A	UM	11	21.2	7	15.2	5	8.8	3	10.7	2	11.8	28	14.0	3.003	0.422
	Total	52	26.3	46	16.1	57	38.5	28	22.6	17	37.8	200	25.0		
S	Mar.	46	83.6	40	95.2	10	83.3	66	94.3	20	95.2	182	91.0	6.807	0.146
	UM	9	16.4	2	4.8	2	16.7	4	5.7	1	4.8	18	9.0	0.007	0.140
	Total	55	27.8	42	14.7	12	8.1	70	56.5	21	46.7	200	25.0		
R	Mar.	56	88.9	51	72.9	28	68.3	16	80.0	6	100.0	157	78.5	9.410	0.052
K	UM	7	11.1	19	27.1	13	31.7	4	20.0	0	.0	43	21.5	7.410	0.032
	Total	63	31.8	70	24.6	41	27.7	20	16.1	6	13.3	200	25.0		
0	Mar.	163	82.3	240	84.2	126	85.1	112	90.3	41	91.1	682	85.3	5.362	0.252
U	UM	35	17.7	45	15.8	22	14.9	12	9.7	4	8.9	118	14.8	3.302	0.232
	Total	198	100.0	285	100.0	148	100.0	124	100.0	45	100.0	800	100.0		
* V = Va	dodara, A=A	hmedal	oad, S=Su	rat, R=l	Rajkot, O	= Overa	ıll;		•				•	•	
** Marita	l Status: Mar	. = Mar	ried; UM:	Unmai	ried				•				•		
# Statistic	c is significa	nt at 0.0)5 level												

- In overall, it was observed that majority i.e., 82.3% married respondents never purchase distemper paint while 84.2% married respondents rarely purchase distemper paints. Moreover, compared to total 14.8% unmarried respondents from Gujarat, 14.9% unmarried respondents sometimes purchase distemper paints while 8.9% unmarried respondents always prefer to buy distemper paints for their houses. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there wasn't a significant difference (Chi-Square = 5.362; p value = 0.252) between married and unmarried respondents regarding their regularity of distemper paint purchase.
- In Vadodara, it was observed that majority i.e., 71.4% married respondents never purchase distemper paint while 86.6% married respondents rarely purchase distemper paints. Moreover, compared to total 14.5% unmarried respondents from Vadodara, only 5.3% unmarried respondents sometimes purchase distemper paints for their houses. Further, in Vadodara, there was a significant difference (Chi-Square = 13.134; p value = 0.011) between married and unmarried respondents regarding their regularity of distemper paint purchase.

- In Ahmedabad, it was observed that majority i.e., 78.8% married respondents never purchase distemper paint while 84.8% married respondents rarely purchase distemper paints. Moreover, compared to total 14% unmarried respondents from Ahmedabad, 8.8% unmarried respondents sometimes purchase distemper paints while 11.8% unmarried respondents always prefer to buy distemper paints for their houses. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 3.883; p value = 0.422) between married and unmarried respondents regarding their regularity of distemper paint purchase.
- In Surat, it was observed that majority i.e., 83.6% married respondents never purchase distemper paint while 95.2% married respondents rarely purchase distemper paints. Moreover, compared to total 9% unmarried respondents from Surat, 5.7% unmarried respondents often purchase distemper paints while 4.8% unmarried respondents always prefer to buy distemper paints for their houses. Further, in Surat, there wasn't a significant difference (Chi-Square = 6.807; p value = 0.146) between married and unmarried respondents regarding their regularity of distemper paint purchase.
- In Rajkot, it was observed that majority i.e., 88.9% married respondents never purchase distemper paint while 72.9% married respondents rarely purchase distemper paints. Moreover, compared to total 21.5% unmarried respondents from Rajkot, 31.7% unmarried respondents sometimes purchase distemper paints while none of the unmarried respondents always prefer to buy distemper paints for their houses. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 9.410; p value = 0.052) between married and unmarried respondents regarding their regularity of distemper paint purchase. (Ref. Table 5.4.63)

Table 5.4.64: Respondents' city wise opinion regarding their Consistency of Purchasing distemper paints across their Family Size

						Pu	rchasing (Consiste	ency						
CHENT	Family	N	ever	Ra	rely	Som	etime	0	ften	Al	ways	T	otal	Signific	ance#
CITY*	Size**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	1-4	17	60.7	104	81.9	30	78.9	3	50.0	0	.0	154	77.0	11.807	0.019
v	5+	11	39.3	23	18.1	8	21.1	3	50.0	1	100.0	46	23.0	11.007	0.019
	Total	28	14.1	127	44.6	38	25.7	6	4.8	1	2.2	200	25.0		
	1-4	37	71.2	36	78.3	40	70.2	22	78.6	12	70.6	147	73.5	1 440	0.026
A	5+	15	28.8	10	21.7	17	29.8	6	21.4	5	29.4	53	26.5	1.449	0.836
	Total	52	26.3	46	16.1	57	38.5	28	22.6	17	37.8	200	25.0		
S	1-4	31	56.4	28	66.7	9	75.0	43	61.4	13	61.9	124	62.0	2.000	0.736
2	5+	24	43.6	14	33.3	3	25.0	27	38.6	8	38.1	76	38.0	2.000	0.730
	Total	55	27.8	42	14.7	12	8.1	70	56.5	21	46.7	200	25.0		
R	1-4	39	61.9	35	50.0	27	65.9	9	45.0	5	83.3	115	57.5	4.241	0.374
K	5+	24	38.1	35	50.0	14	34.1	11	55.0	1	16.7	85	42.5	4.241	0.574
	Total	63	31.8	70	24.6	41	27.7	20	16.1	6	13.3	200	25.0		
0	1-4	124	62.6	203	71.2	106	71.6	77	62.1	30	66.7	540	67.5	6.200	0.185
U	5+	74	37.4	82	28.8	42	28.4	47	37.9	15	33.3	260	32.5	0.200	0.105
	Total	198	100.0	285	100.0	148	100.0	124	100.0	45	100.0	800	100.0		
* V = Va	adodara, A	=Ahme	dabad, S	=Surat,	R=Rajko	ot, O= (Overall;								
# Statisti	ic is signifi	cant at	0.05 lev	el									•		

- In overall, it was observed that majority i.e., 62.6% respondents, who never purchase distemper paint, while 71.2% respondents, who rarely purchase distemper paints, had family members no more than 4. Moreover, 71.6% respondents, who sometimes purchase distemper paints, while 66.7% respondents, who always prefer to buy distemper paints for their houses, had family member no more than 4. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there wasn't a significant difference (Chi-Square = 6.200; p value = 0.185) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of distemper paint purchase.
- In Vadodara, it was observed that majority i.e., 60.7% respondents, who never purchase distemper paint, while 81.9% respondents, who rarely purchase distemper paints, had family members no more than 4. Moreover, 78.9% respondents, who sometimes purchase distemper paints, while none of the respondents, who always prefer to buy distemper paints for their houses, had family member no more than 4. Further, in Vadodara, there was a significant difference (Chi-Square = 11.807; p value = 0.019) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of distemper paint purchase.

- In Ahmedabad, it was observed that majority i.e., 71.2% respondents, who never purchase distemper paint, while 78.3% respondents, who rarely purchase distemper paints, had family members no more than 4. Moreover, 70.2% respondents, who sometimes purchase distemper paints, while 70.6% respondents, who always prefer to buy distemper paints for their houses, had family member no more than 4. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 1.449; p value = 0.836) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of distemper paint purchase.
- In Surat, it was observed that majority i.e., 56.4% respondents, who never purchase distemper paint, while 66.7% respondents, who rarely purchase distemper paints, had family members no more than 4. Moreover, 75% respondents, who sometimes purchase distemper paints, while 61.9% respondents, who always prefer to buy distemper paints for their houses, had family member no more than 4. Further, in Surat, there wasn't a significant difference (Chi-Square = 2.000; p value = 0.736) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of distemper paint purchase.
- In Rajkot, it was observed that majority i.e., 61.9% respondents, who never purchase distemper paint, while 50% respondents, who rarely purchase distemper paints, had family members no more than 4. Moreover, 65.9% respondents, who sometimes purchase distemper paints, while 83.3% respondents, who always prefer to buy distemper paints for their houses, had family member no more than 4. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 4.241; p value = 0.374) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of distemper paint purchase. (Ref. Table 5.4.64)

Table 5.4.65: Respondents' city wise opinion regarding their Consistency of Purchasing

Distemper Paints across their Family Type

						Pur	chasing (Consist	ency						
CHENA	Family	No	ever	Ra	rely	Som	etime	О	ften	Al	ways	Т	otal	Signific	ance #
CITY*	Type**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Nuclear	11	39.3	96	75.6	29	76.3	2	33.3	0	.0	138	69.0	20.882	0.000
·	Joint	17	60.7	31	24.4	9	23.7	4	66.7	1	100.0	62	31.0	20.002	0.000
	Total	28	14.1	127	44.6	38	25.7	6	4.8	1	2.2	200	25.0		
A	Nuclear	34	65.4	37	80.4	41	71.9	22	78.6	13	76.5	147	73.5	3.413	0.491
A	Joint	18	34.6	9	19.6	16	28.1	6	21.4	4	23.5	53	26.5	3.413	0.491
	Total	52	26.3	46	16.1	57	38.5	28	22.6	17	37.8	200	25.0		
S	Nuclear	29	52.7	31	73.8	9	75.0	45	64.3	15	71.4	129	64.5	5.938	0.204
3	Joint	26	47.3	11	26.2	3	25.0	25	35.7	6	28.6	71	35.5	3.936	0.204
	Total	55	27.8	42	14.7	12	8.1	70	56.5	21	46.7	200	25.0		
R	Nuclear	33	52.4	42	60.0	29	70.7	12	60.0	5	83.3	121	60.5	4.852	0.303
N	Joint	30	47.6	28	40.0	12	29.3	8	40.0	1	16.7	79	39.5	4.032	0.303
	Total	63	31.8	70	24.6	41	27.7	20	16.1	6	13.3	200	25.0		
0	Nuclear	107	54.0	206	72.3	108	73.0	81	65.3	33	73.3	535	66.9	21.960	0.000
U	Joint	91	46.0	79	27.7	40	27.0	43	34.7	12	26.7	265	33.1	21.900	0.000
	Total	198	100.0	285	100.0	148	100.0	124	100.0	45	100.0	800	100.0		
* V = Va	dodara, A=A	hmeda	bad, S=Sı	ırat, R=	Rajkot, O	= Over	all;				•	•		•	•
# Statistic	c is significa	nt at 0.	05 level		•	-					•	•		•	•

- In overall, it was observed that majority i.e., 54% respondents, who never purchase distemper paint, while 72.3% respondents, who rarely purchase distemper paints, were from nuclear family type. Moreover, 73% respondents, who sometimes purchase distemper paints, while 73.3% respondents, who always prefer to buy distemper paints for their houses, were also having nuclear family type. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 21.960; p value = 0.000) between respondents, with nuclear fmily, and respondents with joint family, regarding their regularity of distemper paint purchase.
- In Vadodara, it was observed that majority i.e., 60.7% respondents, who never purchase distemper paint, had a joint family while 75.6% respondents, who rarely purchase distemper paints, were from nuclear family type. Moreover, 76.3% respondents, who sometimes purchase distemper paints, while none of the respondents, who always prefer to buy distemper paints for their houses, were also having nuclear family type. Further, in Vadodara, there was a significant difference (Chi-Square = 20.882; p value = 0.000) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of distemper paint purchase.

- In Ahmedabad, it was observed that majority i.e., 65.4 respondents, who never purchase distemper paint, while 80.4% respondents, who rarely purchase distemper paints, were from nuclear family type. Moreover, 71.9 respondents, who sometimes purchase distemper paints, while 76.5% respondents, who always prefer to buy distemper paints for their houses, were also having nuclear family type. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 3.413; p value = 0.491) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of distemper paint purchase.
- In Surat, it was observed that majority i.e., 54% respondents, who never purchase distemper paint, while 72.3% respondents, who rarely purchase distemper paints, were from nuclear family type. Moreover, 73% respondents, who sometimes purchase distemper paints, while 73.3% respondents, who always prefer to buy distemper paints for their houses, were also having nuclear family type. Further, in Surat, there wasn't a significant difference (Chi-Square = 5.938; p value = 0.204) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of distemper paint purchase.
- In Rajkot, it was observed that majority i.e., 52.4% respondents, who never purchase distemper paint, while 60% respondents, who rarely purchase distemper paints, were from nuclear family type. Moreover, 70.7% respondents, who sometimes purchase distemper paints, while 83.3% respondents, who always prefer to buy distemper paints for their houses, were also having nuclear family type. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 4.852; p value = 0.303) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of distemper paint purchase. (Ref. Table 5.4.65)

Table 5.4.66: Respondents' city wise opinion regarding their Consistency of Purchasing distemper paints across their Children Group

						Pur	chasing (Consist	ency						
Citv*	Child	Ne	ever	Ra	rely	Som	etime	0	ften	Al	lways	Т	otal	Significa	nce #
	**	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	0	8	28.6	22	17.3	4	10.5	1	16.7	1	100	36	18.0		
v	1	6	21.4	34	26.8	13	34.2	1	16.7	0	.0	54	27.0	9.100	0.334
v	2	14	50.0	71	55.9	21	55.3	4	66.7	0	.0	110	55.0	9.100	0.334
	3 or +	0	.0	0	.0	0	.0	0	.0	0	.0	0	.0		
	Total	28	14.1	127	44.6	38	25.7	6	4.8	1	2.2	200	25.0		
	0	14	26.9	8	17.4	12	21.1	5	17.9	2	11.8	41	20.5		
	1	11	21.2	13	28.3	10	17.5	4	14.3	2	11.8	40	20.0	0.221	0.684
A	2	25	48.1	24	52.2	30	52.6	18	64.3	12	70.6	109	54.5	9.221	0.084
	3 or +	2	3.8	1	2.2	5	8.8	1	3.6	1	5.9	10	5.0		
	Total	52	26.3	46	16.1	57	38.5	28	22.6	17	37.8	200	25.0		
	0	9	16.4	3	7.1	2	16.7	5	7.1	1	4.8	20	10.0		
s	1	7	12.7	7	16.7	2	16.7	17	24.3	3	14.3	36	18.0	10.963	0.532
3	2	38	69.1	29	69.0	8	66.7	46	65.7	15	71.4	136	68.0	10.903	0.552
	3 or +	1	1.8	3	7.1	0	.0	2	2.9	2	9.5	8	4.0		
	Total	55	27.8	42	14.7	12	8.1	70	56.5	21	46.7	200	25.0		
	0	8	12.7	21	30.0	16	39.0	5	25.0	3	50.0	53	26.5		
R	1	6	9.5	2	2.9	1	2.4	1	5.0	0	.0	10	5.0	10.522	0.076
K	2	47	74.6	46	65.7	23	56.1	13	65.0	2	33.3	131	65.5	19.533	0.076
	3 or +	2	3.2	1	1.4	1	2.4	1	5.0	1	16.7	6	3.0		
	Total	63	31.8	70	24.6	41	27.7	20	16.1	6	13.3	200	25.0		
	0	39	19.7	54	18.9	34	23.0	16	12.9	7	15.6	150	18.8		
o	1	30	15.2	56	19.6	26	17.6	23	18.5	5	11.1	140	17.5	15.307	0.225
U	2	124	62.6	170	59.6	82	55.4	81	65.3	29	64.4	486	60.8	15.307	0.225
	3 or +	5	2.5	5	1.8	6	4.1	4	3.2	4	8.9	24	3.0		
	Total	198	100.0	285	100.0	148	100.0	124	100.0	45	100.0	800	100.0		
* V = V	Vadodara,	A=Ah	medabad	, S=Su	rat, R=Ra	ijkot, O	= Overal	1;							
** Chil	dren : 0 =	No chi	1d; 1 = 1	Child;	2 = 2 Ch	ildren;	3 + = 3 or	more t	han 3						
# Statis	stic is sigr	ificant	at 0.05	level	•								•	•	

- In overall, majority of the respondents, who never paint their houses with distemper paint, majority i.e., 62.6%, had two children while only 2.5% respondents had three or more children. Moreover, majority i.e., 59.6%, respondents, who rarely paint their houses with distemper paint, had two children while 18.9% respondents didn't have any child. Further, majority i.e., 65.3%, respondents, who often paint their houses with distemper paint, had two children while 12.9% respondents didn't have a child. Furthermore, majority i.e., 64.4%, respondents, who always paint their houses with distemper paint, had two children while 11.1% respondents had one child. In overall, significant difference (Chi-Square Value = 15.307 & p Value = 0.225) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy distemper paints.
- In Vadodara, majority of the respondents, who never paint their houses with distemper paint, majority i.e., 50%, had two children. Moreover, majority i.e., 55.9%, respondents, who rarely

paint their houses with distemper paint, had two children while 17.3% respondents didn't have any child. Further, majority i.e., 66.7%, respondents, who often paint their houses with distemper paint, had two children while 16.7% respondents didn't have a child. In Vadodara, significant difference (Chi-Square Value = 9.100 & p Value = 0.334) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy distemper paints.

- In Ahmedabad, majority of the respondents, who never paint their houses with distemper paint, majority i.e., 48.1%, had two children while only 3.8% respondents had three or more children. Moreover, majority i.e., 52.2%, respondents, who rarely paint their houses with distemper paint, had two children while 17.4% respondents didn't have any child. Further, majority i.e., 64.3%, respondents, who often paint their houses with distemper paint, had two children while 17.9% respondents didn't have a child. Furthermore, majority i.e., 70.6%, respondents, who always paint their houses with distemper paint, had two children while 11.8% respondents had one child. In Ahmedabad, significant difference (Chi-Square Value = 9.221 & p Value = 0.684) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy distemper paints.
- In Surat, majority of the respondents, who never paint their houses with distemper paint, majority i.e., 69.1%, had two children while only 1.8% respondents had three or more children. Moreover, majority i.e., 69%, respondents, who rarely paint their houses with distemper paint, had two children while 7.1% respondents didn't have any child. Further, majority i.e., 65.7%, respondents, who often paint their houses with distemper paint, had two children while 7.1% respondents didn't have a child. Furthermore, majority i.e., 71.4%, respondents, who always paint their houses with distemper paint, had two children while 14.3% respondents had one child. In Surat, significant difference (Chi-Square Value = 10.963 & p Value = 0.532) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy distemper paints.
- In Rajkot, majority of the respondents, who never paint their houses with distemper paint, majority i.e., 74.6%, had two children while only 3.2% respondents had three or more children. Moreover, majority i.e., 65.7%, respondents, who rarely paint their houses with distemper paint, had two children while 30% respondents didn't have any child. Further, majority i.e., 65%, respondents, who often paint their houses with distemper paint, had two children while

25% respondents didn't have a child. Furthermore, only 33.3% respondents, who always paint their houses with distemper paint, had two children while 50% respondents didn't have a child. In Rajkot, significant difference (Chi-Square Value = 19.533 & p Value = 0.076) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy distemper paints. (Ref. Table 5.4.66)

Table 5.4.67: Respondents' opinion regarding their Consistency of Purchasing Emulsion

Paints across four selected Cities of Gujarat

					Purch	asing (Consi	stency				
	Ne	ever	Ra	rely	Som	etime	O	ften	Al	ways	To	otal
CITY	N	%	N	%	N	%	N	%	N	%	N	%
Vadodara	25	11.2	31	16.8	120	41.4	24	32.0	0	.0	200	25.0
Ahmedabad	37	16.5	51	27.7	67	23.1	21	28.0	24	88.9	200	25.0
Surat	104	46.4	80	43.5	2	.7	11	14.7	3	11.1	200	25.0
Rajkot	58	25.9	22	12.0	101	34.8	19	25.3	0	.0	200	25.0
Total	224	100.0	184	100.0	290	100.0	75	100.0	27	100.0	800	100.0
Chi-Square value	283.8	18										
p Value	0.000	(Statistic	is signi	ficant at (.05 leve	I)						

- Only 14.7% respondents who purchase emulsion paints often were from Surat and 28% respondents were from Ahmedabad. While, in this case respondents from Vadodara were 32% and 25.3% respondents were from Rajkot.
- 11.1% respondents who always purchase emulsion paints were from Surat and 88.9% respondents were from Ahmedabad. While, in this case none respondents were from Vadodara and Rajkot. 46.4% respondents who never buy emulsion and 43.5% respondents who rarely buy emulsion paints were from Surat.
- 25.9% respondents who never purchase emulsion paints were from Rajkot while only 12% respondents and 16.8% respondents who purchase emulsions rarely were from Rajkot and Vadodara respectively.
- With high Chi-Square value (283.818) and high significance level (p=0.000), it could be said that there was a significant difference in purchase of emulsion paints between respondents of all four cities of Gujarat state. (Ref. Table 5.4.67)

Table 5.4.68: Respondents' city wise opinion regarding their Consistency of Purchasing Emulsion Paints across their Age Groups

						Purc	hasing (Consis	tency						
Citv*	Ago	No	ever	Ra	rely	Son	netime	(Often	A	lways	T	otal	Significa	nce #
City	Age	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	<=37	6	24.0	13	41.9	44	36.7	11	45.8	0	.0	74	37.0		
V	38-46	1	4.0	12	38.7	51	42.5	9	37.5	0	.0	73	36.5	32.780	0.000
	>46	18	72.0	6	19.4	25	20.8	4	16.7	0	.0	53	26.5		
	Total	25	11.2	31	16.8	120	41.4	24	32.0	0	.0	200	25.0		
	<=37	6	16.2	16	31.4	27	40.3	8	38.1	10	41.7	67	33.5		
A	38-46	8	21.6	20	39.2	18	26.9	6	28.6	7	29.2	59	29.5	15.391	0.052
	>46	23	62.2	15	29.4	22	32.8	7	33.3	7	29.2	74	37.0		
	Total	37	16.5	51	27.7	67	23.1	21	28.0	24	88.9	200	25.0		
	<=37	26	25.0	33	41.3	1	50.0	5	45.5	2	66.7	67	33.5		
S	38-46	34	32.7	27	33.8	0	.0	5	45.5	1	33.3	67	33.5	13.808	0.087
	>46	44	42.3	20	25.0	1	50.0	1	9.0	0	.0	66	33.0		
	Total	104	46.4	80	43.5	2	.7	11	14.7	3	11.1	200	25.0		
	<=37	9	15.5	11	50.0	48	47.5	10	52.6	0	.0	78	39.0		
R	38-46	16	27.6	5	22.7	29	28.7	4	21.1	0	.0	54	27.0	24.865	0.000
	>46	33	56.9	6	27.3	24	23.8	5	26.3	0	.0	68	34.0		
	Total	58	25.9	22	12.0	101	34.8	19	25.3	0	.0	200	25.0		
	<=37	47	21.0	73	39.7	120	41.4	34	45.3	12	44.4	286	35.8		
O	38-46	59	26.3	64	34.8	98	33.8	24	32.0	8	29.6	253	31.6	61.048	0.000
	>46	118	52.7	47	25.5	72	24.8	17	22.7	7	25.9	261	32.6		
	Total	224	100.0	184	100.0	290	100.0	75	100.0	27	100.0	800	100.0		
* V =	Vadod	lara, A	=Ahm	edaba	$d, S=S_1$	urat, F	R=Rajk	ot, O	= Over	all;	-	-	-	-	
	stic is sig				,	-,	3			,					
other	, 515		0.00	10,01											

- In overall, respondents who never purchase emulsions, majority i.e., 52.7% respondents were of age above 46 years. Moreover, respondents who purchase emulsion paints rarely, only 25.5% respondents were of age more than 46 years while 39.7% respondents were of age 37 years or less. Further, 41.4% respondents, who buy emulsion paints sometimes, and 45.3% respondents, who often buy emulsion paints, were of age 37 years or less. Respondents who always buy emulsion paints, 44.4% were of also of age above 46 years. Furthermore, in overall, high significant difference (Chi-Square Value = 61.048 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy emulsion paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Vadodara, respondents who never purchase emulsions, majority i.e., 72% respondents were of age above 46 years. Moreover, respondents who purchase emulsion paints rarely, only 19.4% respondents were of age more than 46 years while 41.9% respondents were of age less or equal to 37 years. Further, 45.8% respondents, who often buy emulsion paints, were of age 37 years or less. While, none of the respondents always buy emulsion paints from Vadodara.

Respondents who sometimes buy emulsion paints, 42.5% were of age between 37 years and 46 years. Furthermore, in Vadodara, high significant difference (Chi-Square Value = 32.780 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy emulsion paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.

- In Ahmedabad, respondents who never purchase emulsions, majority i.e., 62.2% respondents were of age above 46 years. Moreover, respondents who purchase emulsion paints rarely, only 29.4% respondents were of age more than 46 years while 39.2% respondents were of age between 37 years to 46 years. Further, only26.9% respondents, who buy emulsion paints sometimes, and 28.6% respondents, who often buy emulsion paints, were of age between 37 years to 46 years. Respondents who always buy emulsion paints, only 29.2% were of age above 46 years. Furthermore, in Ahmedabad, no significant difference (Chi-Square Value = 15.391 & p Value = 0.052) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy emulsion paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Surat, respondents who never purchase emulsions, majority i.e., 42.3% respondents were of age above 46 years. Moreover, respondents who purchase emulsion paints rarely, only 25% respondents were of age more than 46 years while 41.3% respondents were of age 37 years or less. Further, 50% respondents, who buy emulsion paints sometimes, and 45.5% respondents, who often buy emulsion paints, were of age 37 years or less. Respondents who always buy emulsion paints, 66.7% were of age 37 years or less. Furthermore, in Surat, no significant difference (Chi-Square Value = 13.808 & p Value = 0.087) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy emulsion paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Rajkot, respondents who never purchase emulsions, majority i.e., 56.9% respondents were of age above 46 years. Moreover, respondents who purchase emulsion paints rarely, only 27.3% respondents were of age more than 46 years while 50% respondents were of age 37 years or less. Further, 47.5% respondents, who buy emulsion paints sometimes, and 52.6% respondents, who often buy emulsion paints, were of age 37 years or less. In Rajkot, none of the respondents always buy emulsion paints. Furthermore, in Rajkot, high significant

difference (Chi-Square Value = 24865 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy emulsion paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years. (Ref. Table 5.4.68)

Table 5.4.69: Respondents' city wise opinion regarding their Consistency of Purchasing

Emulsion Paints across their Gender

						Purc	hasing (Consis	tency						
		No	ever	Ra	rely	Som	etime	C	ften	Al	ways	T	otal	Signific	ance #
CITY*	Gender	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Male	14	56.0	17	54.8	90	75.0	21	87.5	0	.0	142	71.0	10.770	0.013
V	Female	11	44.0	14	45.2	30	25.0	3	12.5	0	.0	58	29.0	10.770	0.013
	Total	25	11.2	31	16.8	120	41.4	24	32.0	0	.0	200	25.0		
A	Male	33	89.2	38	74.5	47	70.1	15	71.4	19	79.2	152	76.0	5.221	0.265
A	Female	4	10.8	13	25.5	20	29.9	6	28.6	5	20.8	48	24.0	5.221	0.205
	Total	37	16.5	51	27.7	67	23.1	21	28.0	24	88.9	200	25.0		
S	Male	78	75.0	51	63.8	1	50.0	9	81.8	2	66.7	141	70.5	3.868	0.424
2	Female	26	25.0	29	36.3	1	50.0	2	18.2	1	33.3	59	29.5	3.000	0.424
	Total	104	46.4	80	43.5	2	.7	11	14.7	3	11.1	200	25.0		
R	Male	50	86.2	16	72.7	67	66.3	12	63.2	0	.0	145	72.5	8.222	0.042
K	Female	8	13.8	6	27.3	34	33.7	7	36.8	0	.0	55	27.5	0.222	0.042
	Total	58	25.9	22	12.0	101	34.8	19	25.3	0	.0	200	25.0		
0	Male	175	78.1	122	66.3	205	70.7	57	76.0	21	77.8	580	72.5	8.412	0.072
U	Female	49	21.9	62	33.7	85	29.3	18	24.0	6	22.2	220	27.5	0.412	0.072
	Total	224	100.0	184	100.0	290	100.0	75	100.0	27	100.0	800	100.0		
* V = '	Vadodara	, A=A	Ahmeda	bad, S	S=Surat	, R=R	Rajkot, (O = C	verall;			•			
# Statisti	ic is signific	ant at	0.05 leve	el											

- In overall, it was observed that majority i.e., 78.1% male respondents never purchase emulsion paint while 66.3% male respondents rarely purchase emulsion paints. Moreover, compared to total 27.5% female respondents from Gujarat, 29.4% female respondents sometimes purchase emulsion paints while only 22.2% female respondents always prefer to buy emulsion paints for their houses. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there wasn't a significant difference (Chi-Square = 8.412; p value = 0.072) between male and female respondents regarding their regularity of emulsion paint purchase.
- In Vadodara, it was observed that majority i.e., 87.5% male respondents often purchase emulsion paint while only 56% male respondents never purchase emulsion paints. Moreover, compared to total 29% female respondents from Vadodara, 42.9% female respondents never purchase emulsion paints while 45.2% female respondents rarely prefer to buy emulsion paints for their houses. Further, in Vadodara, there was a significant difference (Chi-Square = 10.770; p value = 0.013) between male and female respondents regarding their regularity of emulsion paint purchase.
- In Ahmedabad, it was observed that majority i.e., 89.2% male respondents never purchase emulsion paint while 74.5% male respondents rarely purchase emulsion paints. Moreover,

compared to total 24% female respondents from Ahmedabad, 28.6% female respondents often purchase emulsion paints while only 20.8% female respondents always prefer to buy emulsion paints for their houses. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 5.221; p value = 0.265) between male and female respondents regarding their regularity of emulsion paint purchase.

- In Surat, it was observed that majority i.e., 75% male respondents never purchase emulsion paint while 63.8% male respondents rarely purchase emulsion paints. Moreover, compared to total 29.5% female respondents from Surat, 50% female respondents sometimes purchase emulsion paints while 33.3% female respondents always prefer to buy emulsion paints for their houses. Further, in Surat, there wasn't a significant difference (Chi-Square = 3.868; p value = 0.424) between male and female respondents regarding their regularity of emulsion paint purchase.
- In Rajkot, it was observed that majority i.e., 86.2% male respondents never purchase emulsion paint while 72.7% male respondents rarely purchase emulsion paints. Moreover, compared to total 27.5% female respondents from Rajkot, 33.7% female respondents sometimes purchase emulsion paints while 36.8% female respondents often prefer to buy emulsion paints for their houses. Further, in Rajkot, there was a significant difference (Chi-Square = 8.222; p value = 0.042) between male and female respondents regarding their regularity of emulsion paint purchase. (Ref. Table 5.4.69)

purchase of emulsion paints.

Table 5.4.70: Respondents' city wise opinion regarding their Consistency of Purchasing Emulsion Paints across their Educational Qualification

						Purc	hasing (Consis	tency						
City*	Ed.**	No	ever	Ra	rely	Son	etime	C	Often	A	lways	T	otal	Significa	nce #
City"	Eu.""	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	UG	10	40.0	1	3.2	3	2.5	0	.0	0	.0	14	7.0		
\mathbf{V}	Gr	13	52.0	5	16.1	49	40.8	12	50.0	0	.0	79	39.5	64.898	0.000
	PG	2	8.0	25	80.6	68	56.7	12	50.0	0	.0	107	53.5		
	Total	25	11.2	31	16.8	120	41.4	24	32.0	0	.0	200	25.0		
	UG	16	43.2	8	15.7	6	9.0	3	14.3	2	8.3	35	17.5		
A	Gr	17	45.9	27	52.9	36	53.7	12	57.1	17	70.8	109	54.5	26.538	0.001
	PG	4	10.8	16	31.4	25	37.3	6	28.6	5	20.8	56	28.0		
	Total	37	16.5	51	27.7	67	23.1	21	28.0	24	88.9	200	25.0		
	UG	21	20.2	16	20.0	0	.0	1	9.1	0	.0	38	19.0		
S	Gr	56	53.8	47	58.8	2	100.0	9	81.8	2	66.7	116	58.0	5.706	0.680
	PG	27	26.0	17	21.3	0	.0	1	9.1	1	33.3	46	23.0		
	Total	104	46.4	80	43.5	2	.7	11	14.7	3	11.1	200	25.0		
	UG	20	34.5	1	4.5	13	12.9	1	5.3	0	.0	35	17.5		
R	Gr	31	53.4	15	68.2	62	61.4	10	52.6	0	.0	118	59.0	21.749	0.001
	PG	7	12.1	6	27.3	26	25.7	8	42.1	0	.0	47	23.5		
	Total	58	25.9	22	12.0	101	34.8	19	25.3	0	.0	200	25.0		
	UG	67	29.9	26	14.1	22	7.6	5	6.7	2	7.4	122	15.3		
O	Gr	117	52.2	94	51.1	149	51.4	43	57.3	19	70.4	422	52.8	72.728	0.000
	PG	40	17.9	64	34.8	119	41.0	27	36.0	6	22.2	256	32.0		
	Total	224	100.0	184	100.0	290	100.0	75	100.0	27	100.0	800	100.0		
* V = 1	Vadodara	, A=Ah	medabad	, S=Su	rat, R=Ra	jkot, O	⊨ Overal	1;							
** Edu	cational Ç	ualifica	ation: U	G = Un	der Gradı	uate; G	r. = Grad	uate;	PG = Pos	tgradı	ıate				
# Statis	stic is sign	ificant	at 0.05	level											

- In overall, it was observed that majority i.e., 52.2% of the respondents who never purchase emulsion paints were graduates while 17.9% respondents were postgraduates. Out of total 15.3% undergraduate respondents, 29.9% respondents never buy emulsion paints. Moreover, 34.8% respondents, who rarely purchase emulsion paints, were postgraduate respondents while only 14.1% respondents were undergraduates. 6.7% respondents were undergraduates who liked to buy emulsion paints often. While, 70.4% respondents were graduate respondents who always preferred to buy emulsion paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 72.728; p value = 0.000)
- In Vadodara, it was observed that majority i.e., 52% of the respondents who never purchase emulsion paints were graduates while 8% respondents were postgraduates. Out of total 7% undergraduate respondents from Vadodara, 40% respondents never buy emulsion paints. Moreover, 80.6% respondents, who rarely purchase emulsion paints, were postgraduate respondents while only 3.2% respondents were undergraduates. None of the respondents

between respondents with different educational qualifications regarding their regularity in

from Vadodara always buy emulsion paints. While, 56.7% respondents were postgraduate respondents who sometimes preferred to buy emulsion paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 64.898; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of emulsion paints.

- In Ahmedabad, it was observed that majority i.e., 45.9% of the respondents who never purchase emulsion paints were graduates while 10.8% respondents were postgraduates. Out of total 17.5% undergraduate respondents, 43.2% respondents never buy emulsion paints. Moreover, 52.9% respondents, who rarely purchase emulsion paints, were graduate respondents while only 15.7% respondents were undergraduates. 14.3% respondents were undergraduates who liked to buy emulsion paints often. While, 70.8% respondents were graduate respondents who always preferred to buy emulsion paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 26.538; p value = 0.001) between respondents with different educational qualifications regarding their regularity in purchase of emulsion paints.
- In Surat, it was observed that majority i.e., 53.8% of the respondents who never purchase emulsion paints were graduates while 26% respondents were postgraduates. Out of total 19% undergraduate respondents, 20.2% respondents never buy emulsion paints. Moreover, 58.8% respondents, who rarely purchase emulsion paints, were graduate respondents while only 20% respondents were undergraduates. 81.8% respondents were graduates who liked to buy emulsion paints often. While, none of the respondents were undergraduate respondents who always preferred to buy emulsion paints. Furthermore, it was also observed that there wasn't a significant difference (Chi-Square = 5.706; p value = 0.680) between respondents with different educational qualifications regarding their regularity in purchase of emulsion paints.
- In Rajkot, it was observed that majority i.e., 53.4% of the respondents who never purchase emulsion paints were graduates while 12.1% respondents were postgraduates. Out of total 17.5% undergraduate respondents, 34.5% respondents never buy emulsion paints. Moreover, 27.3% respondents, who rarely purchase emulsion paints, were postgraduate respondents while only 4.5% respondents were undergraduates. 52.6% respondents were graduates who liked to buy emulsion paints often. While, none of the respondents always

prefer to buy emulsion paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 21.749; p value = 0.001) between respondents with different educational qualifications regarding their regularity in purchase of emulsion paints. (Ref. Table 5.4.70)

Table 5.4.71: Respondents' city wise opinion regarding their Consistency of Purchasing Emulsion Paints across their Occupation

						Purc	hasing C	onsis	tency						
City*	Oc.**	No	ever	Ra	rely	Son	netime	C	Often	A	lways	T	otal	Significa	nce #
City"	Oc.""	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	S	14	56.0	3	9.7	55	45.8	8	33.3	0	.0	80	40.0		
V	В	2	8.0	3	9.7	44	36.7	11	45.8	0	.0	60	30.0	55.824	0.000
	P	9	36.0	25	80.6	21	17.5	5	20.8	0	.0	60	30.0		
	Total	25	11.2	31	16.8	120	41.4	24	32.0	0	.0	200	25.0		
	S	19	51.4	17	33.3	32	47.8	12	57.1	0	.0	80	40.0		
A	В	4	10.8	29	56.9	19	28.4	4	19.0	4	16.7	60	30.0	64.593	0.000
	P	14	37.8	5	9.8	16	23.9	5	23.8	20	83.3	60	30.0		
	Total	37	16.5	51	27.7	67	23.1	21	28.0	24	88.9	200	25.0		
	S	30	28.8	38	47.5	2	100.0	8	72.7	2	66.7	80	40.0		
S	В	27	26.0	29	36.3	0	.0	3	27.3	1	33.3	60	30.0	29.727	0.000
	P	47	45.2	13	16.3	0	.0	0	.0	0	.0	60	30.0		
	Total	104	46.4	80	43.5	2	.7	11	14.7	3	11.1	200	25.0		
	S	26	44.8	8	36.4	36	35.6	10	52.6	0	.0	80	40.0		
R	В	17	29.3	7	31.8	30	29.7	6	31.6	0	.0	60	30.0	4.063	0.668
	P	15	25.9	7	31.8	35	34.7	3	15.8	0	.0	60	30.0		
	Total	58	25.9	22	12.0	101	34.8	19	25.3	0	.0	200	25.0		
	S	89	39.7	66	35.9	125	43.1	38	50.7	2	7.4	320	40.0		
О	В	50	22.3	68	37.0	93	32.1	24	32.0	5	18.5	240	30.0	49.146	0.000
	P	85	37.9	50	27.2	72	24.8	13	17.3	20	74.1	240	30.0		
	Total	224	100.0	184	100.0	290	100.0	75	100.0	27	100.0	800	100.0		
* V = V	Vadodara,	A=Ah	medabad	, S=Su	rat, R=Ra	ijkot, O	⊨ Overal	1;						•	
** Occi	upation : S	S = Ser	vice Clas	s; B = 1	Business	class; I	P = Profes	ssiona	ls					•	
# Statis	tic is sign	ificant	t at 0.05	level										•	

- In overall, it was observed that majority i.e., 39.7% of the respondents who never purchase emulsion paints were service class people while 22.3% respondents were business class people. Moreover, 43.1% respondents, who sometimes purchase emulsion paints, were service class respondents. 50.7% respondents were service class people who liked to buy emulsion paints often. While, 74.1% respondents were professional respondents who always preferred to buy emulsion paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 49.146; p value = 0.000) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of emulsion paints.
- In Vadodara, it was observed that majority i.e., 56% of the respondents who never purchase emulsion paints were service class people while 36% respondents were professionals. Out of total 30% business class respondents, only 8% respondents never buy emulsion paints. Moreover, 80.6% respondents, who rarely purchase emulsion paints, were service class respondents. 45.8% respondents were service class people who liked to buy emulsion paints sometimes. Furthermore, it was also observed that there was a significant difference (Chi-Square = 55.824; p value = 0.000) between respondents with different occupations

- i.e., service, business and other profession, regarding their regularity in purchase of emulsion paints.
- In Ahmedabad, it was observed that majority i.e., 51.4% of the respondents who never purchase emulsion paints were service class people while 37.8% respondents were professionals. Out of total 30% business class respondents, only 10.8% respondents never buy emulsion paints. Moreover, only 9.8% respondents, who rarely purchase emulsion paints, were professionals and 56.9% respondents were business class people. While, 83.3% respondents were professional respondents who always preferred to buy emulsion paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 64.593; p value = 0.000) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of emulsion paints.
- In Surat, it was observed that 28.8% of the respondents who never purchase emulsion paints were service class people while 45.2% respondents were professionals. Out of total 30% business class respondents, only 26% respondents never buy emulsion paints. Moreover, all respondents, who sometimes purchase emulsion paints, were service class respondents. 72.7% respondents were service class people who liked to buy emulsion paints often. While, 66.7% respondents were also service class respondents who always preferred to buy emulsion paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 29.727; p value = 0.000) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of emulsion paints.
- In Rajkot, it was observed that majority i.e., 44.8% of the respondents who never purchase emulsion paints were service class people while 25.9% respondents were professionals. Out of total 30% business class respondents, only 29.3% respondents never buy emulsion paints. Moreover, 35.6% respondents, who sometimes purchase emulsion paints, were service class respondents. 52.6% respondents were service class people who liked to buy emulsion paints often. While, none of the respondents, from Rajkot, always preferred to buy emulsion paints. Furthermore, it was also observed that there wasn't a significant difference (Chi-Square = 4.063; p value = 0.668) between respondents with different

occupations i.e., service, business and other profession, regarding their regularity in purchase of emulsion paints. (Ref. Table 5.4.71)

Table 5.4.72: Respondents' city wise opinion regarding their Consistency of Purchasing Emulsion Paints across their Monthly Income Groups

		Purchasing Consistency													
City*	MI**	Never		Rarely		Sometime		Often		Always		Total		Significance#	
		N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	MI – 1	14	56.0	5	16.1	54	45.0	6	25.0	0	.0	79	39.5		0.016
\mathbf{V}	MI - 2	8	32.0	12	38.7	35	29.2	9	37.5	0	.0	64	32.0	15.559	
	MI-3	3	12.0	14	45.2	31	25.8	9	37.5	0	.0	57	28.5		
	Total	25	11.2	31	16.8	120	41.4	24	32.0	0	.0	200	25.0		
	MI – 1	23	62.2	22	43.1	29	43.3	15	71.4	8	33.3	97	48.5	21.056	
A	MI – 2	10	27.0	10	19.6	15	22.4	0	.0	3	12.5	38	19.0		0.007
	MI – 3	4	10.8	19	37.3	23	34.3	6	28.6	13	54.2	65	32.5		
	Total	37	16.5	51	27.7	67	23.1	21	28.0	24	88.9	200	25.0		
	MI – 1	35	33.7	23	28.8	0	.0	2	18.2	2	66.7	62	31.0	5.252	0.730
S	MI - 2	30	28.8	25	31.3	1	50.0	5	45.5	1	33.3	62	31.0		
	MI – 3	39	37.5	32	40.0	1	50.0	4	36.4	0	.0	76	38.0		
	Total	104	46.4	80	43.5	2	.7	11	14.7	3	11.1	200	25.0		
	MI – 1	8	13.8	5	22.7	16	15.8	5	26.3	0	.0	34	17.0		0.596
R	MI - 2	28	48.3	9	40.9	50	49.5	11	57.9	0	.0	98	49.0	4.603	
	MI – 3	22	37.9	8	36.4	35	34.7	3	15.8	0	.0	68	34.0		
	Total	58	25.9	22	12.0	101	34.8	19	25.3	0	.0	200	25.0		
_	MI – 1	80	35.7	55	29.9	99	34.1	28	37.3	10	37.0	272	34.0		0.245
O	MI – 2	76	33.9	56	30.4	101	34.8	25	33.3	4	14.8	262	32.8	10.289	
	MI – 3	68	30.4	73	39.7	90	31.0	22	29.3	13	48.1	266	33.3		
	Total	224	100.0	184	100.0	290	100.0	75	100.0	27	100.0	800	100.0		
* V = V	Vadodara,	A=Ahr	nedabad,	S=Sura	at, R=Raj	kot, O=	Overall	,							
** Mo	nthly Incor	ne : M	I – 1: <=	29166.	67, MI –	2: 2916	66.68-462	50.00	, MI – 3:	>462	50.00				•
# Statis	stic is signi	ificant	at 0.05 le	evel											

- In overall, it was observed that majority i.e., 35.7%, respondents, with monthly income Rs.29166.67 or less, never buy emulsion paints. While, 39.7% respondents, with monthly income above Rs.46250.00, rarely buy emulsion paints. Moreover, majority i.e., 34.8% respondents who buy emulsion paint sometimes, had monthly income between Rs.29166.67 and Rs.46250. Further, 29.3% respondents who often buy emulsion paints and 48.1% respondents who always buy emulsion paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Gujarat state i.e., collectively from Vadodara, Ahmedabad, Surat and Rajkot, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 10.289; p value = 0.245) in regularity of purchasing emulsion paints.
- In Vadodara, it was observed that majority i.e., 56%, respondents, with monthly income Rs.29166.67 or less, never buy emulsion paints. While, only 16.1% respondents, with monthly income Rs.29166.67 or less, rarely buy emulsion paints. Moreover, majority i.e., 45%, respondents who buy emulsion paint sometimes, had monthly income no more than

Rs.29166.67. Further, only 25% respondents who often buy emulsion paints and none of the respondents who always buy emulsion paints had monthly income Rs.29166.67 or less. Furthermore, it was also observed that in Vadodara, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, had a significant difference (Chi-Square = 15.559; p value = 0.016) in regularity of purchasing emulsion paints.

- In Ahmedabad, it was observed that majority i.e., 62.2%, respondents, with monthly income Rs.29166.67 or less, never buy emulsion paints. While, only 19.6% respondents, with monthly income between Rs.29166.67 to Rs.46250.00, rarely buy emulsion paints. Moreover, majority i.e., 43.3%, respondents who buy emulsion paint sometimes, had monthly income Rs.29166.67 or less. Further, 71.4% respondents who often buy emulsion paints had monthly income no more that Rs.29166.67 and 54.2% respondents who always buy emulsion paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Ahmedabad, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, had a significant difference (Chi-Square = 21.056; p value = 0.007) in regularity of purchasing emulsion paints.
- In Surat, it was observed that majority i.e., 37.5%, respondents, with monthly income above Rs.46250, never buy emulsion paints. While, 40% respondents, with monthly income between above Rs.46250.00, rarely buy emulsion paints. Moreover, none of the respondents who buy emulsion paint sometimes, had monthly income Rs.29166.67 or less. Further, 50% respondents who often buy emulsion paints and none of the respondents who always buy emulsion paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Surat, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 5.252; p value = 0.730) in regularity of purchasing emulsion paints.
- In Rajkot, it was observed that only 13.8%, respondents, with monthly income Rs.29166.67 or less, never buy emulsion paints. While, 40.9% respondents, with monthly income between Rs.29166.67 to Rs.46250.00, rarely buy emulsion paints. Moreover, only 15.8%, respondents who buy emulsion paint sometimes, had monthly income Rs.29166.67 or less.

Further, only 15.8% respondents who often buy emulsion paints had monthly income above Rs.46250.00 while none of the respondents always buy emulsion paints. Furthermore, it was also observed that in Rajkot, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have significant difference (Chi-Square = 4.603; p value = 0.596) in regularity of purchasing emulsion paints. (Ref. Table 5.4.72)

Table 5.4.73: Respondents' city wise opinion regarding their Consistency of Purchasing Emulsion Paints across their Per Capita Income Groups

		Purchasing Consistency													
City*	PCI**	Never		Rarely		Sometime		C	ften	Always		Total		Significance #	
		N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	Low	15	60.0	5	16.1	43	35.8	6	25.0	0	.0	69	34.5		0.017
V	Mod.	6	24.0	9	29.0	38	31.7	8	33.3	0	.0	61	30.5	15.503	
	High	4	16.0	17	54.8	39	32.5	10	41.7	0	.0	70	35.0		
	Total	25	11.2	31	16.8	120	41.4	24	32.0	0	.0	200	25.0		
	Low	24	64.9	24	47.1	28	41.8	12	57.1	6	25.0	94	47.0		0.013
A	Mod.	10	27.0	12	23.5	13	19.4	5	23.8	5	20.8	45	22.5		
	High	3	8.1	15	29.4	26	38.8	4	19.0	13	54.2	61	30.5		
	Total	37	16.5	51	27.7	67	23.1	21	28.0	24	88.9	200	25.0		
	Low	37	35.6	21	26.3	0	.0	4	36.4	3	100	65	32.5	12.731	0.121
S	Mod.	28	26.9	30	37.5	0	.0	3	27.3	0	.0	61	30.5		
	High	39	37.5	29	36.3	2	100.0	4	36.4	0	.0	74	37.0		
	Total	104	46.4	80	43.5	2	.7	11	14.7	3	11.1	200	25.0		
	Low	13	22.4	5	22.7	24	23.8	7	36.8	0	.0	49	24.5		0.687
R	Mod.	25	43.1	12	54.5	49	48.5	9	47.4	0	.0	95	47.5	3.926	
	High	20	34.5	5	22.7	28	27.7	3	15.8	0	.0	56	28.0		
	Total	58	25.9	22	12.0	101	34.8	19	25.3	0	.0	200	25.0		
	Low	89	39.7	55	29.9	95	32.8	29	38.7	9	33.3	277	34.6		0.292
О	Mod.	69	30.8	63	34.2	100	34.5	25	33.3	5	18.5	262	32.8	9.631	
	High	66	29.5	66	35.9	95	32.8	21	28.0	13	48.1	261	32.6		
	Total	224	100.0	184	100.0	290	100.0	75	100.0	27	100.0	800	100.0		
* V = V	Vadodara,	A=Ahı	nedabad,	S=Sur	at, R=Ra	jkot, O	Overall -	,							
** PEI	R CAPITA	INCO	ME: Mo	od.= Mo	oderate										•
# Statis	stic is sign	ificant	at 0.05 l	evel											

• In overall, it was observed that majority i.e., 39.7%, respondents, with low per capita income level, never buy emulsion paints. While, 35.9% respondents, with high per capita income level, rarely buy emulsion paints. Moreover, majority i.e., 34.5%, respondents who buy emulsion paint sometimes, had moderate per capita income. Further, only 28% respondents who often buy emulsion paints and 48.1% respondents who always buy emulsion paints had high per capita income. Furthermore, it was also observed that in Gujarat state i.e., collectively from Vadodara, Ahmedabad, Surat and Rajkot, respondents with different per capita income group i.e., low, moderate and high, didn't have a significant difference (Chi-Square = 9.631; p value = 0.292) in regularity of purchasing emulsion paints.

• In Vadodara, it was observed that majority i.e., 60%, respondents, with low per capita income level, never buy emulsion paints. While, 54.8% respondents, with high per capita income level, rarely buy emulsion paints. Moreover, majority i.e., 35.8%, respondents who buy emulsion paint sometimes, had low per capita income. Further, 41.7% respondents who often buy emulsion paints and none of the respondents who always buy emulsion

paints had high per capita income. Furthermore, it was also observed that in Vadodara, respondents with different per capita income group i.e., low, moderate and high, had significant difference (Chi-Square = 15.503; p value = 0.017) in regularity of purchasing emulsion paints.

- In Ahmedabad, it was observed that majority i.e., 64.9%, respondents, with low per capita income level, never buy emulsion paints. While, 47.1% respondents, with low per capita income level, rarely buy emulsion paints. Moreover, majority i.e., 41.8%, respondents, who buy emulsion paint sometimes, also had low per capita income. Further, 57.1% respondents who often buy emulsion paints and 25% respondents who always buy emulsion paints had low per capita income. Furthermore, it was also observed that in Ahmedabad, respondents with different per capita income group i.e., low, moderate and high, had a significant difference (Chi-Square = 19.451; p value = 0.013) in regularity of purchasing emulsion paints.
- In Surat, it was observed that majority i.e., 37.5%, respondents, with high per capita income level, never buy emulsion paints. While, 37.5% respondents, with moderate per capita income level, rarely buy emulsion paints. Moreover, all respondents who buy emulsion paint sometimes, had high per capita income. Further, 36.4% respondents who often buy emulsion paints and all respondents who always buy emulsion paints had low per capita income. Furthermore, it was also observed that in Surat, respondents with different per capita income group i.e., low, moderate and high, didn't have significant difference (Chi-Square = 12.731; p value = 0.121) in regularity of purchasing emulsion paints.
- In Rajkot, it was observed that majority i.e., 43.1%, respondents, with moderate per capita income level, never buy emulsion paints. While, 54.5% respondents, with moderate per capita income level, rarely buy emulsion paints. Moreover, majority i.e., 48.5%, respondents who buy emulsion paint sometimes, had moderate per capita income. Further, only 15.8% respondents who often buy emulsion paints had high per capita income while in Rajkot none of the respondents always buy emulsion paints. Furthermore, it was also observed that in Rajkot, respondents with different per capita income group i.e., low, moderate and high, didn't have a significant difference (Chi-Square = 3.926; p value = 0.687) in regularity of purchasing emulsion paints. (Ref. Table 5.4.73)

Table 5.4.74: Respondents' city wise opinion regarding their Consistency of Purchasing

Emulsion Paints across their Marital Status

		Purchasing Consistency													
CITY*	Marital Status**	Never		Rarely		Sometime		Often		Always		Total		Significance #	
		N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Mar.	17	68.0	24	77.4	109	90.8	21	87.5	0	.0	171	85.5	10.639	0.014
v	UM	8	32.0	7	22.6	11	9.2	3	12.5	0	.0	29	14.5		
	Total	25	11.2	31	16.8	120	41.4	24	32.0	0	.0	200	25.0		
A	Mar.	28	75.7	46	90.2	59	88.1	19	90.5	20	83.3	172	86.0	4.749	0.314
A	UM	9	24.3	5	9.8	8	11.9	2	9.5	4	16.7	28	14.0		
	Total	37	16.5	51	27.7	67	23.1	21	28.0	24	88.9	200	25.0		
S	Mar.	91	87.5	77	96.3	2	100.0	9	81.8	3	100.0	182	91.0	5.875	0.209
3	UM	13	12.5	3	3.8	0	.0	2	18.2	0	.0	18	9.0		
	Total	104	46.4	80	43.5	2	.7	11	14.7	3	11.1	200	25.0		
R	Mar.	55	94.8	16	72.7	72	71.3	14	73.7	0	.0	157	78.5	12.970	0.005
N	UM	3	5.2	6	27.3	29	28.7	5	26.3	0	.0	43	21.5	12.970	
	Total	58	25.9	22	12.0	101	34.8	19	25.3	0	.0	200	25.0		
0	Mar.	191	85.3	163	88.6	242	83.4	63	84.0	23	85.2	682	85.3	2.471	0.650
U	UM	33	14.7	21	11.4	48	16.6	12	16.0	4	14.8	118	14.8		0.050
	Total	224	100.0	184	100.0	290	100.0	75	100.0	27	100.0	800	100.0	·	
* V = Va	adodara, A=	Ahmed	abad, S=S	Surat, R	=Rajkot,	O=Ov	verall;								
** Marita	** Marital Status: Mar. = Married; UM: Unmarried														
# Statisti	c is significa	ant at 0	.05 level												•

- In overall, it was observed that majority i.e., 85.3% married respondents never purchase emulsion paint while 88.6% married respondents rarely purchase emulsion paints. Moreover, compared to total 14.8% unmarried respondents from Gujarat, 16.6% unmarried respondents sometimes purchase emulsion paints while 14.8% unmarried respondents always prefer to buy emulsion paints for their houses. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there wasn't a significant difference (Chi-Square = 2.471; p value = 0.650) between married and unmarried respondents regarding their regularity of emulsion paint purchase.
- In Vadodara, it was observed that majority i.e., 68% married respondents never purchase emulsion paint while 77.4% married respondents rarely purchase emulsion paints. Moreover, compared to total 14.5% unmarried respondents from Vadodara, only 9.2% unmarried respondents sometimes purchase emulsion paints for their houses. Further, in Vadodara, there was a significant difference (Chi-Square = 10.639; p value = 0.014) between married and unmarried respondents regarding their regularity of emulsion paint purchase.
- In Ahmedabad, it was observed that majority i.e., 75.7% married respondents never purchase emulsion paint while 90.2% married respondents rarely purchase emulsion paints.

Moreover, compared to total 14% unmarried respondents from Ahmedabad, 11.9% unmarried respondents sometimes purchase emulsion paints while 16.7% unmarried respondents always prefer to buy emulsion paints for their houses. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 4.749; p value = 0.314) between married and unmarried respondents regarding their regularity of emulsion paint purchase.

- In Surat, it was observed that majority i.e., 87.5% married respondents never purchase emulsion paint while 96.3% married respondents rarely purchase emulsion paints. Moreover, compared to total 9% unmarried respondents from Surat, none of the unmarried respondents purchase emulsion paints sometimes and none of the unmarried respondents always prefer to buy emulsion paints for their houses. Further, in Surat, there wasn't a significant difference (Chi-Square = 5.875; p value = 0.209) between married and unmarried respondents regarding their regularity of emulsion paint purchase.
- In Rajkot, it was observed that majority i.e., 94.8% married respondents never purchase emulsion paint while 72.7% married respondents rarely purchase emulsion paints. Moreover, compared to total 21.5% unmarried respondents from Rajkot, 28.7% unmarried respondents sometimes purchase emulsion paints while 26.3% of the unmarried respondents often prefer to buy emulsion paints for their houses. Further, in Rajkot, there was a significant difference (Chi-Square = 12.970; p value = 0.005) between married and unmarried respondents regarding their regularity of emulsion paint purchase. (Ref. Table 5.4.74)

Table 5.4.75: Respondents' city wise opinion regarding their Consistency of Purchasing Emulsion Paints across their Family Size

						Purc	hasing (Consis	tency						
	Eamily	No	ever	Ra	rely	Som	etime	C	Often	Al	ways	T	otal	Signific	ance #
CITY*	Family Size**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	1-4	14	56.0	23	74.2	98	81.7	19	79.2	0	.0	154	77.0	7.902	0.048
v	5+	11	44.0	8	25.8	22	18.3	5	20.8	0	.0	46	23.0	7.902	0.040
	Total	25	11.2	31	16.8	120	41.4	24	32.0	0	.0	200	25.0		
A	1-4	27	73.0	36	70.6	50	74.6	14	66.7	20	83.3	147	73.5	1.966	0.742
A	5+	10	27.0	15	29.4	17	25.4	7	33.3	4	16.7	53	26.5	1.900	0.742
	Total	37	16.5	51	27.7	67	23.1	21	28.0	24	88.9	200	25.0		
S	1-4	60	57.7	52	65.0	2	100.0	9	81.8	1	33.3	124	62.0	5.231	0.264
ъ	5+	44	42.3	28	35.0	0	.0	2	18.2	2	66.7	76	38.0	3.231	0.204
	Total	104	46.4	80	43.5	2	.7	11	14.7	3	11.1	200	25.0		
R	1-4	36	62.1	13	59.1	54	53.5	12	63.2	0	.0	115	57.5	1.440	0.696
K	5+	22	37.9	9	40.9	47	46.5	7	36.8	0	.0	85	42.5	1.440	0.090
	Total	58	25.9	22	12.0	101	34.8	19	25.3	0	.0	200	25.0		
0	1-4	137	61.2	124	67.4	204	70.3	54	72.0	21	77.8	540	67.5	7.167	0.127
U	5+	87	38.8	60	32.6	86	29.7	21	28.0	6	22.2	260	32.5	7.107	0.127
	Total	224	100.0	184	100.0	290	100.0	75	100.0	27	100.0	800	100.0		
* V = Va	adodara, A=	=Ahme	dabad, S	=Surat,	R=Rajko	ot, O= (Overall;						•		·
# Statisti	ic is signifi	cant at	0.05 leve	el	•								•		•

- In overall, it was observed that majority i.e., 61.2% respondents, who never purchase emulsion paint, while 67.4% respondents, who rarely purchase emulsion paints, had family members no more than 4. Moreover, 70.3% respondents, who sometimes purchase emulsion paints, while 77.8% respondents, who always prefer to buy emulsion paints for their houses, had family member no more than 4. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there wasn't a significant difference (Chi-Square = 7.167; p value = 0.127) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of emulsion paint purchase.
- In Vadodara, it was observed that majority i.e., 56% respondents, who never purchase emulsion paint, while 74.2% respondents, who rarely purchase emulsion paints, had family members no more than 4. Moreover, 81.7% respondents, who sometimes purchase emulsion paints, while 79.2% of the respondents, who often prefer to buy emulsion paints for their houses, had family member no more than 4. Further, in Vadodara, there was a significant difference (Chi-Square = 7.902; p value = 0.048) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of emulsion paint purchase.

- In Ahmedabad, it was observed that majority i.e., 73% respondents, who never purchase emulsion paint, while 70.6% respondents, who rarely purchase emulsion paints, had family members no more than 4. Moreover, 74.6% respondents, who sometimes purchase emulsion paints, while 83.3% respondents, who always prefer to buy emulsion paints for their houses, had family member no more than 4. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 1.966; p value = 0.742) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of emulsion paint purchase.
- In Surat, it was observed that majority i.e., 57.7% respondents, who never purchase emulsion paint, while 65% respondents, who rarely purchase emulsion paints, had family members no more than 4. Moreover, all respondents, who sometimes purchase emulsion paints, while 33.3% respondents, who always prefer to buy emulsion paints for their houses, had family member no more than 4. Further, in Surat, there wasn't a significant difference (Chi-Square = 5.231; p value = 0.264) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of emulsion paint purchase.
- In Rajkot, it was observed that majority i.e., 62.1% respondents, who never purchase emulsion paint, while 67.4% respondents, who rarely purchase emulsion paints, had family members no more than 4. Moreover, 70.3% respondents, who sometimes purchase emulsion paints, while 77.8% respondents, who always prefer to buy emulsion paints for their houses, had family member no more than 4. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 1.440; p value = 0.696) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of emulsion paint purchase. (Ref. Table 5.4.75)

Table 5.4.76: Respondents' city wise opinion regarding their Consistency of Purchasing Emulsion Paints across their Family Type

						Pur	chasing (Consis	tency						
	Family	No	ever	Ra	rely	Son	netime	(Often	A	lways	T	otal	Signific	ance#
CITY*	Type**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Nuclear	7	28.0	20	64.5	93	77.5	18	75.0	0	.0	138	69.0	24.396	0.000
v	Joint	18	72.0	11	35.5	27	22.5	6	25.0	0	.0	62	31.0	24.590	0.000
	Total	25	11.2	31	16.8	120	41.4	24	32.0	0	.0	200	25.0		
A	Nuclear	25	67.6	37	72.5	53	79.1	14	66.7	18	75.0	147	73.5	2.304	0.680
A	Joint	12	32.4	14	27.5	14	20.9	7	33.3	6	25.0	53	26.5	2.304	0.000
	Total	37	16.5	51	27.7	67	23.1	21	28.0	24	88.9	200	25.0		
S	Nuclear	62	59.6	55	68.8	2	100.0	9	81.8	1	33.3	129	64.5	5.529	0.237
3	Joint	42	40.4	25	31.3	0	.0	2	18.2	2	66.7	71	35.5	3.329	0.237
	Total	104	46.4	80	43.5	2	.7	11	14.7	3	11.1	200	25.0		
R	Nuclear	30	51.7	15	68.2	64	63.4	12	63.2	0	.0	121	60.5	2.816	0.421
K	Joint	28	48.3	7	31.8	37	36.6	7	36.8	0	.0	79	39.5	2.010	0.421
	Total	58	25.9	22	12.0	101	34.8	19	25.3	0	.0	200	25.0		
0	Nuclear	124	55.4	127	69.0	212	73.1	53	70.7	19	70.4	535	66.9	19.511	0.001
U	Joint	100	44.6	57	31.0	78	26.9	22	29.3	8	29.6	265	33.1	17.511	0.001
	Total	224	100.0	184	100.0	290	100.0	75	100.0	27	100.0	800	100.0		
* V = Va	dodara, A=A	hmedal	bad, S=Su	ırat, R=	Rajkot, O	= Overa	all;								
# Statistic	is significa	nt at 0.	05 level						-	-	-				

- In overall, it was observed that majority i.e., 55.4% respondents, who never purchase emulsion paint, while 69% respondents, who rarely purchase emulsion paints, were from nuclear family type. Moreover, 73.1% respondents, who sometimes purchase emulsion paints, while 70.4% respondents, who always prefer to buy emulsion paints for their houses, were also having nuclear family type. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 19.511; p value = 0.001) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of emulsion paint purchase.
- In Vadodara, it was observed that majority i.e., 72% respondents, who never purchase emulsion paint, had a joint family while 64.5% respondents, who rarely purchase emulsion paints, were from nuclear family type. Moreover, 77.5% respondents, who sometimes purchase emulsion paints, while 75% of the respondents, who often prefer to buy emulsion paints for their houses, were also having nuclear family type. Further, in Vadodara, there was a significant difference (Chi-Square = 24.396; p value = 0.000) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of emulsion paint purchase.
- In Ahmedabad, it was observed that majority i.e., 67.6% respondents, who never purchase emulsion paint, while 72.5% respondents, who rarely purchase emulsion paints, were from

nuclear family type. Moreover, 79.1% respondents, who sometimes purchase emulsion paints, while 75% respondents, who always prefer to buy emulsion paints for their houses, were also having nuclear family type. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 2.304; p value = 0.680) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of emulsion paint purchase.

- In Surat, it was observed that majority i.e., 59.6% respondents, who never purchase emulsion paint, while 68.8% respondents, who rarely purchase emulsion paints, were from nuclear family type. Moreover, all respondents, who sometimes purchase emulsion paints, while only 33.3% respondents, who always prefer to buy emulsion paints for their houses, were also having nuclear family type. Further, in Surat, there wasn't a significant difference (Chi-Square = 5.529; p value = 0.237) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of emulsion paint purchase.
- In Rajkot, it was observed that majority i.e., 51.7% respondents, who never purchase emulsion paint, while 68.2% respondents, who rarely purchase emulsion paints, were from nuclear family type. Moreover, 63.4% respondents, who sometimes purchase emulsion paints, while 63.2% respondents, who often prefer to buy emulsion paints for their houses, were also having nuclear family type. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 2.816; p value = 0.421) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of emulsion paint purchase. (Ref. Table 5.4.76)

Table 5.4.77: Respondents' city wise opinion regarding their Consistency of Purchasing Emulsion Paints across Children Groups

						Purc	chasing (Consis	tency						
Citv*	Child	N	ever	Ra	rely	Son	netime	(Often	A	lways	Т	otal	Significa	nce#
City"	**	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	0	8	32.0	9	29.0	15	12.5	4	16.7	0	.0	36	18.0		
v	1	6	24.0	7	22.6	34	28.3	7	29.2	0	.0	54	27.0	8.465	0.206
v	2	11	44.0	15	48.4	71	59.2	13	54.2	0	.0	110	55.0	0.403	0.200
	3 or +	0	.0	0	.0	0	.0	0	.0	0	.0	0	.0		
	Total	25	11.2	31	16.8	120	41.4	24	32.0	0	.0	200	25.0		
	0	11	29.7	9	17.6	11	16.4	6	28.6	4	16.7	41	20.5		
A	1	4	10.8	5	9.8	20	29.9	6	28.6	5	20.8	40	20.0	17.610	0.128
A	2	20	54.1	32	62.7	34	50.7	8	38.1	15	62.5	109	54.5	17.010	0.120
	3 or +	2	5.4	5	9.8	2	3.0	1	4.8	0	.0	10	5.0		
	Total	37	16.5	51	27.7	67	23.1	21	28.0	24	88.9	200	25.0		
	0	14	13.5	4	5.0	0	.0	2	18.2	0	.0	20	10.0		
S	1	17	16.3	17	21.3	1	50.0	1	9.1	0	.0	36	18.0	0.020	0.717
3	2	68	65.4	56	70.0	1	50.0	8	72.7	3	100	136	68.0	8.830	0.717
	3 or +	5	4.8	3	3.8	0	.0	0	.0	0	.0	8	4.0		
	Total	104	46.4	80	43.5	2	.7	11	14.7	3	11.1	200	25.0		
	0	7	12.1	8	36.4	33	32.7	5	26.3	0	.0	53	26.5		
R	1	6	10.3	1	4.5	2	2.0	1	5.3	0	.0	10	5.0	14.915	0.093
K	2	42	72.4	12	54.5	64	63.4	13	68.4	0	.0	131	65.5	14.913	0.093
	3 or +	3	5.2	1	4.5	2	2.0	0	.0	0	.0	6	3.0		
	Total	58	25.9	22	12.0	101	34.8	19	25.3	0	.0	200	25.0		
	0	40	17.9	30	16.3	59	20.3	17	22.7	4	14.8	150	18.8		
o	1	33	14.7	30	16.3	57	19.7	15	20.0	5	18.5	140	17.5	12.856	0.380
U	2	141	62.9	115	62.5	170	58.6	42	56.0	18	66.7	486	60.8	12.850	0.360
	3 or +	10	4.5	9	4.9	4	1.4	1	1.3	0	.0	24	3.0		
	Total	224	100.0	184	100.0	290	100.0	75	100.0	27	100.0	800	100.0		
	Vadodara,														
** Chil	dren : 0 =	No chi	ild; 1 = 1	Child;	2 = 2 Ch	ildren;	3+=3 or	more	than 3						
# Statis	stic is sigr	nificant	at 0.05	level											

- In overall, majority of the respondents, who never paint their houses with emulsion paint, majority i.e., 62.9%, had two children while only 4.5% respondents had three or more children. Moreover, majority i.e., 62.5%, respondents, who rarely paint their houses with emulsion paint, had two children while 16.3% respondents didn't have any child. Further, majority i.e., 56%, respondents, who often paint their houses with emulsion paint, had two children while 22.7% respondents didn't have a child. Furthermore, majority i.e., 66.7%, respondents, who always paint their houses with emulsion paint, had two children while 18.5% respondents had one child. In overall, significant difference (Chi-Square Value = 12.856 & p Value = 0.380) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy emulsion paints.
- In Vadodara, majority of the respondents, who never paint their houses with emulsion paint, majority i.e., 44%, had two children. Moreover, majority i.e., 48.4%, respondents, who rarely paint their houses with emulsion paint, had two children while 29% respondents didn't have

any child. Further, majority i.e., 54.2%, respondents, who often paint their houses with emulsion paint, had two children while 16.7% respondents didn't have a child. In Vadodara, significant difference (Chi-Square Value = 8.465 & p Value = 0.206) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy emulsion paints.

- In Ahmedabad, majority of the respondents, who never paint their houses with emulsion paint, majority i.e., 54.1%, had two children while only 5.4% respondents had three or more children. Moreover, majority i.e., 62.7%, respondents, who rarely paint their houses with emulsion paint, had two children while 17.6% respondents didn't have any child. Further, majority i.e., 38.1%, respondents, who often paint their houses with emulsion paint, had two children while only 4.8% respondents had 3 or more children. Furthermore, majority i.e., 62.5%, respondents, who always paint their houses with emulsion paint, had two children while 20.8% respondents had one child. In Ahmedabad, significant difference (Chi-Square Value = 17.610 & p Value = 0.128) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy emulsion paints.
- In Surat, majority of the respondents, who never paint their houses with emulsion paint, majority i.e., 65.4%, had two children while only 4.8% respondents had three or more children. Moreover, majority i.e., 70%, respondents, who rarely paint their houses with emulsion paint, had two children while 5% respondents didn't have any child. Further, majority i.e., 50%, respondents, who paint their houses with emulsion paint sometimes, had two children while none of the respondents were with no child or 3 or more children. Furthermore, majority i.e., 72.7%, respondents, who often paint their houses with emulsion paint, had two children while 9.1% respondents had one child. In Surat, significant difference (Chi-Square Value = 8.830 & p Value = 0.717) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy emulsion paints.
- In Rajkot, majority of the respondents, who never paint their houses with emulsion paint, majority i.e., 72.4%, had two children while only 5.2% respondents had three or more children. Moreover, majority i.e., 54.5%, respondents, who rarely paint their houses with emulsion paint, had two children while 36.4% respondents didn't have any child. Further, majority i.e., 68.4%,

respondents, who often paint their houses with emulsion paint, had two children while 26.3% respondents didn't have a child. Furthermore, only 63.4% respondents, who paint their houses with emulsion paint sometimes, had two children while 32.7% respondents didn't have a child. In Rajkot, significant difference (Chi-Square Value = 14.915 & p Value = 0.093) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy emulsion paints. (Ref. Table 5.4.77)

Table 5.4.78: Respondents' opinion regarding their Consistency of Purchasing Interior

Paints across Four Cities of Gujarat

	Purc	hasing	Cons	istency								
	No	ever	R	arely	Sor	netime	0	ften	Al	ways	Т	otal
CITY	N	%	N	%	N	%	N	%	N	%	N	%
Vadodara	23	18.5	1	1.1	15	15.5	140	42.3	21	13.0	200	25.0
Ahmedabad	28	22.6	10	11.5	16	16.5	117	35.3	29	18.0	200	25.0
Surat	36	29.0	56	64.4	9	9.3	43	13.0	56	34.8	200	25.0
Rajkot	37	29.8	20	23.0	57	58.8	31	9.4	55	34.2	200	25.0
Total	124	100.0	87	100.0	97	100.0	331	100.0	161	100.0	800	100.0
Chi-Square	273.8	57										
value												
p Value	0.000	(Statistic	is sign	nificant at	0.05 le	vel)						

- It could be observed from above table that respondents from Vadodara and Ahmedabad were more likely to buy interior paints, when they wanted to paint their places, compare to respondents from Surat and Rajkot.
- 42.3% respondents who purchase interior paints often were from Vadodara and 35.3% respondents were from Ahmedabad. While, in this case respondents from Surat were only 13% and 9.4% respondents were from Rajkot.
- 34.8% respondents who always purchase interior paints were from Surat and 34.2% respondents were from Rajkot. While, in this case respondents from Vadodara were only 13% and 18% respondents were from Ahmedabad.
- 29.8% respondents who never purchase interior paints were from Rajkot while 29% respondents who never purchase interior paints and 64.4% respondents who purchase interior paints rarely were from Surat.
- With high Chi-Square value (273.857) and high significance level (p=0.000), it could be said that there was a significant difference in purchase of interior paints between respondents of all four cities of Gujarat state. (Ref. Table 5.4.78)

Table 5.4.79: Respondents' city wise opinion regarding their Consistency of Purchasing
Interior Paints across their Age Groups

						Pu	rchasing	g Consi	istency						
City*	100	No	ever	R	arely	Son	netime	0	ften	Al	ways	T	otal	Significa	nce #
City"	Age	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	<=37	4	17.4	0	.0	6	40.0	56	40.0	8	38.1	74	37.0		
V	38-46	1	4.3	1	100.0	4	26.7	57	40.7	10	47.6	73	36.5	40.267	0.000
	>46	18	78.3	0	.0	5	33.3	27	19.3	3	14.3	53	26.5		
	Total	23	18.5	1	1.1	15	15.5	140	42.3	21	13.0	200	25.0		
	<=37	2	7.1	4	40.0	6	37.5	40	34.2	15	51.7	67	33.5		
A	38-46	5	17.9	3	30.0	7	43.8	39	33.3	5	17.2	59	29.5	26.775	0.001
	>46	21	75.0	3	30.0	3	18.8	38	32.5	9	31.0	74	37.0		
	Total	28	22.6	10	11.5	16	16.5	117	35.3	29	18.0	200	25.0		
	<=37	2	5.6	24	42.9	5	55.6	18	41.9	18	32.1	67	33.5		
\mathbf{S}	38-46	6	16.7	19	33.9	0	.0	17	39.5	25	44.6	67	33.5	48.877	0.000
	>46	28	77.8	13	23.2	4	44.4	8	18.6	13	23.2	66	33.0		
	Total	36	29.0	56	64.4	9	9.3	43	13.0	56	34.8	200	25.0		
	<=37	1	2.7	6	30.0	27	47.4	16	51.6	28	50.9	78	39.0		
R	38-46	7	18.9	9	45.0	17	29.8	9	29.0	12	21.8	54	27.0	47.957	0.000
	>46	29	78.4	5	25.0	13	22.8	6	19.4	15	27.3	68	34.0		
	Total	37	29.8	20	23.0	57	58.8	31	9.4	55	34.2	200	25.0		
	<=37	9	7.3	34	39.1	44	45.4	130	39.3	69	42.9	286	35.8		
O	38-46	19	15.3	32	36.8	28	28.9	122	36.9	52	32.3	253	31.6	138.983	0.000
	>46	96	77.4	21	24.1	25	25.8	79	23.9	40	24.8	261	32.6		
	Total	124	100.0	87	100.0	97	100.0	331	100.0	161	100.0	800	100.0		
* V =	Vadod	ara, A	N=Ahm	edab	ad, S=S	urat.	R=Ra	kot, ()= Ove	rall;					•
# Statist	tic is sign	nifican	t at 0.05	level											

- In overall, respondents who never purchase interior paints, majority i.e., 77.4% respondents were of age above 46 years. Moreover, respondents who purchase interior paints rarely, only 24.1% respondents were of age more than 46 years while 39.1% respondents were of age 37 years or less. Further, 45.4% respondents, who buy interior paints sometimes, and 39.3% respondents, who often buy interior paints, were of age 37 years or less. Respondents who always buy interior paints, 42.9% were of age no more than 37 years. Furthermore, in overall, high significant difference (Chi-Square Value = 138.983 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy interior paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Vadodara, respondents who never purchase interior paints, majority i.e., 78.3% respondents were of age above 46 years. Moreover, respondents who purchase interior paints rarely, none respondents were of age more than 46 years or 37 years or less while all respondents were of age between 37 years and 46 years. Further, 40.7% respondents, who often buy interior paints, and 47.6% respondents, who always buy interior paints, were of age between 37 years to 46 years. Respondents who sometimes buy interior paints, only

- 26.7% were of age between 37 years and 46 years. Furthermore, in Vadodara, high significant difference (Chi-Square Value = 40.267 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy interior paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Ahmedabad, respondents who never purchase interiors, majority i.e., 75% respondents were of age above 46 years. Moreover, respondents who purchase interior paints rarely, only 30% respondents were of age more than 46 years while 40% respondents were of age 37 years or less. Further, only43.8% respondents, who buy interior paints sometimes, and 33.3% respondents, who often buy interior paints, were of age between 37 years to 46 years. Respondents who always buy interior paints, only 17.2% were of age between 37 years to 46 years. Furthermore, in Ahmedabad, significant difference (Chi-Square Value = 26.775 & p Value = 0.001) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy interior paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Surat, respondents who never purchase interiors, majority i.e., 77.8% respondents were of age above 46 years. Moreover, respondents who purchase interior paints rarely, only 23.2% respondents were of age more than 46 years while 42.9% respondents were of age 37 years or less. Further, 55.6% respondents, who buy interior paints sometimes, and 41.9% respondents, who often buy interior paints, were of age 37 years or less. Respondents who always buy interior paints, 44.6% were of age between 37 years and 46 years. Furthermore, in Surat, high significant difference (Chi-Square Value = 48.877 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy interior paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Rajkot, respondents who never purchase interiors, majority i.e., 78.4% respondents were of age above 46 years. Moreover, respondents who purchase interior paints rarely, only 25% respondents were of age more than 46 years while 30% respondents were of age 37 years or less. Further, 47.4% respondents, who buy interior paints sometimes, and 51.6% respondents, who often buy interior paints, were of age 37 years or less. Respondents who

always buy interior paints, only 21.8% were of age between 37 years and 46 years while 50.9% respondents were of age 37 years or less. Furthermore, in Rajkot, high significant difference (Chi-Square Value = 47.957 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy interior paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years. (Ref. Table 5.4.79)

Table 5.4.80: Respondents' city wise opinion regarding their Consistency of Purchasing Interior Paints across Gender

						Pu	rchasing	Consis	tency						
		No	ever	R	arely	Som	etime	0:	ften	Al	ways	T	otal	Signific	ance #
CITY*	Gender	N	%	N	%	N	%	N	%	N	%	N	%	Chi-	p
														Square	value
v	Male	12	52.2	1	100.0	10	66.7	106	75.7	13	61.9	142	71.0	6.859	0.144
•	Female	11	47.8	0	.0	5	33.3	34	24.3	8	38.1	58	29.0	0.037	0.144
	Total	23	18.5	1	1.1	15	15.5	140	42.3	21	13.0	200	25.0		
	Male	26	92.9	6	60.0	12	75.0	85	72.6	23	79.3	152	76.0	6.669	0.154
A	Female	2	7.1	4	40.0	4	25.0	32	27.4	6	20.7	48	24.0	0.009	0.154
	Total	28	22.6	10	11.5	16	16.5	117	35.3	29	18.0	200	25.0		
S	Male	35	97.2	38	67.9	5	55.6	23	53.5	40	71.4	141	70.5	10.522	0.001
3	Female	1	2.8	18	32.1	4	44.4	20	46.5	16	28.6	59	29.5	19.522	0.001
	Total	36	29.0	56	64.4	9	9.3	43	13.0	56	34.8	200	25.0		
R	Male	36	97.3	14	70.0	40	70.2	21	67.7	34	61.8	145	72.5	15 120	0.004
K	Female	1	2.7	6	30.0	17	29.8	10	32.3	21	38.2	55	27.5	15.128	0.004
	Total	37	29.8	20	23.0	57	58.8	31	9.4	55	34.2	200	25.0		
0	Male	109	87.9	59	67.8	67	69.1	235	71.0	110	68.3	580	72.5	18.069	0.001
U	Female	15	12.1	28	32.2	30	30.9	96	29.0	51	31.7	220	27.5	16.009	0.001
	Total	124	100.0	87	100.0	97	100.0	331	100.0	161	100.0	800	100.0		
* V = V	/adodara,	A=Al	nmedaba	ad, S=	=Surat,	R=Ra	jkot, O=	Over	all;			•		•	
# Statistic	e is significa	nt at 0.	.05 level												

- In overall, it was observed that majority i.e., 87.9% male respondents never purchase interior paint while 67.8% male respondents rarely purchase interior paints. Moreover, compared to total 27.5% female respondents from Gujarat, 30.9% female respondents sometimes purchase interior paints while 31.7% female respondents always prefer to buy interior paints for their houses. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 18.069; p value = 0.001) between male and female respondents regarding their regularity of interior paint purchase.
- In Vadodara, it was observed that majority i.e., 75.7% male respondents often purchase interior paint while only 52.2% male respondents never purchase interior paints. Moreover, compared to total 29% female respondents from Vadodara, 47.8% female respondents never purchase interior paints while 33.3% female respondents sometimes prefer to buy interior paints for their houses. Further, in Vadodara, there wasn't a significant difference (Chi-Square = 6.859; p value = 0.144) between male and female respondents regarding their regularity of interior paint purchase.
- In Ahmedabad, it was observed that majority i.e., 92.9% male respondents never purchase interior paint while 60% male respondents rarely purchase interior paints. Moreover,

compared to total 24% female respondents from Ahmedabad, 27.4% female respondents often purchase interior paints while only 20.7% female respondents always prefer to buy interior paints for their houses. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 6.669; p value = 0.154) between male and female respondents regarding their regularity of interior paint purchase.

- In Surat, it was observed that majority i.e., 97.2% male respondents never purchase interior paint while 67.9% male respondents rarely purchase interior paints. Moreover, compared to total 29.5% female respondents from Surat, 44.4% female respondents sometimes purchase interior paints while 28.6% female respondents always prefer to buy interior paints for their houses. Further, in Surat, there was a significant difference (Chi-Square = 19.522; p value = 0.001) between male and female respondents regarding their regularity of interior paint purchase.
- In Rajkot, it was observed that majority i.e., 97.3% male respondents never purchase interior paint while 70% male respondents rarely purchase interior paints. Moreover, compared to total 27.5% female respondents from Rajkot, 29.8% female respondents sometimes purchase interior paints while 38.2% female respondents always prefer to buy interior paints for their houses. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 15.128; p value = 0.004) between male and female respondents regarding their regularity of interior paint purchase. (Ref. Table 5.4.80)

Table 5.4.81: Respondents' city wise opinion regarding their Consistency of Purchasing **Interior Paints across Educational Qualifications**

F	Responde	nts' op	inions or	ı harr	nfulness	of bro	eathing V	/OCs v	vith refe	rence t	o respon	dents'	educatio	nal qualificatio	ns.
City*	Ed.**	No	ever	R	arely	Son	netime	0	ften	Al	ways	T	otal	Significa	nce #
City	Eu.	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	UG	9	39.1	0	.0	1	6.7	3	2.1	1	4.8	14	7.0		
\mathbf{V}	Gr	13	56.5	0	.0	5	33.3	55	39.3	6	28.6	79	39.5	53.987	0.000
	PG	1	4.3	1	100	9	60.0	82	58.6	14	66.7	107	53.5		
	Total	23	18.5	1	1.1	15	15.5	140	42.3	21	13.0	200	25.0		
	UG	16	57.1	0	.0	0	.0	16	13.7	3	10.3	35	17.5		
A	Gr	10	35.7	7	70.0	10	62.5	66	56.4	16	55.2	109	54.5	39.513	0.000
	PG	2	7.1	3	30.0	6	37.5	35	29.9	10	34.5	56	28.0		
	Total	28	22.6	10	11.5	16	16.5	117	35.3	29	18.0	200	25.0		
	UG	11	30.6	14	25.0	2	22.2	2	4.7	9	16.1	38	19.0		
S	Gr	24	66.7	30	53.6	5	55.6	27	62.8	30	53.6	116	58.0		0.015
	PG	1	2.8	12	21.4	2	22.2	14	32.6	17	30.4	46	23.0		
	Total	36	29.0	56	64.4	9	9.3	43	13.0	56	34.8	200	25.0		
	UG	16	43.2	3	15.0	4	7.0	0	.0	12	21.8	35	17.5		
R	Gr	18	48.6	15	75.0	39	68.4	20	64.5	26	47.3	118	59.0	36.000	0.000
	PG	3	8.1	2	10.0	14	24.6	11	35.5	17	30.9	47	23.5		
	Total	37	29.8	20	23.0	57	58.8	31	9.4	55	34.2	200	25.0		
	UG	52	41.9	17	19.5	7	7.2	21	6.3	25	15.5	122	15.3		
O	Gr	65	52.4	52	59.8	59	60.8	168	50.8	78	48.4	422	52.8	126.607	0.000
	PG	7	5.6	18	20.7	31	32.0	142	42.9	58	36.0	256	32.0		
	Total	124	100.0	87	100.0	97	100.0	331	100.0	161	100.0	800	100.0		
* V = V	Vadodara,	A=Ah	medabad	, S=Si	urat, R=R	lajkot,	, O= Ove	rall;							
** Edu	cational Q	ualifica	ation: U	G = U	nder Gra	duate;	Gr. = Gr	aduate	PG = Pc	stgradı	ıate				
# Statis	stic is sigr	nificant	t at 0.05	level											

In overall, it was observed that majority i.e., 52.4% of the respondents who never purchase interior paints were graduates while only 5.6% respondents were postgraduates. Out of total 15.3% undergraduate respondents, 41.9% respondents never buy interior paints. Moreover, 59.8% respondents, who rarely purchase interior paints, were graduate respondents while only 20.7% respondents were postgraduates. Only 6.3% respondents were undergraduates who liked to buy interior paints often. While, 48.4% respondents were graduate respondents who always preferred to buy interior paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 126.607; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of interior paints.

In Vadodara, it was observed that majority i.e., 56.5% of the respondents who never purchase interior paints were graduates while only 4.3% respondents were postgraduates. Out of total 7% undergraduate respondents from Vadodara, 39.1% respondents never buy interior paints while none of them rarely buy interior paints. Moreover, 60% respondents, who sometimes purchase interior paints, were postgraduate respondents while only 6.7% respondents were undergraduates. Only 2.1% respondents were undergraduates who liked

- to buy interior paints often. While, 66.7% respondents were postgraduate respondents who always preferred to buy interior paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 53.987; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of interior paints.
- In Ahmedabad, it was observed that majority i.e., 57.1% of the respondents who never purchase interior paints were undergraduates while only 4.3% respondents were postgraduates. Out of total 17.5% undergraduate respondents, none of the respondents rarely buy interior paints and none of the respondents buy interior paints. Moreover, all respondents, who rarely purchase interior paints, were postgraduates. Only 13.7% respondents were undergraduates who liked to buy interior paints often. While, 55.2% respondents were graduate respondents who always preferred to buy interior paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 39.513; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of interior paints.
- In Surat, it was observed that majority i.e., 66.7% of the respondents who never purchase interior paints were graduates while 2.8% respondents were postgraduates. Out of total 19% undergraduate respondents, 30.6% respondents never buy interior paints. Moreover, 53.6% respondents, who rarely purchase interior paints, were graduate respondents while only 25% respondents were undergraduates. Only 4.7% respondents were undergraduates who liked to buy interior paints often. While, 53.6% respondents were graduate respondents who always preferred to buy interior paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 19.066; p value = 0.015) between respondents with different educational qualifications regarding their regularity in purchase of interior paints.
- In Rajkot, it was observed that majority i.e., 48.6% of the respondents who never purchase interior paints were graduates while only 8.1% respondents were postgraduates. Out of total 17.5% undergraduate respondents, 43.2% respondents never buy interior paints. Moreover, only 10% respondents, who rarely purchase interior paints, were postgraduate respondents while only 15% respondents were undergraduates. 50.8% respondents were graduates who liked to buy interior paints often. While, 48.4% respondents were graduate respondents who always preferred to buy interior paints. Furthermore, it was also observed

that there was a significant difference (Chi-Square = 36.000; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of interior paints. (Ref. Table 5.4.81)

Table 5.4.82: Respondents' city wise opinion regarding their Consistency of Purchasing **Interior Paints across their Occupation**

						Pu	ırchasing	g Consi	istency						
City*	Oc.**	No	ever	R	arely	Son	netime	0	ften	Al	ways	T	otal	Significa	nce #
City	Oc.	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	S	13	56.5	0	.0	9	60.0	52	37.1	6	28.6	80	40.0		
\mathbf{V}	В	2	8.7	0	.0	3	20.0	49	35.0	6	28.6	60	30.0	13.582	0.093
	P	8	34.8	1	100	3	20.0	39	27.9	9	42.9	60	30.0		
	Total	23	18.5	1	1.1	15	15.5	140	42.3	21	13.0	200	25.0		
	S	17	60.7	3	30.0	8	50.0	45	38.5	7	24.1	80	40.0		
A	В	1	3.6	1	10.0	2	12.5	45	38.5	11	37.9	60	30.0	24.515	0.002
	P	10	35.7	6	60.0	6	37.5	27	23.1	11	37.9	60	30.0		
	Total	28	22.6	10	11.5	16	16.5	117	35.3	29	18.0	200	25.0		
	S	20	55.6	20	35.7	5	55.6	24	55.8	11	19.6	80	40.0		
S	В	2	5.6	22	39.3	3	33.3	3	7.0	30	53.6	60	30.0	41.675	0.000
	P	14	38.9	14	25.0	1	11.1	16	37.2	15	26.8	60	30.0		
	Total	36	29.0	56	64.4	9	9.3	43	13.0	56	34.8	200	25.0		
	S	23	62.2	2	10.0	19	33.3	19	61.3	17	30.9	80	40.0		
R	В	6	16.2	10	50.0	18	31.6	5	16.1	21	38.2	60	30.0	25.207	0.001
	P	8	21.6	8	40.0	20	35.1	7	22.6	17	30.9	60	30.0		
	Total	37	29.8	20	23.0	57	58.8	31	9.4	55	34.2	200	25.0		
	S	73	58.9	25	28.7	41	42.3	140	42.3	41	25.5	320	40.0		
O	В	11	8.9	33	37.9	26	26.8	102	30.8	68	42.2	240	30.0	53.491	0.000
	P	40	32.3	29	33.3	30	30.9	89	26.9	52	32.3	240	30.0		
	Total	124	100.0	87	100.0	97	100.0	331	100.0	161	100.0	800	100.0		
* V = V	Vadodara,	, A=Ah	medabad	, S=Sı	ırat, R=R	lajkot.	O= Ove	rall;							
** Occi	upation : S	S = Ser	vice Clas	s; B =	Busines	s class	P = Pro	fession	als						
# Statis	stic is sign	ificant	at 0.05	level											

- In overall, it was observed that majority i.e., 58.9% of the respondents who never purchase interior paints were service class people while 32.3% respondents were professionals. Out of total 30% business class respondents, only 8.9% respondents never buy interior paints. Moreover, 42.3% respondents, who sometimes purchase interior paints, were service class respondents. 42.3% respondents were also service class people who liked to buy interior paints often. While, 42.2% respondents were business class respondents who always preferred to buy interior paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 53.491; p value = 0.000) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of interior paints.
- In Vadodara, it was observed that majority i.e., 56.5% of the respondents who never purchase interior paints were service class people while 34.8% respondents were professionals. Out of total 30% business class respondents, only 8.7% respondents never buy interior paints. Moreover, 60% respondents, who sometimes purchase interior paints, were service class respondents. 37.1% respondents were service class people who liked to

buy interior paints often. Furthermore, it was also observed that there wasn't a significant difference (Chi-Square = 13.582; p value = 0.093) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of interior paints.

- In Ahmedabad, it was observed that majority i.e., 60.7% of the respondents who never purchase interior paints were service class people while 35.7% respondents were professionals. Out of total 30% business class respondents, only 3.6% respondents never buy interior paints. Moreover, only 50% respondents, who sometimes purchase interior paints, were service class respondents and 12.5% respondents were business class people. While, 37.9% respondents were professional respondents who always preferred to buy interior paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 24.515; p value = 0.002) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of interior paints.
- In Surat, it was observed that majority i.e., 55.6% of the respondents who never purchase interior paints were service class people while 38.9% respondents were professionals. Out of total 30% business class respondents, only 5.6% respondents never buy interior paints. Moreover, 55.6% respondents, who sometimes purchase interior paints, were service class respondents. Only 7% respondents were business class people who liked to buy interior paints often. While, 53.6% respondents were business class respondents who always preferred to buy interior paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 41.675; p value = 0.000) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of interior paints.
- In Rajkot, it was observed that majority i.e., 62.2% of the respondents who never purchase interior paints were service class people while 21.6% respondents were professionals. Out of total 30% business class respondents, only 16.2% respondents never buy interior paints. Moreover, 33.3% respondents, who sometimes purchase interior paints, were service class and 35.1% were professional. 61.3% respondents were service class people who liked to buy interior paints often. While, 38.2% respondents were business class respondents who always preferred to buy interior paints. Furthermore, it was also observed that there was a

significant difference (Chi-Square = 25.207; p value = 0.001) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of interior paints. (Ref. Table 5.4.82)

Table 5.4.83: Respondents' city wise opinion regarding their Consistency of Purchasing
Interior Paints across Monthly Income Groups

							ırchasinş	_		,					
City*	MI**	N	ever	R	arely	Sor	netime	О	ften	Al	ways	T	otal	Significa	nce #
City	IVII	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	MI – 1	14	60.9	0	.0	4	26.7	54	38.6	7	33.3	79	39.5		
\mathbf{V}	MI – 2	7	30.4	1	100	5	33.3	43	30.7	8	38.1	64	32.0	10.086	0.259
	MI-3	2	8.7	0	.0	6	40.0	43	30.7	6	28.6	57	28.5		
	Total	23	18.5	1	1.1	15	15.5	140	42.3	21	13.0	200	25.0		
	MI – 1	17	60.7	3	30.0	5	31.3	56	47.9	16	55.2	97	48.5		
A	MI – 2	6	21.4	3	30.0	4	25.0	22	18.8	3	10.3	38	19.0	7.701	0.463
	MI-3	5	17.9	4	40.0	7	43.8	39	33.3	10	34.5	65	32.5		
	Total	28	22.6	10	11.5	16	16.5	117	35.3	29	18.0	200	25.0		
	MI – 1	20	55.6	19	33.9	2	22.2	14	32.6	7	12.5	62	31.0		
S	MI – 2	13	36.1	17	30.4	2	22.2	17	39.5	13	23.2	62	31.0	36.717	0.000
	MI-3	3	8.3	20	35.7	5	55.6	12	27.9	36	64.3	76	38.0		
	Total	36	29.0	56	64.4	9	9.3	43	13.0	56	34.8	200	25.0		
	MI – 1	5	13.5	1	5.0	11	19.3	9	29.0	8	14.5	34	17.0		
R	MI – 2	18	48.6	11	55.0	25	43.9	16	51.6	28	50.9	98	49.0	7.978	0.436
	MI-3	14	37.8	8	40.0	21	36.8	6	19.4	19	34.5	68	34.0		
	Total	37	29.8	20	23.0	57	58.8	31	9.4	55	34.2	200	25.0		
	MI – 1	56	45.2	23	26.4	22	22.7	133	40.2	38	23.6	272	34.0		
O	MI – 2	44	35.5	32	36.8	36	37.1	98	29.6	52	32.3	262	32.8	36.346	0.000
	MI – 3	24	19.4	32	36.8	39	40.2	100	30.2	71	44.1	266	33.3		
	Total	124	100.0	87	100.0	97	100.0	331	100.0	161	100.0	800	100.0		
* V = '	Vadodara,	A=Ahr	nedabad,	S=Su	rat, R=Ra	ajkot,	O= Over	all;							

Statistic is significant at 0.05 level

- In overall, it was observed that majority i.e., 45.2%, respondents, with monthly income Rs.29166.67 or less, never buy interior paints. While, 36.8% respondents, with monthly income between Rs.29166.67 to Rs.46250.00, rarely buy interior paints. Moreover, majority i.e., 40.2%, respondents who buy interior paint sometimes, had monthly income above Rs.46250. Further, 40.2% respondents who often buy interior paints were service class people while 44.1% respondents who always buy interior paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Gujarat state i.e., collectively from Vadodara, Ahmedabad, Surat and Rajkot, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, had significant difference (Chi-Square = 36.346; p value = 0.000) in regularity of purchasing interior paints.
- In Vadodara, it was observed that majority i.e., 60.9%, respondents, with monthly income Rs.29166.67 or less, never buy interior paints. While, only 26.7% respondents, with monthly income Rs.29166.67 or less, sometimes buy interior paints. Moreover, majority i.e., 40%, respondents who buy interior paint sometimes, had monthly income above

Rs.46250. Further, 38.1% respondents who always buy interior paints had monthly income between Rs.29166.67 and Rs.46250. Furthermore, it was also observed that in Vadodara, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 10.086; p value = 0.259) in regularity of purchasing interior paints.

- In Ahmedabad, it was observed that majority i.e., 60.7%, respondents, with monthly income Rs.29166.67 or less, never buy interior paints. While, only 40% respondents, with monthly income between Rs.29166.67 to Rs.46250.00, rarely buy interior paints. Moreover, majority i.e., 43.8%, respondents who buy interior paint sometimes, had monthly income above Rs.46250. Further, 47.9% respondents who often buy interior paints and 55.2% respondents who always buy interior paints had monthly income no more than Rs.29166.67. Furthermore, it was also observed that in Ahmedabad, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 7.701; p value = 0.463) in regularity of purchasing interior paints.
- In Surat, it was observed that majority i.e., 55.6%, respondents, with monthly income Rs.29166.67 or less, never buy interior paints. While, 35.7% respondents, with monthly income between above Rs.46250.00, rarely buy interior paints. Moreover, majority i.e., 55.6%, respondents who buy interior paint sometimes, had monthly income above Rs.46250. Further, 64.3% respondents who always buy interior paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Surat, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, had significant difference (Chi-Square = 36.717; p value = 0.000) in regularity of purchasing interior paints.
- In Rajkot, it was observed that only 13.5%, respondents, with monthly income Rs.29166.67 or less, never buy interior paints. While, 55% respondents, with monthly income between Rs.29166.67 to Rs.46250.00, rarely buy interior paints. Moreover, only 19.3%, respondents who buy interior paint sometimes, had monthly income Rs.29166.67 or less. Further, only 19.4% respondents who often buy interior paints had monthly income above Rs.46250.00 while 50.9% respondents who always buy interior paints had monthly income between Rs.29166.67 to Rs.46250. Furthermore, it was also observed that in Rajkot,

respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have significant difference (Chi-Square = 7.978; p value = 0.436) in regularity of purchasing interior paints. (Ref. Table 5.4.83)

Table 5.4.84: Respondents' city wise opinion regarding their Consistency of Purchasing
Interior Paints across their Per Capita Income

						Pu	ırchasing	g Consi	stency						
Citv*	PCI**	No	ever	R	arely	Son	netime	0	ften	Al	ways	T	otal	Significa	nce#
City	rcı	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	Low	15	65.2	1	100	4	26.7	43	30.7	6	28.6	69	34.5		
V	Mod.	5	21.7	0	.0	5	33.3	42	30.0	9	42.9	61	30.5	15.190	0.056
	High	3	13.0	0	.0	6	40.0	55	39.3	6	28.6	70	35.0		
	Total	23	18.5	1	1.1	15	15.5	140	42.3	21	13.0	200	25.0		
	Low	18	64.3	2	20.0	6	37.5	53	45.3	15	51.7	94	47.0		
A	Mod.	6	21.4	5	50.0	3	18.8	26	22.2	5	17.2	45	22.5	11.172	0.192
	High	4	14.3	3	30.0	7	43.8	38	32.5	9	31.0	61	30.5		
	Total	28	22.6	10	11.5	16	16.5	117	35.3	29	18.0	200	25.0		
	Low	22	61.1	18	32.1	2	22.2	14	32.6	9	16.1	65	32.5		
S	Mod.	11	30.6	19	33.9	3	33.3	16	37.2	12	21.4	61	30.5	35.045	0.000
	High	3	8.3	19	33.9	4	44.4	13	30.2	35	62.5	74	37.0		
	Total	36	29.0	56	64.4	9	9.3	43	13.0	56	34.8	200	25.0		
	Low	10	27.0	2	10.0	15	26.3	8	25.8	14	25.5	49	24.5		
R	Mod.	16	43.2	12	60.0	25	43.9	19	61.3	23	41.8	95	47.5	7.603	0.473
	High	11	29.7	6	30.0	17	29.8	4	12.9	18	32.7	56	28.0		
	Total	37	29.8	20	23.0	57	58.8	31	9.4	55	34.2	200	25.0		
	Low	65	52.4	23	26.4	27	27.8	118	35.6	44	27.3	277	34.6		
0	Mod.	38	30.6	36	41.4	36	37.1	103	31.1	49	30.4	262	32.8	34.266	0.002
	High	21	16.9	28	32.2	34	35.1	110	33.2	68	42.2	261	32.6		
	Total	124	100.0	87	100.0	97	100.0	331	100.0	161	100.0	800	100.0		
	Vadodara,					ajkot,	O= Over	all;							
** PEF	R CAPITA	INCO	ME: Mo	od.= N	/Ioderate										
# Statis	stic is sign	ificant	at 0.05 l	evel				-		-		-			

- In overall, it was observed that majority i.e., 52.4%, respondents, with low per capita income level, never buy interior paints. While, 41.4% respondents, with moderate per capita income level, rarely buy interior paints. Moreover, majority i.e., 37.1%, respondents who buy interior paint sometimes, had moderate per capita income. Further, 35.6% respondents who often buy interior paints had low per capita income level and 42.2% respondents who always buy interior paints had high per capita income. Furthermore, it was also observed that in Gujarat state i.e., collectively from Vadodara, Ahmedabad, Surat and Rajkot, respondents with different per capita income group i.e., low, moderate and high, had significant difference (Chi-Square = 34.266; p value = 0.002) in regularity of purchasing interior paints.
- In Vadodara, it was observed that majority i.e., 65.2%, respondents, with low per capita income level, never buy interior paints. While, none of the respondents who rarely buy interior paints had moderate and high per capita income level. Moreover, majority i.e., 40%, respondents who buy interior paint sometimes, had high per capita income. Further, only 30% respondents who often buy interior paints and 42.9% respondents who always buy interior paints had moderate per capita income. Furthermore, it was also observed that in Vadodara,

respondents with different per capita income group i.e., low, moderate and high, didn't have significant difference (Chi-Square = 15.190; p value = 0.056) in regularity of purchasing interior paints.

- In Ahmedabad, it was observed that majority i.e., 64.3%, respondents, with low per capita income level, never buy interior paints. While, 50% respondents, with moderate per capita income level, rarely buy interior paints. Moreover, majority i.e., 43.8%, respondents, who buy interior paint sometimes, had high per capita income. Further, 45.3% respondents who often buy interior paints and 51.7% respondents who always buy interior paints had low per capita income. Furthermore, it was also observed that in Ahmedabad, respondents with different per capita income group i.e., low, moderate and high, didn't have a significant difference (Chi-Square = 11.172; p value = 0.192) in regularity of purchasing interior paints.
- In Surat, it was observed that majority i.e., 61.1%, respondents, with low per capita income level, never buy interior paints. While, 33.9% respondents, with moderate per capita income level, rarely buy interior paints. Moreover, majority i.e., 44.4%, respondents who buy interior paint sometimes, had high per capita income. Further, 37.2% respondents who often buy interior paints had moderate per capita income and 62.5% respondents who always buy interior paints had high per capita income. Furthermore, it was also observed that in Surat, respondents with different per capita income group i.e., low, moderate and high, had significant difference (Chi-Square = 35.045; p value = 0.000) in regularity of purchasing interior paints.
- In Rajkot, it was observed that majority i.e., 43.2%, respondents, with moderate per capita income level, never buy interior paints. While, 60% respondents, with moderate per capita income level, rarely buy interior paints. Moreover, majority i.e., 43.9%, respondents who buy interior paint sometimes, had moderate per capita income. Further, 61.3% respondents who often buy interior paints and 41.8% respondents who always buy interior paints had high per capita income. Furthermore, it was also observed that in Rajkot, respondents with different per capita income group i.e., low, moderate and high, didn't have a significant difference (Chi-Square = 7.603; p value = 0.473) in regularity of purchasing interior paints. (Ref. Table 5.4.84)

Table 5.4.85: Respondents' city wise opinion regarding their Consistency of Purchasing
Interior Paints across Marital Status

						Pu	rchasing	Consis	tency						
	Marital	N	ever	R	arely	Som	etime	0	ften	Al	ways	T	otal	Signific	ance #
CITY*	Status**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Mar.	17	73.9	1	100.0	13	86.7	120	85.7	20	95.2	171	85.5	4.288	0.368
v	UM	6	26.1	0	.0	2	13.3	20	14.3	1	4.8	29	14.5	4.200	0.308
	Total	23	18.5	1	1.1	15	15.5	140	42.3	21	13.0	200	25.0		
	Mar.	20	71.4	9	90.0	15	93.8	102	87.2	26	89.7	172	86.0	(22(0.176
A	UM	8	28.6	1	10.0	1	6.3	15	12.8	3	10.3	28	14.0	6.326	0.176
	Total	28	22.6	10	11.5	16	16.5	117	35.3	29	18.0	200	25.0		
S	Mar.	28	77.8	53	94.6	8	88.9	41	95.3	52	92.9	182	91.0	9.870	0.043
3	UM	8	22.2	3	5.4	1	11.1	2	4.7	4	7.1	18	9.0	9.070	0.043
	Total	36	29.0	56	64.4	9	9.3	43	13.0	56	34.8	200	25.0		
D	Mar.	37	100.0	16	80.0	40	70.2	22	71.0	42	76.4	157	78.5	12 (02	0.000
R	UM	0	.0	4	20.0	17	29.8	9	29.0	13	23.6	43	21.5	13.692	0.008
	Total	37	29.8	20	23.0	57	58.8	31	9.4	55	34.2	200	25.0		
0	Mar.	102	82.3	79	90.8	76	78.4	285	86.1	140	87.0	682	85.3	7.254	0.123
U	UM	22	17.7	8	9.2	21	21.6	46	13.9	21	13.0	118	14.8	7.254	0.123
	Total	124	100.0	87	100.0	97	100.0	331	100.0	161	100.0	800	100.0		
* V = Va	dodara, A=A	hmedal	oad, S=Su	rat, R	=Rajkot, ()=Ove	rall;								
** Marita	ıl Status: Mar	. = Mar	ried; UM	: Unm	arried										
# Statisti	c is significa	nt at 0 (15 level				•		•		•		•	•	

- # Statistic is significant at 0.05 level
 - In overall, it was observed that majority i.e., 82.3% married respondents never purchase interior paint while 90.8% married respondents rarely purchase interior paints. Moreover, compared to total 14.8% unmarried respondents from Gujarat, 21.6% unmarried respondents sometimes purchase interior paints while 13.0% unmarried respondents always prefer to buy interior paints for their houses. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there wasn't a significant difference (Chi-Square = 7.254; p value = 0.123) between married and unmarried respondents regarding their regularity of interior paint purchase.
 - In Vadodara, it was observed that majority i.e., 73.9% married respondents never purchase interior paint while all respondents who rarely purchase interior paints were married. Moreover, compared to total 14.5% unmarried respondents from Vadodara, only 4.8% unmarried respondents always purchase interior paints for their houses. Further, in Vadodara, there wasn't a significant difference (Chi-Square = 4.288; p value = 0.368) between married and unmarried respondents regarding their regularity of interior paint purchase.
 - In Ahmedabad, it was observed that majority i.e., 71.4% married respondents never purchase interior paint while 90% married respondents rarely purchase interior paints.

Moreover, compared to total 14% unmarried respondents from Ahmedabad, 6.3% unmarried respondents sometimes purchase interior paints while 10.3% unmarried respondents always prefer to buy interior paints for their houses. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 6.326; p value = 0.176) between married and unmarried respondents regarding their regularity of interior paint purchase.

- In Surat, it was observed that majority i.e., 77.8% married respondents never purchase interior paint while 94.6% married respondents rarely purchase interior paints. Moreover, compared to total 9% unmarried respondents from Surat, 4.7% unmarried respondents often purchase interior paints while 7.1% unmarried respondents always prefer to buy interior paints for their houses. Further, in Surat, there was a significant difference (Chi-Square = 9.870; p value = 0.043) between married and unmarried respondents regarding their regularity of interior paint purchase.
- In Rajkot, it was observed that all respondents who never purchase interior paint while 80% respondents who rarely purchase interior paints, were married. Moreover, compared to total 21.5% unmarried respondents from Rajkot, 29% unmarried respondents often purchase interior paints 23.6% unmarried respondents always prefer to buy interior paints for their houses. Further, in Rajkot, there was a significant difference (Chi-Square = 13.692; p value = 0.008) between married and unmarried respondents regarding their regularity of interior paint purchase. (Ref. Table 5.4.85)

Table 5.4.86: Respondents' city wise opinion regarding their Consistency of Purchasing
Interior Paints across Family Size

						Pu	rchasing	Consis	tency						
	Eamily	No	ever	R	arely	Som	etime	О	ften	Alv	ways	T	otal	Signific	ance#
CITY*	Family Size**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	1-4	13	56.5	0	.0	12	80.0	113	80.7	16	76.2	154	77.0	9,969	0.041
·	5+	10	43.5	1	100.0	3	20.0	27	19.3	5	23.8	46	23.0	9.909	0.041
	Total	23	18.5	1	1.1	15	15.5	140	42.3	21	13.0	200	25.0		
A	1-4	20	71.4	8	80.0	11	68.8	88	75.2	20	69.0	147	73.5	0.946	0.918
А	5+	8	28.6	2	20.0	5	31.3	29	24.8	9	31.0	53	26.5	0.940	0.918
	Total	28	22.6	10	11.5	16	16.5	117	35.3	29	18.0	200	25.0		
S	1-4	17	47.2	36	64.3	2	22.2	31	72.1	38	67.9	124	62.0	12.180	0.016
3	5+	19	52.8	20	35.7	7	77.8	12	27.9	18	32.1	76	38.0	12.100	0.010
	Total	36	29.0	56	64.4	9	9.3	43	13.0	56	34.8	200	25.0		
R	1-4	23	62.2	13	65.0	29	50.9	22	71.0	28	50.9	115	57.5	5.091	0.278
K	5+	14	37.8	7	35.0	28	49.1	9	29.0	27	49.1	85	42.5	5.091	0.278
	Total	37	29.8	20	23.0	57	58.8	31	9.4	55	34.2	200	25.0		
0	1-4	73	58.9	57	65.5	54	55.7	254	76.7	102	63.4	540	67.5	24.688	0.000
U	5+	51	41.1	30	34.5	43	44.3	77	23.3	59	36.6	260	32.5	24.000	0.000
	Total	124	100.0	87	100.0	97	100.0	331	100.0	161	100.0	800	100.0		·
* V = Va	dodara, A=	Ahmeda	abad, S=S	Surat, F	R=Rajkot,	O = Ov	erall;								
# Statistic	c is signific	ant at 0	.05 level		•		•			•	•	•	•	•	

- In overall, it was observed that majority i.e., 58.9% respondents, who never purchase interior paint, while 65.5% respondents, who rarely purchase interior paints, had family members no more than 4. Moreover, 55.7% respondents, who sometimes purchase interior paints, while 63.4% respondents, who always prefer to buy interior paints for their houses, had family member no more than 4. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 24.688; p value = 0.000) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of interior paint purchase.
- In Vadodara, it was observed that majority i.e., 56.5% respondents, who never purchase interior paint, while none of the respondents, who rarely purchase interior paints, had family members no more than 4. Moreover, 80% respondents, who sometimes purchase interior paints, while 76.2% respondents, who always prefer to buy interior paints for their houses, had family member no more than 4. Further, in Vadodara, there was a significant difference (Chi-Square = 9.969; p value = 0.041) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of interior paint purchase.

- In Ahmedabad, it was observed that majority i.e., 71.4% respondents, who never purchase interior paint, while 80% respondents, who rarely purchase interior paints, had family members no more than 4. Moreover, 68.8% respondents, who sometimes purchase interior paints, while 76.2% respondents, who always prefer to buy interior paints for their houses, had family member no more than 4. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 0.946; p value = 0.918) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of interior paint purchase.
- In Surat, it was observed that majority i.e., 47.2% respondents, who never purchase interior paint, while 64.3% respondents, who rarely purchase interior paints, had family members no more than 4. Moreover, 22.2% respondents, who sometimes purchase interior paints, while 67.9% respondents, who always prefer to buy interior paints for their houses, had family member no more than 4. Further, in Surat, there was a significant difference (Chi-Square = 12.180; p value = 0.016) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of interior paint purchase.
- In Rajkot, it was observed that majority i.e., 62.2% respondents, who never purchase interior paint, while 65% respondents, who rarely purchase interior paints, had family members no more than 4. Moreover, 50.9% respondents, who sometimes purchase interior paints, while 50.9% respondents, who always prefer to buy interior paints for their houses, had family member no more than 4. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 5.091; p value = 0.278) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of interior paint purchase. (Ref. Table 5.4.86)

Table 5.4.87: Respondents' city wise opinion regarding their Consistency of Purchasing
Interior Paints across Family Type

		Purchasing Consistency													
	Family	Never		Rarely		Sometime		О	ften	Always		Total		Significance#	
CITY*	Family Type**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Nuclear	7	30.4	0	.0	12	80.0	104	74.3	15	71.4	138	69.0	20.953	0.000
V	Joint	16	69.6	1	100.0	3	20.0	36	25.7	6	28.6	62	31.0	20.933	0.000
	Total	23	18.5	1	1.1	15	15.5	140	42.3	21	13.0	200	25.0		
A	Nuclear	18	64.3	7	70.0	11	68.8	88	75.2	23	79.3	147	73.5	2.148	0.709
А	Joint	10	35.7	3	30.0	5	31.3	29	24.8	6	20.7	53	26.5		0.709
	Total	28	22.6	10	11.5	16	16.5	117	35.3	29	18.0	200	25.0		
S	Nuclear	15	41.7	37	66.1	2	22.2	33	76.7	42	75.0	129	64.5	20.795	0.000
	Joint	21	58.3	19	33.9	7	77.8	10	23.3	14	25.0	71	35.5	20.793	0.000
	Total	36	29.0	56	64.4	9	9.3	43	13.0	56	34.8	200	25.0		
R	Nuclear	16	43.2	14	70.0	34	59.6	24	77.4	33	60.0	121	60.5	0.102	0.059
K	Joint	21	56.8	6	30.0	23	40.4	7	22.6	22	40.0	79	39.5	9.102	0.059
	Total	37	29.8	20	23.0	57	58.8	31	9.4	55	34.2	200	25.0		
0	Nuclear	56	45.2	58	66.7	59	60.8	249	75.2	113	70.2	535	66.9	39.215	0.000
U	Joint	68	54.8	29	33.3	38	39.2	82	24.8	48	29.8	265	33.1		0.000
	Total 124 100.0 87 100.0 97 100.0 331 100.0 161 100.0 800 100.0														
* V = Va	dodara, A=A	hmeda	bad, S=Sı	ırat, R	=Rajkot,	O= Ove	erall;		•	•			•	•	·
# Statisti	c is significa	nt at 0.	05 level		•		•		•	•			•	•	

- In overall, it was observed that majority i.e., 45.2% respondents, who never purchase interior paint, while 66.7% respondents, who rarely purchase interior paints, were from nuclear family type. Moreover, 60.8% respondents, who sometimes purchase interior paints, while 70.2% respondents, who always prefer to buy interior paints for their houses, were also having nuclear family type. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 39.215; p value = 0.000) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of interior paint purchase.
- In Vadodara, it was observed that majority i.e., 30.4% respondents, who never purchase interior paint, had a joint family while none of respondents, who rarely purchase interior paints, were from nuclear family type. Moreover, 80% respondents, who sometimes purchase interior paints, while 71.4% respondents, who always prefer to buy interior paints for their houses, were also having nuclear family type. Further, in Vadodara, there was a significant difference (Chi-Square = 20.953; p value = 0.000) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of interior paint purchase.

- In Ahmedabad, it was observed that majority i.e., 64.3% respondents, who never purchase interior paint, while 70% respondents, who rarely purchase interior paints, were from nuclear family type. Moreover, 68.8% respondents, who sometimes purchase interior paints, while 79.3% respondents, who always prefer to buy interior paints for their houses, were also having nuclear family type. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 2.148; p value = 0.709) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of interior paint purchase.
- In Surat, it was observed that majority i.e., 41.7% respondents, who never purchase interior paint, while 66.1% respondents, who rarely purchase interior paints, were from nuclear family type. Moreover, 76.7% respondents, who often purchase interior paints, while 75% respondents, who always prefer to buy interior paints for their houses, were also having nuclear family type. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 20.795; p value = 0.000) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of interior paint purchase.
- In Rajkot, it was observed that majority i.e., 43.2% respondents, who never purchase interior paint, while 70% respondents, who rarely purchase interior paints, were from nuclear family type. Moreover, 77.4% respondents, who often purchase interior paints, while 60% respondents, who always prefer to buy interior paints for their houses, were also having nuclear family type. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 9.102; p value = 0.059) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of interior paint purchase. (Ref. Table 5.4.87)

Table 5.4.88: Respondents' city wise opinion regarding their Consistency of Purchasing
Interior Paints across their Children Group

						Pι	ırchasing	g Consi	istency						
City*	Child	Never		Rarely		Sor	netime	0	ften	Always		Total		Significance#	
Спу	**	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
V	0	6	26.1	0	.0	2	13.3	25	17.9	3	14.3	36	18.0		
	1	6	26.1	0	.0	6	40.0	40	28.6	2	9.5	54	27.0	7.618	0.472
v	2	11	47.8	1	100	7	46.7	75	53.6	16	76.2	110	55.0	7.010	0.472
	3 or +	0	.0	0	.0	0	.0	0	.0	0	.0	0	.0		
	Total	23	18.5	1	1.1	15	15.5	140	42.3	21	13.0	200	25.0		
	0	9	32.1	1	10.0	5	31.3	21	17.9	5	17.2	41	20.5		
A	1	3	10.7	2	20.0	3	18.8	24	20.5	8	27.6	40	20.0	7.837	0.798
A	2	14	50.0	7	70.0	7	43.8	66	56.4	15	51.7	109	54.5	7.837	0.798
	3 or +	2	7.1	0	.0	1	6.3	6	5.1	1	3.4	10	5.0		
	Total	28	22.6	10	11.5	16	16.5	117	35.3	29	18.0	200	25.0		
s	0	8	22.2	4	7.1	1	11.1	2	4.7	5	8.9	20	10.0	20.244	
	1	3	8.3	9	16.1	3	33.3	14	32.6	7	12.5	36	18.0		0.063
3	2	24	66.7	42	75.0	5	55.6	25	58.1	40	71.4	136	68.0	20.244	0.003
	3 or +	1	2.8	1	1.8	0	.0	2	4.7	4	7.1	8	4.0		
	Total	36	29.0	56	64.4	9	9.3	43	13.0	56	34.8	200	25.0		
	0	1	2.7	4	20.0	20	35.1	13	41.9	15	27.3	53	26.5		
R	1	5	13.5	0	.0	3	5.3	0	.0	2	3.6	10	5.0	25.046	0.015
K	2	29	78.4	16	80.0	33	57.9	17	54.8	36	65.5	131	65.5	25.040	0.015
	3 or +	2	5.4	0	.0	1	1.8	1	3.2	2	3.6	6	3.0		
	Total	37	29.8	20	23.0	57	58.8	31	9.4	55	34.2	200	25.0		
0	0	24	19.4	9	10.3	28	28.9	61	18.4	28	17.4	150	18.8		
	1	17	13.7	11	12.6	15	15.5	78	23.6	19	11.8	140	17.5	30.588	0.002
	2	78	62.9	66	75.9	52	53.6	183	55.3	107	66.5	486	60.8	30.588	0.002
	3 or +	5	4.0	1	1.1	2	2.1	9	2.7	7	4.3	24	3.0		i
	Total	124	100.0	87	100.0	97	100.0	331	100.0	161	100.0	800	100.0		
* V = '	Vadodara	, A=Ah	medabad	, S=Si	urat, R=R	ajkot,	O= Ove	rall;							
** Chil	dren : 0 =	No chi	ild; 1 = 1	Child	; 2 = 2 C	hildre	n; 3+=3	or mor	e than 3						
# Statis	stic is sign	ificant	t at 0.05	level											

In overall, majority of the respondents, who never paint their houses with interior paint, majority i.e., 62.9%, had two children while only 4% respondents had three or more children. Moreover, majority i.e., 75.9%, respondents, who rarely paint their houses with interior paint, had two children while 10.3% respondents didn't have any child. Further, majority i.e., 55.3%, respondents, who often paint their houses with interior paint, had two children while 18.4% respondents didn't have a child. Furthermore, majority i.e., 66.5%, respondents, who always paint their houses with interior paint, had two children while 11.8% respondents had one child. In overall, significant difference (Chi-Square Value = 30.588 & p Value = 0.002) was observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy interior paints.

- In Vadodara, majority of the respondents, who never paint their houses with interior paint, majority i.e., 47.8%, had two children. Moreover, all respondents, who rarely paint their houses with interior paint, had two children. Further, majority i.e., 53.6%, respondents, who often paint their houses with interior paint, had two children while 17.9% respondents didn't have a child. In Vadodara, significant difference (Chi-Square Value = 7.618 & p Value = 0.472) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy interior paints.
- In Ahmedabad, majority of the respondents, who never paint their houses with interior paint, majority i.e., 50%, had two children while only 7.1% respondents had three or more children. Moreover, majority i.e., 70%, respondents, who rarely paint their houses with interior paint, had two children while 10% respondents didn't have any child. Further, majority i.e., 56.4%, respondents, who often paint their houses with interior paint, had two children while 17.9% respondents didn't have a child. Furthermore, majority i.e., 51.7%, respondents, who always paint their houses with interior paint, had two children while 17.2% respondents had one child. In Ahmedabad, significant difference (Chi-Square Value = 7.837 & p Value = 0.798) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy interior paints.
- In Surat, majority of the respondents, who never paint their houses with interior paint, majority i.e., 66.7%, had two children while only 2.8% respondents had three or more children. Moreover, majority i.e., 75%, respondents, who rarely paint their houses with interior paint, had two children while 7.1% respondents didn't have any child. Further, majority i.e., 58.1%, respondents, who often paint their houses with interior paint, had two children while 4.7% respondents didn't have a child. Furthermore, majority i.e., 71.4%, respondents, who never paint their houses with interior paint, had two children while 8.9% respondents had one child. In Surat, significant difference (Chi-Square Value = 20.244 & p Value = 0.063) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy interior paints.

• In Rajkot, majority of the respondents, who never paint their houses with interior paint, majority i.e., 78.4%, had two children while only 5.4% respondents had three or more children. Moreover, majority i.e., 80%, respondents, who rarely paint their houses with interior paint, had two children while 20% respondents didn't have any child. Further, majority i.e., 54.8%, respondents, who often paint their houses with interior paint, had two children while 41.9% respondents didn't have a child. Furthermore, only 27.3% respondents, who never paint their houses with interior paint, didn't have a child while 65.5% respondents had 2 children. In Rajkot, significant difference (Chi-Square Value = 25.046 & p Value = 0.015) was observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy interior paints. (Ref. Table 5.4.88)

Table 5.4.89: Respondents' opinion regarding their Consistency of Purchasing Clear Finish
Wood Surface Paints across four Selected Cities of Gujarat

	Purchasing Consistency											
	No	ever	Rarely		Sometime		Often		Always		Total	
CITY	N	%	N	%	N	%	N	%	N	%	N	%
Vadodara	23	11.7	8	8.4	57	30.8	109	38.4	3	7.7	200	25.0
Ahmedabad	31	15.7	17	17.9	54	29.2	95	33.5	3	7.7	200	25.0
Surat	89	45.2	6	6.3	50	27.0	42	14.8	13	33.3	200	25.0
Rajkot	54	27.4	64	67.4	24	13.0	38	13.4	20	51.3	200	25.0
Total	197	100.0	95	100.0	185	100.0	284	100.0	39	100.0	800	100.0
Chi-Square value	238.781											
p Value	0.000	0.000 (Statistic is significant at 0.05 level)										

- It could be observed from above table that respondents from Vadodara and Ahmedabad were more likely to buy clear finish wood surface paints, when they wanted to paint their places, compare to respondents from Surat and Rajkot.
- 45.2% respondents who never purchase clear finish wood surface paints were from Surat and 27.4% respondents were from Rajkot. While, in this case respondents from Vadodara were only 11.7% and 15.7% respondents were from Ahmedabad.
- 51.3% respondents who always purchase clear finish wood surface paints were from Rajkot and 33.3% respondents were from Surat. While, in this case only 7.7% respondents were from Vadodara and Rajkot each.
- 67.4% respondents who rarely purchase clear finish wood surface paints were from Rajkot while 38.4% respondents and 33.5% respondents who purchase clear finish wood surface often were from Vadodara and Ahmedabad respectively.
- With high Chi-Square value (238.781) and high significance level (p=0.000), it could be said that there was a significant difference in purchase of clear finish wood surface paints between respondents of all four cities of Gujarat state. (Ref. Table 5.4.89)

Table 5.4.90: Respondents' city wise opinion regarding their Consistency of Purchasing Clear Finish Wood Surface Paints across their Age Groups

V =37 4 17.4 5 62.5 25 43.9 39 35.8 1 33.3 74 37.0 40.117 0.000 V 38-46 1 4.3 3 37.5 22 38.6 46 42.2 1 33.3 73 36.5 40.117 0.000 >46 18 78.3 0 .0 10 17.5 24 22.0 1 33.3 53 26.5 Total 23 11.7 8 8.4 57 30.8 109 38.4 3 7.7 200 25.0 4 38-46 5 16.1 4 23.5 19 35.2 31 32.6 0 .0 59 29.5 31.742 0.000 Total 31 15.7 17 17.9 54 29.2 95 33.5 3 7.7 200 25.0 5 38-46 30 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>Pur</th><th>chasing</th><th>Consis</th><th>tency</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							Pur	chasing	Consis	tency						
V	City*	Ago	Never		Rarely		Sometime		0	ften	Always		Total		Significance #	
V 38-46 1 4.3 3 37.5 22 38.6 46 42.2 1 33.3 73 36.5 40.117 0.000 Fotal 23 11.7 8 8.4 57 30.8 109 38.4 3 7.7 200 25.0 A 38-46 5 16.1 4 23.5 19 35.2 31 32.6 0 .0 59 29.5 31.742 0.000 A 38-46 5 16.1 4 23.5 19 35.2 31 32.6 0 .0 59 29.5 31.742 0.000 Total 31 15.7 17 17.9 54 29.2 95 33.5 3 7.7 200 25.0 S 38-46 30 33.7 2 33.3 16 32.0 17 40.5 2 15.4 67 33.5 25.108 0.000 S	City"	Age	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
No. No.		<=37	4	17.4	5	62.5	25	43.9	39	35.8	1	33.3	74	37.0		
Total 23 11.7 8 8.4 57 30.8 109 38.4 3 7.7 200 25.0 A =37 3 9.7 10 58.8 18 33.3 33 34.7 3 100 67 33.5 3.5 38.46 5 16.1 4 23.5 19 35.2 31 32.6 0 .0 59 29.5 31.742 0.000 Fotal 31 15.7 17 17.9 54 29.2 95 33.5 3 7.7 200 25.0 25.0 25.0 33.5 3 7.7 200 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.1 25.108 25.108 0.000 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 <	\mathbf{V}	38-46	1	4.3	3	37.5	22	38.6	46	42.2	1	33.3	73	36.5	40.117	0.000
C=37 3 9.7 10 58.8 18 33.3 33 34.7 3 100 67 33.5 38-46 5 16.1 4 23.5 19 35.2 31 32.6 0 .0 59 29.5 31.742 0.0000000000000000000000000000000000		>46	18	78.3	0	.0	10	17.5	24	22.0	1	33.3	53	26.5		
A 38-46 5 16.1 4 23.5 19 35.2 31 32.6 0 .0 59 29.5 31.742 0.000 Total 31 15.7 17 17.9 54 29.2 95 33.5 3 7.7 200 25.0		Total	23	11.7	8	8.4	57	30.8	109	38.4	3	7.7	200	25.0		
No. No.		<=37	3	9.7	10	58.8	18	33.3	33	34.7	3	100	67	33.5		
Total 31 15.7 17 17.9 54 29.2 95 33.5 3 7.7 200 25.0 S 38-46 30 33.7 2 33.3 16 32.0 17 40.5 2 15.4 67 33.5 25.108	A	38-46	5	16.1	4	23.5	19	35.2	31	32.6	0	.0	59	29.5		0.000
S S S S S S S S S S		>46	23	74.2	3	17.6	17	31.5	31	32.6	0	.0	74	37.0		
S 38-46 30 33.7 2 33.3 16 32.0 17 40.5 2 15.4 67 33.5 25.108 0.000 Yes Section Section		Total	31	15.7	17	17.9	54	29.2	95	33.5	3	7.7	200	25.0		
>46 42 47.2 2 33.3 8 16.0 10 23.8 4 30.8 66 33.0 Total 89 45.2 6 6.3 50 27.0 42 14.8 13 33.3 200 25.0 R 38-46 12 22.2 16 25.0 8 33.3 15 39.5 3 15.0 54 27.0 36.813 0.000 A6 34 63.0 19 29.7 3 12.5 7 18.4 5 25.0 68 34.0 Total 54 27.4 64 67.4 24 13.0 38 13.4 20 51.3 200 25.0 <=37 32 16.2 46 48.4 82 44.3 103 36.3 23 59.0 286 35.8 O 38-46 48 24.4 25 26.3 65 35.1 109 38.4		<=37	17	19.1	2	33.3	26	52.0	15	35.7	7	53.8	67	33.5		
Total 89 45.2 6 6.3 50 27.0 42 14.8 13 33.3 200 25.0 R	S	38-46	30	33.7	2	33.3	16	32.0	17	40.5	2	15.4	67	33.5	25.108	0.001
R		>46	42	47.2	2	33.3	8	16.0	10	23.8	4	30.8	66	33.0		
R 38-46 12 22.2 16 25.0 8 33.3 15 39.5 3 15.0 54 27.0 36.813 0.000		Total	89	45.2	6	6.3	50	27.0	42	14.8	13	33.3	200	25.0		
>46 34 63.0 19 29.7 3 12.5 7 18.4 5 25.0 68 34.0 Total 54 27.4 64 67.4 24 13.0 38 13.4 20 51.3 200 25.0 C =37 32 16.2 46 48.4 82 44.3 103 36.3 23 59.0 286 35.8 35.8 38-46 48 24.4 25 26.3 65 35.1 109 38.4 6 15.4 253 31.6 105.450 >46 117 59.4 24 25.3 38 20.5 72 25.4 10 25.6 261 32.6 Total 197 100.0 95 100.0 185 100.0 284 100.0 39 100.0 800 100.0		<=37	8	14.8	29	45.3	13	54.2	16	42.1	12	60.0	78	39.0		
Total 54 27.4 64 67.4 24 13.0 38 13.4 20 51.3 200 25.0 <=37 32 16.2 46 48.4 82 44.3 103 36.3 23 59.0 286 35.8 38-46 48 24.4 25 26.3 65 35.1 109 38.4 6 15.4 253 31.6 105.450 0.000 >46 117 59.4 24 25.3 38 20.5 72 25.4 10 25.6 261 32.6 Total 197 100.0 95 100.0 185 100.0 284 100.0 39 100.0 800 100.0 0.000	R	38-46	12	22.2	16	25.0	8	33.3	15	39.5	3	15.0	54	27.0	36.813	0.000
C<=37 32 16.2 46 48.4 82 44.3 103 36.3 23 59.0 286 35.8 35.8 38.4 35.8 38.4 6 15.4 253 31.6 105.450 0.000 38-46 117 59.4 24 25.3 38 20.5 72 25.4 10 25.6 261 32.6 Total 197 100.0 95 100.0 185 100.0 284 100.0 39 100.0 800 100.0		>46	34	63.0	19	29.7	3	12.5	7	18.4	5	25.0	68	34.0	31.742 31.742 31.742 31.742 31.742 31.742 31.742 31.742 31.742 31.742 31.742 31.742	
O 38-46 48 24.4 25 26.3 65 35.1 109 38.4 6 15.4 253 31.6 105.450 0.000 >46 117 59.4 24 25.3 38 20.5 72 25.4 10 25.6 261 32.6 Total 197 100.0 95 100.0 185 100.0 284 100.0 39 100.0 800 100.0		Total	54	27.4	64	67.4	24	13.0	38	13.4	20	51.3	200	25.0		
>46 117 59.4 24 25.3 38 20.5 72 25.4 10 25.6 261 32.6 Total 197 100.0 95 100.0 185 100.0 284 100.0 39 100.0 800 100.0		<=37	32	16.2	46	48.4	82	44.3	103	36.3	23	59.0	286	35.8		
Total 197 100.0 95 100.0 185 100.0 284 100.0 39 100.0 800 100.0	O	38-46	48	24.4	25	26.3	65	35.1	109	38.4	6	15.4	253	31.6	105.450	0.000
		>46	117	59.4	24	25.3	38	20.5	72	25.4	10	25.6	261	32.6		
* V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall;		Total	197	100.0	95	100.0	185	100.0	284	100.0	39	100.0	800	100.0		
	* V =	Vadod	ara, A	=Ahm	edab	ad, S=S	Surat,	R=Rajk	ot, O	= Over	all;					
# Statistic is significant at 0.05 level	# Statis	stic is sign	nifican	t at 0.05	level											

- In overall, respondents who never purchase clear finish wood surfaces, majority i.e., 59.4% respondents were of age above 46 years. Moreover, respondents who purchase clear finish wood surface paints rarely, only 25.3% respondents were of age more than 46 years while 48.4% respondents were of age 37 years or less. Further, 44.3% respondents, who buy clear finish wood surface paints sometimes, and 36.3% respondents, who often buy clear finish wood surface paints, were of age 37 years or less. Respondents who always buy clear finish wood surface paints, 59% were of age no more than 37 years. Furthermore, in overall, high significant difference (Chi-Square Value = 105.450 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy clear finish wood surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Vadodara, respondents who never purchase clear finish wood surfaces, majority i.e., 78.3% respondents were of age above 46 years. Moreover, respondents who purchase clear finish wood surface paints rarely, none of the respondents were of age more than 46 years while 62.5% respondents were of age no more than 37 years. Further, 35.8% respondents,

who often buy clear finish wood surface paints, and 33.3% respondents, who always buy clear finish wood surface paints, were of age 37 years or less. Respondents who always buy clear finish wood surface paints, majority i.e., 42.2% were of age between 37 years and 46 years. Furthermore, in Vadodara, high significant difference (Chi-Square Value = 40.117 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy clear finish wood surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.

- In Ahmedabad, respondents who never purchase clear finish wood surfaces, majority i.e., 74.52% respondents were of age above 46 years. Moreover, respondents who purchase clear finish wood surface paints rarely, only 17.6% respondents were of age more than 46 years while 58.8% respondents were of age 37 years or less. Further, only35.2% respondents, who buy clear finish wood surface paints sometimes, and 32.6% respondents, who often buy clear finish wood surface paints, were of age between 37 years to 46 years. Respondents who always buy clear finish wood surface paints, none of the respondents were of age above 37 years. Furthermore, in Ahmedabad, high significant difference (Chi-Square Value = 31.742 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy clear finish wood surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Surat, respondents who never purchase clear finish wood surfaces, majority i.e., 47.2% respondents were of age above 46 years. Moreover, respondents who purchase clear finish wood surface paints rarely, 33.3% respondents were of age more than 46 years, and 33.3% respondents were of age 37 years or less. Further, 52% respondents, who buy clear finish wood surface paints sometimes, and 35.7% respondents, who often buy clear finish wood surface paints, were of age 37 years or less. Respondents who always buy clear finish wood surface paints, only 15.4% were of age between 37 years and 46 years while 53.8% respondents were of age no more than 37 years. Furthermore, in Surat, high significant difference (Chi-Square Value = 25.108 & p Value = 0.001) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy clear

- finish wood surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Rajkot, respondents who never purchase clear finish wood surfaces, majority i.e., 63% respondents were of age above 46 years. Moreover, respondents who purchase clear finish wood surface paints rarely, only 48.4% respondents were of age no more than 37 years while 29.7% respondents were of age above 46 years. Further, 54.2% respondents, who buy clear finish wood surface paints sometimes, and 42.1% respondents, who often buy clear finish wood surface paints, were of age 37 years or less. Respondents who always buy clear finish wood surface paints, only 15% were of age between 37 years and 46 years while 60% respondents were of age 37 years or less. Furthermore, in Rajkot, high significant difference (Chi-Square Value = 36.813 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy clear finish wood surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years. (Ref. Table 5.4.90)

Table 5.4.91: Respondents' city wise opinion regarding their Consistency of Purchasing

Clear Finish Wood Surface Paints across their Gender

						Pur	chasing (Consist	ency						
		No	ever	Ra	rely	Som	etime	О	ften	Al	lways	T	otal	Signific	ance#
CITY*	Gender	N	%	N	%	N	%	N	%	N	%	N	%	Chi-	p
				_										Square	value
v	Male	12	52.2	5	62.5	45	78.9	78	71.6	2	66.7	142	71.0	6.032	0.197
· ·	Female	11	47.8	3	37.5	12	21.1	31	28.4	1	33.3	58	29.0	0.052	0.177
	Total	23	11.7	8	8.4	57	30.8	109	38.4	3	7.7	200	25.0		
	Male	31	100.0	12	70.6	37	68.5	71	74.7	1	33.3	152	76.0	14.797	0.005
A	Female	0	.0	5	29.4	17	31.5	24	25.3	2	66.7	48	24.0	14.797	0.005
	Total	31	15.7	17	17.9	54	29.2	95	33.5	3	7.7	200	25.0		
S	Male	66	74.2	5	83.3	32	64.0	27	64.3	11	84.6	141	70.5	4.089	0.394
3	Female	23	25.8	1	16.7	18	36.0	15	35.7	2	15.4	59	29.5	4.009	0.394
	Total	89	45.2	6	6.3	50	27.0	42	14.8	13	33.3	200	25.0		
R	Male	48	88.9	42	65.6	16	66.7	27	71.1	12	60.0	145	72.5	10.809	0.029
K	Female	6	11.1	22	34.4	8	33.3	11	28.9	8	40.0	55	27.5	10.809	0.029
	Total	54	27.4	64	67.4	24	13.0	38	13.4	20	51.3	200	25.0		
0	Male	157	79.7	64	67.4	130	70.3	203	71.5	26	66.7	580	72.5	7.646	0.105
U	Female	40	20.3	31	32.6	55	29.7	81	28.5	13	33.3	220	27.5	7.040	0.103
	Total	197	100.0	95	100.0	185	100.0	284	100.0	39	100.0	800	100.0		
* V = V	/adodara,	A=Al	nmedaba	ad, S=	Surat, R	R=Rajl	cot, O=	Overa	.11;			•			•
# Statistic	c is significa	nt at 0.	.05 level												

- In overall, it was observed that majority i.e., 79.7% male respondents never purchase clear finish wood surface paint while 67.4% male respondents rarely purchase clear finish wood surface paints. Moreover, compared to total 27.5% female respondents from Gujarat, 29.7% female respondents sometimes purchase clear finish wood surface paints while 33.3% female respondents always prefer to buy clear finish wood surface paints for their houses. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there wasn't a significant difference (Chi-Square = 7.646; p value = 0.105) between male and female respondents regarding their regularity of clear finish wood surface paint purchase.
- In Vadodara, it was observed that majority i.e., 71.6% male respondents often purchase clear finish wood surface paint while only 52.2% male respondents never purchase clear finish wood surface paints. Moreover, compared to total 29% female respondents from Vadodara, 47.8% female respondents never purchase clear finish wood surface paints while 21.1% female respondents sometimes prefer to buy clear finish wood surface paints for their houses. Further, in Vadodara, there wasn't a significant difference (Chi-Square = 6.032; p value = 0.197) between male and female respondents regarding their regularity of clear finish wood surface paint purchase.

- In Ahmedabad, it was observed that all respondents, who never purchase clear finish wood surface paint, were male while 70.6% male respondents rarely purchase clear finish wood surface paints. Moreover, compared to total 24% female respondents from Ahmedabad, 25.3% female respondents often purchase clear finish wood surface paints while 66.7% female respondents always prefer to buy clear finish wood surface paints for their houses. Further, in Ahmedabad, there was a significant difference (Chi-Square = 14.797; p value = 0.005) between male and female respondents regarding their regularity of clear finish wood surface paint purchase.
- In Surat, it was observed that majority i.e., 74.2% male respondents never purchase clear finish wood surface paint while 83.3% male respondents rarely purchase clear finish wood surface paints. Moreover, compared to total 29.5% female respondents from Surat, 36% female respondents sometimes purchase clear finish wood surface paints while 15.4% female respondents always prefer to buy clear finish wood surface paints for their houses. Further, in Surat, there wasn't a significant difference (Chi-Square = 4.089; p value = 0.394) between male and female respondents regarding their regularity of clear finish wood surface paint purchase.
- In Rajkot, it was observed that majority i.e., 88.9% male respondents never purchase clear finish wood surface paint while 65.6% male respondents rarely purchase clear finish wood surface paints. Moreover, compared to total 27.5% female respondents from Rajkot, 33.3% female respondents sometimes purchase clear finish wood surface paints while 40% female respondents always prefer to buy clear finish wood surface paints for their houses. Further, in Rajkot, there was a significant difference (Chi-Square = 10.809; p value = 0.029) between male and female respondents regarding their regularity of clear finish wood surface paint purchase. (Ref. Table 5.4.91)

Table 5.4.92: Respondents' city wise opinion regarding their Consistency of Purchasing Clear Finish Wood Surface Paints across their Educational Qualification

						Pur	chasing	Consis	tency						
City*	Ed.**	No	ever	R	arely	Som	etime	0	ften	Al	lways	T	otal	Significa	nce #
City	Eu.	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	UG	9	39.1	0	.0	3	5.3	2	1.8	0	.0	14	7.0		
V	Gr	13	56.5	8	100	18	31.6	40	36.7	0	.0	79	39.5	68.664	0.000
	PG	1	4.3	0	.0	36	63.2	67	61.5	3	100	107	53.5		
	Total	23	11.7	8	8.4	57	30.8	109	38.4	3	7.7	200	25.0		
	UG	16	51.6	5	29.4	4	7.4	10	10.5	0	.0	35	17.5		
A	Gr	13	41.9	8	47.1	32	59.3	56	58.9	0	.0	109	54.5	43.157	0.000
	PG	2	6.5	4	23.5	18	33.3	29	30.5	3	100	56	28.0		
	Total	31	15.7	17	17.9	54	29.2	95	33.5	3	7.7	200	25.0		
	UG	18	20.2	4	66.7	10	20.0	6	14.3	0	.0	38	19.0		
S	Gr	57	64.0	1	16.7	27	54.0	22	52.4	9	69.2	116	58.0	17.847	0.022
	PG	14	15.7	1	16.7	13	26.0	14	33.3	4	30.8	46	23.0		
	Total	89	45.2	6	6.3	50	27.0	42	14.8	13	33.3	200	25.0		
	UG	16	29.6	7	10.9	4	16.7	7	18.4	1	5.0	35	17.5		
R	Gr	32	59.3	42	65.6	11	45.8	23	60.5	10	50.0	118	59.0	18.960	0.015
	PG	6	11.1	15	23.4	9	37.5	8	21.1	9	45.0	47	23.5		
	Total	54	27.4	64	67.4	24	13.0	38	13.4	20	51.3	200	25.0		
	UG	59	29.9	16	16.8	21	11.4	25	8.8	1	2.6	122	15.3		
О	Gr	115	58.4	59	62.1	88	47.6	141	49.6	19	48.7	422	52.8	91.365	0.000
	PG	23	11.7	20	21.1	76	41.1	118	41.5	19	48.7	256	32.0		
	Total	197	100.0	95	100.0	185	100.0	284	100.0	39	100.0	800	100.0		
* V = V	Vadodara,	A=Ah	medabad	, S=Sı	ırat, R=R	lajkot, (O= Overa	all;							
** Educ	cational Q	ualifica	ation: U	G = U	nder Grad	duate; (Gr. = Gra	duate; l	PG = Pos	tgradı	ıate			-	
# Statis	stic is sign	ificant	at 0.05	level											

- In overall, it was observed that majority i.e., 58.4% of the respondents who never purchase
- In overall, it was observed that majority i.e., 58.4% of the respondents who never purchase clear finish wood surface paints were graduates while 11.7% respondents were postgraduates. Out of total 15.3% undergraduate respondents, 29.9% respondents never buy clear finish wood surface paints. Moreover, 21.1% respondents, who rarely purchase clear finish wood surface paints, were postgraduate respondents while only 16.8% respondents were undergraduates who liked to buy clear finish wood surface paints often. While, 48.7% respondents were postgraduate respondents who always preferred to buy clear finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 91.365; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of clear finish wood surface paints.
- In Vadodara, it was observed that majority i.e., 56.5% of the respondents who never purchase clear finish wood surface paints were graduates while 4.3% respondents were postgraduates. Out of total 7% undergraduate respondents from Vadodara, 39.1% respondents never buy clear finish wood surface paints. Moreover, all respondents, who

rarely purchase clear finish wood surface paints, were graduate respondents. None of the respondents were undergraduates who always buy clear finish wood surface paint. While, all respondents were postgraduate respondents who always prefer to buy clear finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 68.644; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of clear finish wood surface paints.

- In Ahmedabad, it was observed that majority i.e., 51.6% of the respondents who never purchase clear finish wood surface paints were undergraduates while only 6.5% respondents were postgraduates. Moreover, 47.1% respondents, who rarely purchase clear finish wood surface paints, were graduate respondents while only 23.5% respondents were postgraduates. 10.5% respondents were undergraduates who liked to buy clear finish wood surface paints often. While, all respondents were postgraduate respondents who always preferred to buy clear finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 43.157; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of clear finish wood surface paints.
- In Surat, it was observed that majority i.e., 64% of the respondents who never purchase clear finish wood surface paints were graduates while 15.7% respondents were postgraduates. Out of total 19% undergraduate respondents, 20.2% respondents never buy clear finish wood surface paints. Moreover, 66.7% respondents, who rarely purchase clear finish wood surface paints, were graduate respondents while only 16.7% respondents were undergraduates. 14.3% respondents were undergraduates who liked to buy clear finish wood surface paints often. While, 69.2% respondents were graduate respondents who always preferred to buy clear finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 17.847; p value = 0.022) between respondents with different educational qualifications regarding their regularity in purchase of clear finish wood surface paints.
- In Rajkot, it was observed that majority i.e., 59.3% of the respondents who never purchase clear finish wood surface paints were graduates while 11.1% respondents were postgraduates. Out of total 17.5% undergraduate respondents, 29.6% respondents never buy clear finish wood surface paints. Moreover, 23.5% respondents, who rarely purchase

clear finish wood surface paints, were postgraduate respondents while only 10.9% respondents were undergraduates. 60.5% respondents were graduates who liked to buy clear finish wood surface paints often. While, 50% respondents were graduate respondents who always preferred to buy clear finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 18.960; p value = 0.015) between respondents with different educational qualifications regarding their regularity in purchase of clear finish wood surface paints. (Ref. Table 5.4.92)

wood surface paints.

Table 5.4.93: Respondents' city wise opinion regarding their Consistency of Purchasing Clear Finish Wood Surface Paints across their Occupation

						Pur	chasing	Consis	tency						
Citv*	Oc.**	No	ever	R	arely	Som	etime	0	ften	A	lways	T	otal	Significa	nce #
City"	Oc.	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	S	13	56.5	8	100	23	40.4	36	33.0	0	.0	80	40.0		
\mathbf{V}	В	2	8.7	0	.0	19	33.3	37	33.9	2	66.7	60	30.0	22.474	0.004
	P	8	34.8	0	.0	15	26.3	36	33.0	1	33.3	60	30.0		
	Total	23	11.7	8	8.4	57	30.8	109	38.4	3	7.7	200	25.0		
	S	23	74.2	14	82.4	27	50.0	15	15.8	1	33.3	80	40.0		
A	В	2	6.5	3	17.6	12	22.2	43	45.3	0	.0	60	30.0	58.189	0.000
P 6 19.4 0 .0 15 27.8 37 38.9 2 66.7 60 30.0															
	Total	31	15.7	17	17.9	54	29.2	95	33.5	3	7.7	200	25.0		
	S	42	47.2	1	16.7	13	26.0	19	45.2	5	38.5	80	40.0		
S	В	22	24.7	3	50.0	21	42.0	12	28.6	2	15.4	60	30.0	11.226	0.189
	P	25	28.1	2	33.3	16	32.0	11	26.2	6	46.2	60	30.0		
	Total	89	45.2	6	6.3	50	27.0	42	14.8	13	33.3	200	25.0		
	S	26	48.1	14	21.9	13	54.2	16	42.1	11	55.0	80	40.0		
R	В	10	18.5	20	31.3	4	16.7	21	55.3	5	25.0	60	30.0	37.038	0.000
	P	18	33.3	30	46.9	7	29.2	1	2.6	4	20.0	60	30.0		
	Total	54	27.4	64	67.4	24	13.0	38	13.4	20	51.3	200	25.0		
	S	104	52.8	37	38.9	76	41.1	86	30.3	17	43.6	320	40.0		
O	В	36	18.3	26	27.4	56	30.3	113	39.8	9	23.1	240	30.0	34.679	0.000
	P	57	28.9	32	33.7	53	28.6	85	29.9	13	33.3	240	30.0		
	Total	197	100.0	95	100.0	185	100.0	284	100.0	39	100.0	800	100.0		
* V = V	Vadodara,	A=Ah	medabad	, S=Sı	ırat, R=R	lajkot,	O= Overa	all;							
** Occi	upation : S	S = Ser	vice Clas	s; B =	Business	s class;	P = Prof	essiona	ls					<u> </u>	
# Statis	stic is sigr	nificant	at 0.05	level											

- In overall, it was observed that majority i.e., 52.8% of the respondents who never purchase clear finish wood surface paints were service class people while 28.9% respondents were professionals. Out of total 30% business class respondents, only 18.3% respondents never buy clear finish wood surface paints. Moreover, 41.1% respondents, who sometimes purchase clear finish wood surface paints, were service class respondents. 39.8% respondents were business class people who liked to buy clear finish wood surface paints often. While, 43.6% respondents were service class respondents who always preferred to buy clear finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 34.679; p value = 0.000) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of clear finish
- In Vadodara, it was observed that majority i.e., 56.5% of the respondents who never purchase clear finish wood surface paints were service class people while 34.8% respondents were professionals. Out of total 30% business class respondents, only 8.7% respondents never buy clear finish wood surface paints. Moreover, 40.4% respondents, who sometimes purchase

clear finish wood surface paints, were service class respondents. 33.9% respondents who liked to buy clear finish wood surface paints often and 66.7% respondents who always preferred to buy clear finish wood surface paints, were business class people. Furthermore, it was also observed that there was a significant difference (Chi-Square = 22.474; p value = 0.004) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of clear finish wood surface paints.

- In Ahmedabad, it was observed that majority i.e., 74.2% of the respondents who never purchase clear finish wood surface paints were service class people while 19.4% respondents were professionals. Out of total 30% business class respondents, only 6.5% respondents never buy clear finish wood surface paints. Moreover, 50% respondents, who sometimes purchase clear finish wood surface paints, were service class respondents and22.2% respondents were business class people. While, 66.7% respondents were professional respondents who always preferred to buy clear finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 58.189; p value = 0.000) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of clear finish wood surface paints.
- In Surat, it was observed that majority i.e., 47.2% of the respondents who never purchase clear finish wood surface paints were service class people while 28.1% respondents were professionals. Out of total 30% business class respondents, only 24.7% respondents never buy clear finish wood surface paints. Moreover, 42% respondents, who sometimes purchase clear finish wood surface paints, were service class respondents. 45.2% respondents were service class people who liked to buy clear finish wood surface paints often. While, 46.2% respondents were professional respondents who always preferred to buy clear finish wood surface paints. Furthermore, it was also observed that there wasn't a significant difference (Chi-Square = 11.226; p value = 0.189) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of clear finish wood surface paints.
- In Rajkot, it was observed that majority i.e., 48.1% of the respondents who never purchase clear finish wood surface paints were service class people while 33.3% respondents were professionals. Out of total 30% business class respondents, only 18.5% respondents never buy clear finish wood surface paints. Moreover, 54.2% respondents, who sometimes purchase

clear finish wood surface paints, were service class and professional respondents each. 55.3% respondents were business class people who liked to buy clear finish wood surface paints often. While, 55% respondents were service class respondents who always preferred to buy clear finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 37.038; p value = 0.000) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of clear finish wood surface paints. (Ref. Table 5.4.93)

Table 5.4.94: Respondents' city wise opinion regarding their Consistency of Purchasing Clear Finish Wood Surface Paints across their Monthly Income groups

						Pur	chasing	Consis	tency						
Citv*	MI**	No	ever	R	arely	Som	etime	0	ften	A	lways	T	otal	Significa	nce #
City"	IVII""	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	MI – 1	14	60.9	5	62.5	21	36.8	38	34.9	1	33.3	79	39.5		
\mathbf{V}	MI - 2	7	30.4	2	25.0	18	31.6	35	32.1	2	66.7	64	32.0	11.437	0.178
	MI - 3	2	8.7	1	12.5	18	31.6	36	33.0	0	.0	57	28.5		
	Total	23	11.7	8	8.4	57	30.8	109	38.4	3	7.7	200	25.0		
	MI – 1	20	64.5	11	64.7	26	48.1	38	40.0	2	66.7	97	48.5		
A	MI - 2	6	19.4	4	23.5	9	16.7	19	20.0	0	.0	38	19.0	11.711	0.165
	MI - 3	5	16.1	2	11.8	19	35.2	38	40.0	1	33.3	65	32.5		
	Total	31	15.7	17	17.9	54	29.2	95	33.5	3	7.7	200	25.0		
	MI – 1	36	40.4	0	.0	15	30.0	8	19.0	3	23.1	62	31.0		
\mathbf{S}	MI - 2	25	28.1	3	50.0	11	22.0	20	47.6	3	23.1	62	31.0	16.536	0.035
	MI - 3	28	31.5	3	50.0	24	48.0	14	33.3	7	53.8	76	38.0		
	Total	89	45.2	6	6.3	50	27.0	42	14.8	13	33.3	200	25.0		
	MI – 1	5	9.3	12	18.8	7	29.2	6	15.8	4	20.0	34	17.0		
R	MI - 2	29	53.7	32	50.0	10	41.7	19	50.0	8	40.0	98	49.0	5.772	0.673
	MI - 3	20	37.0	20	31.3	7	29.2	13	34.2	8	40.0	68	34.0		
	Total	54	27.4	64	67.4	24	13.0	38	13.4	20	51.3	200	25.0		
	MI – 1	75	38.1	28	29.5	69	37.3	90	31.7	10	25.6	272	34.0		
O	MI - 2	67	34.0	41	43.2	48	25.9	93	32.7	13	33.3	262	32.8	13.751	0.088
	MI - 3	55	27.9	26	27.4	68	36.8	101	35.6	16	41.0	266	33.3		
	Total	197	100.0	95	100.0	185	100.0	284	100.0	39	100.0	800	100.0		
* V = '	Vadodara,	A=Ahı	medabad,	, S=Sι	ırat, R=R	ajkot, ()= Overa	11;							
** Mo	nthly Inco	me : M	II − 1 : <=	29160	6.67, MI -	- 2: 29	166.68-40	5250.00), MI – 3:	>462	250.00			•	
# Statis	stic is sign	ificant	at 0.05 l	evel										<u> </u>	

• In overall, it was observed that majority i.e., 38.1%, respondents, with monthly income Rs.29166.67 or less, never buy clear finish wood surface paints. While, 43.2% respondents, with monthly income between Rs.29166.67 to Rs.46250.00, rarely buy clear finish wood surface paints. Moreover, majority i.e., 37.3%, respondents who buy clear finish wood surface paint sometimes, had monthly income Rs.29166.67 or less. Further, 35.6% respondents who often buy clear finish wood surface paints and 41% respondents who always buy clear finish wood surface paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Gujarat state i.e., collectively from Vadodara, Ahmedabad, Surat and Rajkot, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 13.751; p value = 0.088) in regularity of purchasing clear finish wood surface paints.

• In Vadodara, it was observed that majority i.e., 60.9%, respondents, with monthly income Rs.29166.67 or less, never buy clear finish wood surface paints. While, 62.5% respondents, with monthly income Rs.29166.67 or less, rarely buy clear finish wood surface paints.

Moreover, majority i.e., 36.8%, respondents who buy clear finish wood surface paint sometimes, had monthly income no more than Rs.29166.67. Further, 66.7% respondents who always buy clear finish wood surface paints had monthly income between Rs.29166.67 up to Rs.46250. Furthermore, it was also observed that in Vadodara, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 11.437; p value = 0.178) in regularity of purchasing clear finish wood surface paints.

- In Ahmedabad, it was observed that majority i.e., 64.5%, respondents, with monthly income Rs.29166.67 or less, never buy clear finish wood surface paints. While, only 11.8% respondents, with monthly income above Rs.46250.00, rarely buy clear finish wood surface paints. Moreover, majority i.e., 48.1%, respondents who buy clear finish wood surface paint sometimes, had monthly income Rs.29166.67 or less. Further, 40% respondents who often buy clear finish wood surface paints and 33.3% respondents who always buy clear finish wood surface paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Ahmedabad, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 11.711; p value = 0.165) in regularity of purchasing clear finish wood surface paints.
- In Surat, it was observed that majority i.e., 40.4%, respondents, with monthly income Rs.29166.67 or less, never buy clear finish wood surface paints. While, 50% respondents, with monthly income between above Rs.46250.00, rarely buy clear finish wood surface paints. Moreover, majority i.e., 48%, respondents who buy clear finish wood surface paint sometimes, had monthly income above Rs.46250. Further, 33.3% respondents who often buy clear finish wood surface paints and 53.8% respondents who always buy clear finish wood surface paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Surat, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, had significant difference (Chi-Square = 16.536; p value = 0.035) in regularity of purchasing clear finish wood surface paints.
- In Rajkot, it was observed that 9.3%, respondents, with monthly income Rs.29166.67 or less, never buy clear finish wood surface paints. While, 50% respondents, with monthly

income between Rs.29166.67 to Rs.46250.00, rarely buy clear finish wood surface paints. Moreover, only 29.2%, respondents who buy clear finish wood surface paint sometimes, had monthly income Rs.29166.67 or less. Further, 50% respondents who often buy clear finish wood surface paints and 40% respondents who always buy clear finish wood surface paints had monthly income between Rs.29166.67 to Rs.46250. Furthermore, it was also observed that in Rajkot, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have significant difference (Chi-Square = 5.772; p value = 0.673) in regularity of purchasing clear finish wood surface paints. (Ref. Table 5.4.94)

Table 5.4.95: Respondents' city wise opinion regarding their Consistency of Purchasing Clear Finish Wood Surface Paints across their Per Capita Income Groups

						Pur	chasing	Consis	tency						
City*	PCI**	No	ever	R	arely	Som	etime	О	ften	A	lways	Т	otal	Significa	nce #
City.	PCI	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	Low	15	65.2	3	37.5	21	36.8	29	26.6	1	33.3	69	34.5		
V	Mod.	5	21.7	3	37.5	14	24.6	38	34.9	1	33.3	61	30.5	14.425	0.071
	High	3	13.0	2	25.0	22	38.6	42	38.5	1	33.3	70	35.0		
	Total	23	11.7	8	8.4	57	30.8	109	38.4	3	7.7	200	25.0		
	Low	21	67.7	10	58.8	28	51.9	34	35.8	1	33.3	94	47.0		
A	Mod.	7	22.6	4	23.5	4	7.4	29	30.5	1	33.3	45	22.5	22.133	0.005
	High	3	9.7	3	17.6	22	40.7	32	33.7	1	33.3	61	30.5		
	Total	31	15.7	17	17.9	54	29.2	95	33.5	3	7.7	200	25.0		
	Low	38	42.7	1	16.7	14	28.0	10	23.8	2	15.4	65	32.5		
S	Mod.	22	24.7	2	33.3	12	24.0	21	50.0	4	30.8	61	30.5	17.391	0.026
	High	29	32.6	3	50.0	24	48.0	11	26.2	7	53.8	74	37.0		
	Total	89	45.2	6	6.3	50	27.0	42	14.8	13	33.3	200	25.0		
	Low	12	22.2	16	25.0	9	37.5	6	15.8	6	30.0	49	24.5		
R	Mod.	26	48.1	33	51.6	9	37.5	18	47.4	9	45.0	95	47.5	5.689	0.682
	High	16	29.6	15	23.4	6	25.0	14	36.8	5	25.0	56	28.0		
	Total	54	27.4	64	67.4	24	13.0	38	13.4	20	51.3	200	25.0		
	Low	86	43.7	30	31.6	72	38.9	79	27.8	10	25.6	277	34.6		
O	Mod.	60	30.5	42	44.2	39	21.1	106	37.3	15	38.5	262	32.8	33.059	0.000
	High	51	25.9	23	24.2	74	40.0	99	34.9	14	35.9	261	32.6		
	Total	197	100.0	95	100.0	185	100.0	284	100.0	39	100.0	800	100.0		
* V=	Vadodara,	, A=Ah	medabad	, S=S	urat, R=R	Rajkot,	O= Overa	all;	•	-		-			
** PEI	R CAPITA	A INCC	OME : M	od.= 1	Moderate										
# Statis	stic is sigr	nificant	t at 0.05	level											

- In overall, it was observed that majority i.e., 43.7%, respondents, with low per capita income level, never buy clear finish wood surface paints. While, 44.2% respondents, with moderate per capita income level, rarely buy clear finish wood surface paints. Moreover, majority i.e., 40%, respondents who buy clear finish wood surface paint sometimes, had high per capita income. Further, 37.3% respondents who often buy clear finish wood surface paints and 38.5% respondents who always buy clear finish wood surface paints had moderate per capita income. Furthermore, it was also observed that in Gujarat state i.e., collectively from Vadodara, Ahmedabad, Surat and Rajkot, respondents with different per capita income group i.e., low, moderate and high, had significant difference (Chi-Square = 33.059; p value = 0.000) in regularity of purchasing clear finish wood surface paints.
- In Vadodara, it was observed that majority i.e., 65.2%, respondents, with low per capita income level, never buy clear finish wood surface paints. While, 25% respondents, with high per capita income level, rarely buy clear finish wood surface paints. Moreover, majority i.e., 38.6%, respondents who buy clear finish wood surface paint sometimes, had high per capita income. Further, 38.5% respondents who often buy clear finish wood

surface paints and 33.3% respondents who always buy clear finish wood surface paints had low per capita income. Furthermore, it was also observed that in Vadodara, respondents with different per capita income group i.e., low, moderate and high, didn't have significant difference (Chi-Square = 14.425; p value = 0.071) in regularity of purchasing clear finish wood surface paints.

- In Ahmedabad, it was observed that majority i.e., 67.7%, respondents, with low per capita income level, never buy clear finish wood surface paints. While, 58.8% respondents, with low per capita income level, rarely buy clear finish wood surface paints. Moreover, majority i.e., 51.9%, respondents, who buy clear finish wood surface paint sometimes, also had low per capita income. Further, 33.7% respondents who often buy clear finish wood surface paints and 33.3% respondents who always buy clear finish wood surface paints had high per capita income. Furthermore, it was also observed that in Ahmedabad, respondents with different per capita income group i.e., low, moderate and high, had a significant difference (Chi-Square = 22.133; p value = 0.005) in regularity of purchasing clear finish wood surface paints.
- In Surat, it was observed that majority i.e., 42.7%, respondents, with low per capita income level, never buy clear finish wood surface paints. While, 50% respondents, with high per capita income level, rarely buy clear finish wood surface paints. Moreover, majority i.e., 48%, respondents who buy clear finish wood surface paint sometimes, had high per capita income. Further, 26.2% respondents who often buy clear finish wood surface paints and 53.8% respondents who always buy clear finish wood surface paints had high per capita income. Furthermore, it was also observed that in Surat, respondents with different per capita income group i.e., low, moderate and high, had significant difference (Chi-Square = 17.391; p value = 0.026) in regularity of purchasing clear finish wood surface paints.
- In Rajkot, it was observed that majority i.e., 48.1%, respondents, with moderate per capita income level, never buy clear finish wood surface paints. While, 51.6% respondents, with moderate per capita income level, rarely buy clear finish wood surface paints. Moreover, only 25%, respondents who buy clear finish wood surface paint sometimes, had moderate per capita income. Further, 47.4% respondents who often buy clear finish wood surface paints and 45% respondents who always buy clear finish wood surface paints had high per capita income. Furthermore, it was also observed that in Rajkot, respondents with different

per capita income group i.e., low, moderate and high, didn't have a significant difference (Chi-Square = 5.689; p value = 0.682) in regularity of purchasing clear finish wood surface paints. (Ref. Table 5.4.95)

Table 5.4.96: Respondents' city wise opinion regarding their Consistency of Purchasing Clear Finish Wood Surface Paints across their Marital Status

						Pur	chasing	Consist	ency						
	Massidal	N	ever	Ra	irely	Son	netime	0	ften	A	lways	T	otal	Signific	ance #
CITY*	Marital Status**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Mar.	17	73.9	7	87.5	49	86.0	95	87.2	3	100.0	171	85.5	3.276	0.513
v	UM	6	26.1	1	12.5	8	14.0	14	12.8	0	.0	29	14.5	3.270	0.515
	Total	23	11.7	8	8.4	57	30.8	109	38.4	3	7.7	200	25.0		
	Mar.	22	71.0	12	70.6	50	92.6	87	91.6	1	33.3	172	86.0	20.400	0.000
A	UM	9	29.0	5	29.4	4	7.4	8	8.4	2	66.7	28	14.0	20.488	0.000
	Total	31	15.7	17	17.9	54	29.2	95	33.5	3	7.7	200	25.0		
S	Mar.	77	86.5	6	100.0	46	92.0	40	95.2	13	100.0	182	91.0	5.045	0.202
3	UM	12	13.5	0	.0	4	8.0	2	4.8	0	.0	18	9.0	5.045	0.283
	Total	89	45.2	6	6.3	50	27.0	42	14.8	13	33.3	200	25.0		
R	Mar.	49	90.7	49	76.6	17	70.8	32	84.2	10	50.0	157	78.5	17 122	0.003
K	UM	5	9.3	15	23.4	7	29.2	6	15.8	10	50.0	43	21.5	16.132	0.003
	Total	54	27.4	64	67.4	24	13.0	38	13.4	20	51.3	200	25.0		
0	Mar.	165	83.8	74	77.9	162	87.6	254	89.4	27	69.2	682	85.3	17 145	0.002
U	UM	32	16.2	21	22.1	23	12.4	30	10.6	12	30.8	118	14.8	17.145	0.002
	Total	197	100.0	95	100.0	185	100.0	284	100.0	39	100.0	800	100.0		
* V = Va	dodara, A=A	hmedal	oad, S=Su	ırat, R=	Rajkot, O	= Overa	all;								
** Marita	ıl Status: Mar	. = Mar	ried; UM	: Unma	rried										
# Statisti	e is significa	nt at 0	05 lovel				·		·			·			·

Statistic is significant at 0.05 level

- In overall, it was observed that majority i.e., 83.8% married respondents never purchase clear finish wood surface paint while 77.9% married respondents rarely purchase clear finish wood surface paints. Moreover, compared to total 14.8% unmarried respondents from Gujarat, 12.4% unmarried respondents sometimes purchase clear finish wood surface paints while 30.8% unmarried respondents always prefer to buy clear finish wood surface paints for their houses. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 17.145; p value = 0.002) between married and unmarried respondents regarding their regularity of clear finish wood surface paint purchase.
- In Vadodara, it was observed that majority i.e., 73.9% married respondents never purchase clear finish wood surface paint while 87.56% married respondents rarely purchase clear finish wood surface paints. Moreover, compared to total 14.5% unmarried respondents from Vadodara, only 14% unmarried respondents sometimes purchase clear finish wood surface paints for their houses. Further, in Vadodara, there wasn't a significant difference (Chi-Square = 3.276; p value = 0.513) between married and unmarried respondents regarding their regularity of clear finish wood surface paint purchase.

- In Ahmedabad, it was observed that majority i.e., 71% married respondents never purchase clear finish wood surface paint while 70.6% married respondents rarely purchase clear finish wood surface paints. Moreover, compared to total 14% unmarried respondents from Ahmedabad, 7.4% unmarried respondents sometimes purchase clear finish wood surface paints while 66.7% unmarried respondents always prefer to buy clear finish wood surface paints for their houses. Further, in Ahmedabad, there was a significant difference (Chi-Square = 20.488; p value = 0.000) between married and unmarried respondents regarding their regularity of clear finish wood surface paint purchase.
- In Surat, it was observed that majority i.e., 86.5% married respondents never purchase clear finish wood surface paint while all respondents who rarely purchase clear finish wood surface paints were married. Moreover, compared to total 9% unmarried respondents from Surat, 4.8% unmarried respondents often purchase clear finish wood surface paints while none of the respondents who always prefer to buy clear finish wood surface paints for their houses were unmarried. Further, in Surat, there wasn't a significant difference (Chi-Square = 5.045; p value = 0.283) between married and unmarried respondents regarding their regularity of clear finish wood surface paint purchase.
- In Rajkot, it was observed that majority i.e., 90.7% married respondents never purchase clear finish wood surface paint while 77.9% married respondents rarely purchase clear finish wood surface paints. Moreover, compared to total 21.5% unmarried respondents from Rajkot, 29.2% respondents who sometimes purchase clear finish wood surface paints and 50% respondents always prefer to buy clear finish wood surface paints for their houses were unmarried. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 16.132; p value = 0.003) between married and unmarried respondents regarding their regularity of clear finish wood surface paint purchase. (Ref. Table 5.4.96)

Table 5.4.97: Respondents' city wise opinion regarding their Consistency of Purchasing Clear Finish Wood Surface Paints across their Family Size

						Pur	chasing (Consist	ency						
	Family	No	ever	Ra	rely	Som	etime	0	ften	Al	ways	T	otal	Signific	ance#
CITY*	Family Size**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	1-4	13	56.5	7	87.5	46	80.7	86	78.9	2	66.7	154	77.0	6.788	0.148
v	5+	10	43.5	1	12.5	11	19.3	23	21.1	1	33.3	46	23.0	0.788	0.148
	Total	23	11.7	8	8.4	57	30.8	109	38.4	3	7.7	200	25.0		
	1-4	20	64.5	13	76.5	41	75.9	70	73.7	3	100.0	147	73.5	2 (00	0.625
A	5+	11	35.5	4	23.5	13	24.1	25	26.3	0	.0	53	26.5	2.608	0.025
	Total	31	15.7	17	17.9	54	29.2	95	33.5	3	7.7	200	25.0		
S	1-4	58	65.2	3	50.0	29	58.0	24	57.1	10	76.9	124	62.0	2.735	0.603
3	5+	31	34.8	3	50.0	21	42.0	18	42.9	3	23.1	76	38.0	2.733	0.003
	Total	89	45.2	6	6.3	50	27.0	42	14.8	13	33.3	200	25.0		
R	1-4	29	53.7	33	51.6	16	66.7	26	68.4	11	55.0	115	57.5	3.973	0.410
N	5+	25	46.3	31	48.4	8	33.3	12	31.6	9	45.0	85	42.5	3.973	0.410
	Total	54	27.4	64	67.4	24	13.0	38	13.4	20	51.3	200	25.0		
0	1-4	120	60.9	56	58.9	132	71.4	206	72.5	26	66.7	540	67.5	11.609	0.021
U	5+	77	39.1	39	41.1	53	28.6	78	27.5	13	33.3	260	32.5	11.009	0.021
	Total	197	100.0	95	100.0	185	100.0	284	100.0	39	100.0	800	100.0		
* V = Va	dodara, A=	Ahmeda	abad, S=S	urat, R=	=Rajkot, ()= Ove	all;	•			•	•	•	•	•
# Statistic	c is signific	ant at 0	.05 level	•	•	•		•			•	•	•	•	

- In overall, it was observed that majority i.e., 60.9% respondents, who never purchase clear finish wood surface paint, while 58.9% respondents, who rarely purchase clear finish wood surface paints, had family members no more than 4. Moreover, 71.4% respondents, who sometimes purchase clear finish wood surface paints, while 66.7% respondents, who always prefer to buy clear finish wood surface paints for their houses, had family member no more than 4. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 11.609; p value = 0.021) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of clear finish wood surface paint purchase.
- In Vadodara, it was observed that majority i.e., 56.5% respondents, who never purchase clear finish wood surface paint, while 87.5% respondents, who rarely purchase clear finish wood surface paints, had family members no more than 4. Moreover, 80.7% respondents, who sometimes purchase clear finish wood surface paints, while 66.7% respondents, who always prefer to buy clear finish wood surface paints for their houses, had family member no more than 4. Further, in Vadodara, there wasn't a significant difference (Chi-Square = 6.788; p value = 0.148) between respondents, with family size up to 4, and respondents,

- with family size above 4, regarding their regularity of clear finish wood surface paint purchase.
- In Ahmedabad, it was observed that majority i.e., 64.5% respondents, who never purchase clear finish wood surface paint, while 76.5% respondents, who rarely purchase clear finish wood surface paints, had family members no more than 4. Moreover, 75.9% respondents, who sometimes purchase clear finish wood surface paints, while all respondents, who always prefer to buy clear finish wood surface paints for their houses, had family member no more than 4. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 2.608; p value = 0.625) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of clear finish wood surface paint purchase.
- In Surat, it was observed that majority i.e., 65.2% respondents, who never purchase clear finish wood surface paint, while 50% respondents, who rarely purchase clear finish wood surface paints, had family members no more than 4. Moreover, 58% respondents, who sometimes purchase clear finish wood surface paints, while 76.9% respondents, who always prefer to buy clear finish wood surface paints for their houses, had family member no more than 4. Further, in Surat, there wasn't a significant difference (Chi-Square = 2.735; p value = 0.603) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of clear finish wood surface paint purchase.
- In Rajkot, it was observed that majority i.e., 53.7% respondents, who never purchase clear finish wood surface paint, while 51.6% respondents, who rarely purchase clear finish wood surface paints, had family members no more than 4. Moreover, 66.7% respondents, who sometimes purchase clear finish wood surface paints, while 55% respondents, who always prefer to buy clear finish wood surface paints for their houses, had family member no more than 4. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 3.973; p value = 0.410) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of clear finish wood surface paint purchase. (Ref. Table 5.4.97)

Table 5.4.98: Respondents' city wise opinion regarding their Consistency of Purchasing Clear Finish Wood Surface Paints across their Family Type

						Pur	chasing (Consist	ency						
	Family	N	ever	Ra	arely	Son	etime	0	ften	A	lways	Т	otal	Signific	ance #
CITY*	Type**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Nuclear	7	30.4	7	87.5	45	78.9	77	70.6	2	66.7	138	69.0	20.054	0.000
V	Joint	16	69.6	1	12.5	12	21.1	32	29.4	1	33.3	62	31.0	20.054	0.000
	Total	23	11.7	8	8.4	57	30.8	109	38.4	3	7.7	200	25.0		
A	Nuclear	18	58.1	12	70.6	44	81.5	70	73.7	3	100.0	147	73.5	6.715	0.152
А	Joint	13	41.9	5	29.4	10	18.5	25	26.3	0	.0	53	26.5	0.715	0.152
	Total	31	15.7	17	17.9	54	29.2	95	33.5	3	7.7	200	25.0		
S	Nuclear	59	66.3	3	50.0	31	62.0	25	59.5	11	84.6	129	64.5	3.564	0.468
3	Joint	30	33.7	3	50.0	19	38.0	17	40.5	2	15.4	71	35.5	3.304	0.406
	Total	89	45.2	6	6.3	50	27.0	42	14.8	13	33.3	200	25.0		
R	Nuclear	25	46.3	37	57.8	19	79.2	27	71.1	13	65.0	121	60.5	10.192	0.037
K	Joint	29	53.7	27	42.2	5	20.8	11	28.9	7	35.0	79	39.5	10.192	0.037
	Total	54	27.4	64	67.4	24	13.0	38	13.4	20	51.3	200	25.0		
0	Nuclear	109	55.3	59	62.1	139	75.1	199	70.1	29	74.4	535	66.9	20.822	0.000
U	Joint	88	44.7	36	37.9	46	24.9	85	29.9	10	25.6	265	33.1	20.822	0.000
	Total	197	100.0	95	100.0	185	100.0	284	100.0	39	100.0	800	100.0		
* V = Va	dodara, A=A	Ahmeda	bad, S=Si	ırat, R=	Rajkot, C	= Over	all;		•		•				•
# Statistic	c is significa	nt at 0.	05 level		•	•			•		•				•

- In overall, it was observed that majority i.e., 55.3% respondents, who never purchase clear finish wood surface paint, while 62.1% respondents, who rarely purchase clear finish wood surface paints, were from nuclear family type. Moreover, 75.1% respondents, who sometimes purchase clear finish wood surface paints, while 74.4% respondents, who always prefer to buy clear finish wood surface paints for their houses, were also having nuclear family type. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 20.822; p value = 0.000) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of clear finish wood surface paint purchase.
- In Vadodara, it was observed that majority i.e., 30.4% respondents, who never purchase clear finish wood surface paint, had a joint family while 87.5% respondents, who rarely purchase clear finish wood surface paints, were from nuclear family type. Moreover, 78.9% respondents, who sometimes purchase clear finish wood surface paints, while 66.7 respondents, who always prefer to buy clear finish wood surface paints for their houses, were also having nuclear family type. Further, in Vadodara, there was a significant difference (Chi-Square = 20.054; p value = 0.000) between respondents, with nuclear

- family, and respondents with joint family, regarding their regularity of clear finish wood surface paint purchase.
- In Ahmedabad, it was observed that majority i.e., 58.1% respondents, who never purchase clear finish wood surface paint, while 70.6% respondents, who rarely purchase clear finish wood surface paints, were from nuclear family type. Moreover, 81.5% respondents, who sometimes purchase clear finish wood surface paints, while all of the respondents, who always prefer to buy clear finish wood surface paints for their houses, were also having nuclear family type. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 6.715; p value = 0.152) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of clear finish wood surface paint purchase.
- In Surat, it was observed that majority i.e., 66.3% respondents, who never purchase clear finish wood surface paint, while 50% respondents, who rarely purchase clear finish wood surface paints, were from nuclear family type. Moreover, 62% respondents, who sometimes purchase clear finish wood surface paints, while 84.6% respondents, who always prefer to buy clear finish wood surface paints for their houses, were also having nuclear family type. Further, in Surat, there wasn't a significant difference (Chi-Square = 3.564; p value = 0.468) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of clear finish wood surface paint purchase.
- In Rajkot, it was observed that majority i.e., 46.3% respondents, who never purchase clear finish wood surface paint, while 57.8% respondents, who rarely purchase clear finish wood surface paints, were from nuclear family type. Moreover, 79.2% respondents, who sometimes purchase clear finish wood surface paints, while 65% respondents, who always prefer to buy clear finish wood surface paints for their houses, were also having nuclear family type. Further, in Rajkot, there was a significant difference (Chi-Square = 10.192; p value = 0.037) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of clear finish wood surface paint purchase. (Ref. Table 5.4.98)

Table 5.4.99: Respondents' city wise opinion regarding their Consistency of Purchasing **Clear Finish Wood Surface Paints across their Children Groups**

						Pur	chasing	Consis	tency						
Citv*	Child	No	ever	R	arely	Son	etime	0	ften	A	lways	T	otal	Significa	nce #
City*	**	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	0	6	26.1	2	25.0	10	17.5	18	16.5	0	.0	36	18.0		
V	1	6	26.1	3	37.5	19	33.3	25	22.9	1	33.3	54	27.0	5.329	0.722
v	2	11	47.8	3	37.5	28	49.1	66	60.6	2	66.7	110	55.0	5.529	0.722
	3 or +	0	.0	0	.0	0	.0	0	.0	0	.0	0	.0		
	Total	23	11.7	8	8.4	57	30.8	109	38.4	3	7.7	200	25.0		
	0	11	35.5	8	47.1	8	14.8	12	12.6	2	66.7	41	20.5		
A	1	3	9.7	4	23.5	10	18.5	22	23.2	1	33.3	40	20.0	33.033	0.001
A	2	13	41.9	4	23.5	32	59.3	60	63.2	0	.0	109	54.5	33.033	0.001
3 or + 4 12.9 1 5.9 4 7.4 1 1.1 0 .0 10 5.0 Total 31 15.7 17 17.9 54 29.2 95 33.5 3 7.7 200 25.0															
	Total	31	15.7	17	17.9	54	29.2	95	33.5	3	7.7	200	25.0		
	0	13	14.6	0	.0	5	10.0	2	4.8	0	.0	20	10.0		
S	1	12	13.5	0	.0	13	26.0	6	14.3	5	38.5	36	18.0	15.618	0.209
3	2	60	67.4	6	100	30	60.0	33	78.6	7	53.8	136	68.0	15.016	0.209
	3 or +	4	4.5	0	.0	2	4.0	1	2.4	1	7.7	8	4.0		
	Total	89	45.2	6	6.3	50	27.0	42	14.8	13	33.3	200	25.0		
	0	6	11.1	20	31.3	9	37.5	8	21.1	10	50.0	53	26.5		
R	1	5	9.3	3	4.7	0	.0	2	5.3	0	.0	10	5.0	20.028	0.089
K	2	41	75.9	38	59.4	15	62.5	28	73.7	9	45.0	131	65.5	20.028	0.069
	3 or +	2	3.7	3	4.7	0	.0	0	.0	1	5.0	6	3.0		
	Total	54	27.4	64	67.4	24	13.0	38	13.4	20	51.3	200	25.0		
	0	36	18.3	30	31.6	32	17.3	40	14.1	12	30.8	150	18.8		
o	1	26	13.2	10	10.5	42	22.7	55	19.4	7	17.9	140	17.5	36 021	0.000
U	2	125	63.5	51	53.7	105	56.8	187	65.8	18	46.2	486	60.8		0.000
	3 or +	10	5.1	4	4.2	6	3.2	2	.7	2	5.1	24	3.0		
	Total	197	100.0	95	100.0	185	100.0	284	100.0	39	100.0	800	100.0		
* V =	Vadodara	, A=Ah	medabad	, S=Sı	ırat, R=R	ajkot, (O= Overa	ıll;							
** Chil	dren : 0 =	No chi	1d; 1 = 1	Child	; 2 = 2 Cl	hildren	3+=3	or more	than 3						
# Statis	stic is sign	ificant	at 0.05	level							•			•	

In overall, majority of the respondents, who never paint their houses with clear finish wood surface paint, majority i.e., 63.5%, had two children while only 5.1% respondents had three or more children. Moreover, majority i.e., 53.7%, respondents, who rarely paint their houses with clear finish wood surface paint, had two children while 31.6% respondents didn't have any child. Further, majority i.e., 65.8%, respondents, who often paint their houses with clear finish wood surface paint, had two children while 14.1% respondents didn't have a child. Furthermore, majority i.e., 46.2%, respondents, who always paint their houses with clear finish wood surface paint, had two children while 17.9% respondents had one child. In overall, significant difference (Chi-Square Value = 36.021 & p Value = 0.000) was observed between respondents with different number of

- children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy clear finish wood surface paints.
- In Vadodara, majority of the respondents, who never paint their houses with clear finish wood surface paint, majority i.e., 47.8%, had two children. Moreover, majority i.e., 37.5%, respondents, who rarely paint their houses with clear finish wood surface paint, had two children while 25% respondents didn't have any child. Further, majority i.e., 60.6%, respondents, who often paint their houses with clear finish wood surface paint, had two children while 16.5% respondents didn't have a child. In Vadodara, significant difference (Chi-Square Value = 5.329 & p Value = 0.722) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy clear finish wood surface paints.
- In Ahmedabad, majority of the respondents, who never paint their houses with clear finish wood surface paint, majority i.e., 41.9%, had two children while only 12.9% respondents had three or more children. Moreover, majority i.e., 47.1%, respondents, who rarely paint their houses with clear finish wood surface paint, didn't have any child. Further, majority i.e., 63.2%, respondents, who often paint their houses with clear finish wood surface paint, had two children while 12.6% respondents didn't have a child. Furthermore, majority i.e., none of the respondents, who always paint their houses with clear finish wood surface paint, had two children while 33.3% respondents had one child. In Ahmedabad, significant difference (Chi-Square Value = 33.033 & p Value = 0.001) was observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy clear finish wood surface paints.
- In Surat, majority of the respondents, who never paint their houses with clear finish wood surface paint, majority i.e., 67.4%, had two children while only 4.5% respondents had three or more children. Moreover, all respondents who rarely paint their houses with clear finish wood surface paint, had two children. Further, majority i.e., 78.6%, respondents, who often paint their houses with clear finish wood surface paint, had two children while 4.8% respondents didn't have a child. Furthermore, majority i.e., 53.8%, respondents, who always paint their houses with clear finish wood surface paint, had two children while 38.5% respondents had one child. In Surat, significant difference (Chi-Square Value =

- 15.618 & p Value = 0.209) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy clear finish wood surface paints.
- In Rajkot, majority of the respondents, who never paint their houses with clear finish wood surface paint, majority i.e., 75.9%, had two children while only 3.7% respondents had three or more children. Moreover, majority i.e., 59.4%, respondents, who rarely paint their houses with clear finish wood surface paint, had two children while 31.3% respondents didn't have any child. Further, majority i.e., 73.7%, respondents, who often paint their houses with clear finish wood surface paint, had two children while 21.1% respondents didn't have a child. Furthermore, only 45% respondents, who always paint their houses with clear finish wood surface paint, had two children while 50% respondents didn't have a child. In Rajkot, significant difference (Chi-Square Value = 20.028& p Value = 0.089) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy clear finish wood surface paints. (Ref. Table 5.4.99)

Table 5.4.100: Respondents' opinion regarding their Consistency of Purchasing Opaque
Finish Wood Surface Paints across four Selected Cities of Gujarat

					Purc	hasing (Consis	stency				
	N	ever	Ra	arely	Son	netime	0	ften	A	lways	Т	otal
CITY	N	%	N	%	N	%	N	%	N	%	N	%
Vadodara	27	15.5	6	4.6	64	51.2	101	29.3	2	8.0	200	25.0
Ahmedabad	33	19.0	59	45.0	40	32.0	60	17.4	8	32.0	200	25.0
Surat	58	33.3	66	50.4	12	9.6	55	15.9	9	36.0	200	25.0
Rajkot	56	32.2	0	.0	9	7.2	129	37.4	6	24.0	200	25.0
Total	174	100.0	131	100.0	125	100.0	345	100.0	25	100.0	800	100.0
Chi-Square	238.7	11										
value												
p Value	0.000	(Statistic	is signif	icant at 0.0	5 level)							

- It could be observed from above table that respondents from Surat and Ahmedabad were less likely to buy opaque finish wood surface paints, when they wanted to paint their places, compare to respondents from Vadodara and Rajkot.
- Only 15.9% respondents who purchase opaque finish wood surface paints often were from Surat and 17.4% respondents were from Ahmedabad. While, in this case respondents from Vadodara were 29.3% and 37.4% respondents were from Rajkot.
- 36% respondents who always purchase opaque finish wood surface paints were from Surat and 32% respondents were from Ahmedabad. While, in this case respondents from Vadodara were only 8% and 24% respondents were from Rajkot.
- 32.2% respondents who never purchase opaque finish wood surface paints were from Rajkot while 45% respondents and 50.4% respondents who purchase opaque finish wood surface rarely were from Ahmedabad and Surat respectively.
- With high Chi-Square value (238.711) and high significance level (p=0.000), it could be said that there was a significant difference in purchase of opaque finish wood surface paints between respondents of all four cities of Gujarat state. (Ref. Table 5.4.100)

Table 5.4.101: Respondents' city wise opinion regarding their Consistency of Purchasing

Opaque Finish Wood Surface Paints across their Age Group

						Pur	chasing (Consist	tency						
Citv*	Ago	N	ever	Ra	rely	Son	netime	0	ften	A	lways	T	otal	Significa	nce#
City	Age	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	<=37	8	29.6	2	33.3	26	40.6	37	36.6	1	50.0	74	37.0		
\mathbf{V}	38-46	1	3.7	2	33.3	24	37.5	45	44.6	1	50.0	73	36.5	30.469	0.000
	>46	18	66.7	2	33.3	14	21.9	19	18.8	0	.0	53	26.5		
	Total	27	15.5	6	4.6	64	51.2	101	29.3	2	8.0	200	25.0		
	<=37	7	21.2	19	32.2	17	42.5	19	31.7	5	62.5	67	33.5		
A	38-46	7	21.2	17	28.8	10	25.0	24	40.0	1	12.5	59	29.5	14.218	0.076
	>46	19	57.6	23	39.0	13	32.5	17	28.3	2	25.0	74	37.0		
	Total	33	19.0	59	45.0	40	32.0	60	17.4	8	32.0	200	25.0		
	<=37	12	20.7	29	43.9	2	16.7	23	41.8	1	11.2	67	33.5		
S	38-46	12	20.7	23	34.8	5	41.7	23	41.8	4	44.4	67	33.5	32.619	0.000
	>46	34	58.6	14	21.2	5	41.7	9	16.4	4	44.4	66	33.0		
	Total	58	33.3	66	50.4	12	9.6	55	15.9	9	36.0	200	25.0		
	<=37	13	23.2	0	.0	6	66.7	56	43.4	3	50.0	78	39.0		
R	38-46	9	16.1	0	.0	2	22.2	41	31.8	2	33.3	54	27.0	26.788	0.000
	>46	34	60.7	0	.0	1	11.1	32	24.8	1	16.7	68	34.0		
	Total	56	32.2	0	.0	9	7.2	129	37.4	6	24.0	200	25.0		
	<=37	40	23.0	50	38.2	51	40.8	135	39.1	10	40.0	286	35.8		
O	38-46	29	16.7	42	32.1	41	32.8	133	38.6	8	32.0	253	31.6	82.057	0.000
	>46	105	60.3	39	29.8	33	26.4	77	22.3	7	28.0	261	32.6	1	
	Total	174	100.0	131	100.0	125	100.0	345	100.0	25	100.0	800	100.0		
* V =	Vadod	lara, A	A=Ahm	edaba	d, S=Si	urat, F	R=Rajko	ot, O=	Overa	11;					
	stic is sign						<i>J</i>	,							
~															

- In overall, respondents who never purchase opaque finish wood surfaces, majority i.e., 60.3% respondents were of age above 46 years. Moreover, respondents who purchase opaque finish wood surface paints rarely, only 29.8% respondents were of age more than 46 years while 38.2% respondents were of age 37 years or less. Further, 40.8% respondents, who buy opaque finish wood surface paints sometimes, and 39.1% respondents, who often buy opaque finish wood surface paints, were of age 37 years or less. Respondents who always buy opaque finish wood surface paints, 40% were of age no more than 37 years. Furthermore, in overall, high significant difference (Chi-Square Value = 82.057 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy opaque finish wood surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Vadodara, respondents who never purchase opaque finish wood surfaces, majority i.e., 66.7% respondents were of age above 46 years. Moreover, respondents who purchase opaque finish wood surface paints rarely, only 33.3% respondents were of age more than 46 years while 33.3% respondents were of age between 37 years and 46 years. Further, 36.6%

respondents, who often buy opaque finish wood surface paints, and 50% respondents, who always buy opaque finish wood surface paints, were of age 37 years or less. Respondents who often buy opaque finish wood surface paints, 44.6% were of age between 37 years and 46 years. Furthermore, in Vadodara, high significant difference (Chi-Square Value = 30.469 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy opaque finish wood surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.

- In Ahmedabad, respondents who never purchase opaque finish wood surfaces, majority i.e., 57.6% respondents were of age above 46 years. Moreover, respondents who purchase opaque finish wood surface paints rarely, only 39% respondents were of age more than 46 years while 32.2% respondents were of age 37 years or less. Further, only25% respondents, who buy opaque finish wood surface paints sometimes, and 40% respondents, who often buy opaque finish wood surface paints, were of age between 37 years to 46 years. Respondents who always buy opaque finish wood surface paints, only 62.5% were of age no more than 37 years. Furthermore, in Ahmedabad, no significant difference (Chi-Square Value = 14.218 & p Value = 0.076) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy opaque finish wood surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Surat, respondents who never purchase opaque finish wood surfaces, majority i.e., 58.6% respondents were of age above 46 years. Moreover, respondents who purchase opaque finish wood surface paints rarely, only 21.2% respondents were of age more than 46 years while 43.9% respondents were of age 37 years or less. Further, only 16.7% respondents, who buy opaque finish wood surface paints sometimes, and 41.8% respondents, who often buy opaque finish wood surface paints, were of age 37 years or less. Respondents who always buy opaque finish wood surface paints, only 11.2% were of age between 37 years and 46 years. Furthermore, in Surat, high significant difference (Chi-Square Value = 32.619 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy opaque finish wood surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.

• In Rajkot, respondents who never purchase opaque finish wood surfaces, majority i.e., 60.7% respondents were of age above 46 years. Moreover, none of the respondents rarely buy opaque finish wood surface paints. Further, 66.7% respondents, who buy opaque finish wood surface paints sometimes, and 43.4% respondents, who often buy opaque finish wood surface paints, were of age 37 years or less. Respondents who always buy opaque finish wood surface paints, only 16.7% were of age above 46 years while 50% respondents were of age 37 years or less. Furthermore, in Rajkot, high significant difference (Chi-Square Value = 26.788 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy opaque finish wood surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years. (Ref. Table 5.4.101)

Table 5.4.102: Respondents' city wise opinion regarding their Consistency of Purchasing
Opaque Finish Wood Surface Paints across their Gender

						Pur	chasing (Consist	ency						
		No	ever	Ra	rely	Son	etime	О	ften	Al	lways	T	otal	Signific	ance #
CITY*	Gender	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Male	15	55.6	5	83.3	43	67.2	78	77.2	1	50.0	142	71.0	6.354	0.174
v	Female	12	44.4	1	16.7	21	32.8	23	22.8	1	50.0	58	29.0	0.334	0.174
	Total	27	15.5	6	4.6	64	51.2	101	29.3	2	8.0	200	25.0		
A	Male	30	90.9	40	67.8	30	75.0	48	80.0	4	50.0	152	76.0	9.711	0.046
А	Female	3	9.1	19	32.2	10	25.0	12	20.0	4	50.0	48	24.0	9.711	0.040
	Total	33	19.0	59	45.0	40	32.0	60	17.4	8	32.0	200	25.0		
S	Male	49	84.5	48	72.7	6	50.0	32	58.2	6	66.7	141	70.5	12.111	0.017
3	Female	9	15.5	18	27.3	6	50.0	23	41.8	3	33.3	59	29.5	12,111	0.017
	Total	58	33.3	66	50.4	12	9.6	55	15.9	9	36.0	200	25.0		
R	Male	48	85.7	0	.0	6	66.7	86	66.7	5	83.3	145	72.5	7.613	0.055
K	Female	8	14.3	0	.0	3	33.3	43	33.3	1	16.7	55	27.5	7.013	0.055
	Total	56	32.2	0	.0	9	7.2	129	37.4	6	24.0	200	25.0		
0	Male	142	81.6	93	71.0	85	68.0	244	70.7	16	64.0	580	72.5	10.112	0.039
U	Female	32	18.4	38	29.0	40	32.0	101	29.3	9	36.0	220	27.5	10.112	0.039
	Total	174	100.0	131	100.0	125	100.0	345	100.0	25	100.0	800	100.0		
* V = V	Vadodara,	A=Al	nmedaba	ad, S=	Surat, F	R=Rajl	cot, O=	Overa	.11;		•	•			
# Statisti	c is significa	nt at 0.	.05 level												

- In overall, it was observed that majority i.e., 81.6% male respondents never purchase opaque finish wood surface paint while 71% male respondents rarely purchase opaque finish wood surface paints. Moreover, compared to total 27.5% female respondents from Gujarat, 32% female respondents sometimes purchase opaque finish wood surface paints while 36% female respondents always prefer to buy opaque finish wood surface paints for their houses. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 10.112; p value = 0.039) between male and female respondents regarding their regularity of opaque finish wood surface paint purchase.
- In Vadodara, it was observed that majority i.e., 77.2% male respondents often purchase opaque finish wood surface paint while only 55.6% male respondents never purchase opaque finish wood surface paints. Moreover, compared to total 29% female respondents from Vadodara, 44.4% female respondents never purchase opaque finish wood surface paints while 32.8% female respondents sometimes prefer to buy opaque finish wood surface paints for their houses. Further, in Vadodara, there wasn't a significant difference (Chi-Square = 6.354; p value = 0.174) between male and female respondents regarding their regularity of opaque finish wood surface paint purchase.

- In Ahmedabad, it was observed that majority i.e., 90.9% male respondents never purchase opaque finish wood surface paint while 67.8% male respondents rarely purchase opaque finish wood surface paints. Moreover, compared to total 24% female respondents from Ahmedabad, 20% female respondents often purchase opaque finish wood surface paints while 50% female respondents always prefer to buy opaque finish wood surface paints for their houses. Further, in Ahmedabad, there was a significant difference (Chi-Square = 9.711; p value = 0.046) between male and female respondents regarding their regularity of opaque finish wood surface paint purchase.
- In Surat, it was observed that majority i.e., 84.5% male respondents never purchase opaque finish wood surface paint while 72.7% male respondents rarely purchase opaque finish wood surface paints. Moreover, compared to total 29.5% female respondents from Surat, 50% female respondents sometimes purchase opaque finish wood surface paints while 33.3% female respondents always prefer to buy opaque finish wood surface paints for their houses. Further, in Surat, there was a significant difference (Chi-Square = 12.111; p value = 0.017) between male and female respondents regarding their regularity of opaque finish wood surface paint purchase.
- In Rajkot, it was observed that majority i.e., 85.7% male respondents never purchase opaque finish wood surface paint while none of the respondents rarely purchase opaque finish wood surface paints. Moreover, compared to total 27.5% female respondents from Rajkot, 33.3% female respondents sometimes purchase opaque finish wood surface paints while 16.7% female respondents always prefer to buy opaque finish wood surface paints for their houses. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 7.613; p value = 0.055) between male and female respondents regarding their regularity of opaque finish wood surface paint purchase. (Ref. Table 5.4.102)

Table 5.4.103: Respondents' city wise opinion regarding their Consistency of Purchasing Opaque Finish Wood Surface Paints across their Educational Qualifications

		Purchasing Consistency													
City*	Ed.**	Never		Rarely		Sometime		Often		Always		Total		Significance#	
		N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
v	UG	10	37.0	0	.0	1	1.6	3	3.0	0	.0	14	7.0	57.036	0.000
	Gr	15	55.6	1	16.7	27	42.2	35	34.7	1	50.0	79	39.5		
	PG	2	7.4	5	83.3	36	56.3	63	62.4	1	50.0	107	53.5		
	Total	27	15.5	6	4.6	64	51.2	101	29.3	2	8.0	200	25.0		
	UG	16	48.5	7	11.9	8	20.0	3	5.0	1	12.5	35	17.5	36.473	0.000
A	Gr	13	39.4	29	49.2	19	47.5	43	71.7	5	62.5	109	54.5		
	PG	4	12.1	23	39.0	13	32.5	14	23.3	2	25.0	56	28.0		
	Total	33	19.0	59	45.0	40	32.0	60	17.4	8	32.0	200	25.0		
	UG	15	25.9	10	15.2	4	33.3	9	16.4	0	.0	38	19.0	13.496	0.096
S	Gr	37	63.8	36	54.5	6	50.0	32	58.2	5	55.6	116	58.0		
	PG	6	10.3	20	30.3	2	16.7	14	25.5	4	44.4	46	23.0		
	Total	58	33.3	66	50.4	12	9.6	55	15.9	9	36.0	200	25.0		
	UG	17	30.4	0	.0	1	11.1	16	12.4	1	16.7	35	17.5	13.881	0.031
R	Gr	28	50.0	0	.0	4	44.4	84	65.1	2	33.3	118	59.0		
	PG	11	19.6	0	.0	4	44.4	29	22.5	3	50.0	47	23.5		
	Total	56	32.2	0	.0	9	7.2	129	37.4	6	24.0	200	25.0		
	UG	58	33.3	17	13.0	14	11.2	31	9.0	2	8.0	122	15.3	78.310	0.000
О	Gr	93	53.4	66	50.4	56	44.8	194	56.2	13	52.0	422	52.8		
	PG	23	13.2	48	36.6	55	44.0	120	34.8	10	40.0	256	32.0		
	Total	174	100.0	131	100.0	125	100.0	345	100.0	25	100.0	800	100.0		
* V = V	Vadodara,	A=Ahn	nedabad, S	=Surat,	R=Rajko	ot, $O = O$	verall;								
** Edu	cational Q	ualificat	ion: UG=	= Under	Graduate	e; Gr. =	Graduate	PG = I	ostgradu	ate					
# Statis	stic is sign	ificant :	at 0.05 lev	el											·

- In overall, it was observed that majority i.e., 53.4% of the respondents who never purchase opaque finish wood surface paints were graduates while 13.2% respondents were postgraduates. Out of total 15.3% undergraduate respondents, 33.3% respondents never buy opaque finish wood surface paints. Moreover, 36.6% respondents, who rarely purchase opaque finish wood surface paints, were postgraduate respondents while only 13% respondents were undergraduates. Only 9% respondents were undergraduates who liked to buy opaque finish wood surface paints often. While, 40% respondents were postgraduate respondents who always preferred to buy opaque finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 78.310; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of opaque finish wood surface paints.
- In Vadodara, it was observed that majority i.e., 55.6% of the respondents who never purchase opaque finish wood surface paints were graduates while 7.4% respondents were postgraduates. Out of total 7% undergraduate respondents from Vadodara, 37% respondents

never buy opaque finish wood surface paints. Moreover, 83.3% respondents, who rarely purchase opaque finish wood surface paints, were postgraduate respondents while none of the respondents were undergraduates. None of the respondents were undergraduates who always buy opaque finish wood surface paint. While, 62.4% respondents were postgraduate respondents who often preferred to buy opaque finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 57.036; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of opaque finish wood surface paints.

- In Ahmedabad. it was observed that majority i.e., 39.5% of the respondents who never purchase opaque finish wood surface paints were graduates while 12.1% respondents were postgraduates. Out of total 17.5% undergraduate respondents, 48.5% respondents never buy opaque finish wood surface paints. Moreover, 49.2% respondents, who rarely purchase opaque finish wood surface paints, were graduate respondents while only 39% respondents were postgraduates. 5% respondents were undergraduates who liked to buy opaque finish wood surface paints often. While, 62.5% respondents were graduate respondents who always preferred to buy opaque finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 36.473; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of opaque finish wood surface paints.
- In Surat, it was observed that majority i.e., 63.8% of the respondents who never purchase opaque finish wood surface paints were graduates while 10.3% respondents were postgraduates. Out of total 19% undergraduate respondents, 25.9% respondents never buy opaque finish wood surface paints. Moreover, 54.5% respondents, who rarely purchase opaque finish wood surface paints, were graduate respondents while only 15.2% respondents were undergraduates. Only 16.7% respondents were undergraduates who liked to buy opaque finish wood surface paints often. While, 44.4% respondents were postgraduate respondents who always preferred to buy opaque finish wood surface paints. Furthermore, it was also observed that there wasn't a significant difference (Chi-Square = 13.496; p value = 0.096) between respondents with different educational qualifications regarding their regularity in purchase of opaque finish wood surface paints.

• In Rajkot, it was observed that majority i.e., 50% of the respondents who never purchase opaque finish wood surface paints were graduates while 19.6% respondents were postgraduates. Out of total 17.5% undergraduate respondents, 30.4% respondents never buy opaque finish wood surface paints. Moreover, none of the respondents rarely purchase opaque finish wood surface paints.65.1% respondents were graduates who liked to buy opaque finish wood surface paints often. While, 33.3% respondents were graduate respondents who always preferred to buy opaque finish wood surface paints while 50% respondents were postgraduates. Furthermore, it was also observed that there was a significant difference (Chi-Square = 13.881; p value = 0.031) between respondents with different educational qualifications regarding their regularity in purchase of opaque finish wood surface paints. (Ref. Table 5.4.103)

Table 5.4.104: Respondents' city wise opinion regarding their Consistency of Purchasing
Opaque Finish Wood Surface Paints across their Occupation

		Purchasing Consistency													
City*	Oc.**	Never		Rarely		Sometime		Often		Always		Total		Significance #	
		N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
V	S	16	59.3	2	33.3	18	28.1	43	42.6	1	50.0	80	40.0		0.001
	В	3	11.1	1	16.7	15	23.4	40	39.6	1	50.0	60	30.0	26.548	
	P	8	29.6	3	50.0	31	48.4	18	17.8	0	.0	60	30.0		
	Total	27	15.5	6	4.6	64	51.2	101	29.3	2	8.0	200	25.0		
A	S	22	66.7	25	42.4	21	52.5	12	20.0	0	.0	80	40.0	35.716	0.000
	В	2	6.1	23	39.0	10	25.0	22	36.7	3	37.5	60	30.0		
	P	9	27.3	11	18.6	9	22.5	26	43.3	5	62.5	60	30.0		
	Total	33	19.0	59	45.0	40	32.0	60	17.4	8	32.0	200	25.0		
	S	28	48.3	23	34.8	4	33.3	24	43.6	1	11.1	80	40.0	19.445	0.013
S	В	7	12.1	24	36.4	6	50.0	20	36.4	3	33.3	60	30.0		
	P	23	39.7	19	28.8	2	16.7	11	20.0	5	55.6	60	30.0		
	Total	58	33.3	66	50.4	12	9.6	55	15.9	9	36.0	200	25.0		
	S	34	60.7	0	.0	6	66.7	38	29.5	2	33.3	80	40.0	20.073	0.003
R	В	11	19.6	0	.0	1	11.1	45	34.9	3	50.0	60	30.0		
	P	11	19.6	0	.0	2	22.2	46	35.7	1	16.7	60	30.0		
	Total	56	32.2	0	.0	9	7.2	129	37.4	6	24.0	200	25.0		
	S	100	57.5	50	38.2	49	39.2	117	33.9	4	16.0	320	40.0	49.297	0.000
0	В	23	13.2	48	36.6	32	25.6	127	36.8	10	40.0	240	30.0		
	P	51	29.3	33	25.2	44	35.2	101	29.3	11	44.0	240	30.0		
	Total	174	100.0	131	100.0	125	100.0	345	100.0	25	100.0	800	100.0		<u> </u>
* V = 1	Vadodara,	A=Ah	medabad	l, S=Su	rat, R=Ra	ijkot, O	= Overal	1;							
** Occupation : S = Service Class; B = Business class; P = Professionals															
# Statistic is significant at 0.05 level															

- In overall, it was observed that majority i.e., 57.5% of the respondents who never purchase opaque finish wood surface paints were service class people while 29.3% respondents were professionals. Out of total 30% business class respondents, only 13.2% respondents never buy opaque finish wood surface paints. Moreover, 39.2% respondents, who sometimes purchase opaque finish wood surface paints, were service class respondents. 36.8% respondents were business class people who liked to buy opaque finish wood surface paints often. While, 44% respondents were professional respondents who always preferred to buy opaque finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 49.297; p value = 0.000) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of opaque finish wood surface paints.
- In Vadodara, it was observed that majority i.e., 59.3% of the respondents who never purchase opaque finish wood surface paints were service class people while 29.6% respondents were professionals. Out of total 30% business class respondents, only 11.1% respondents never buy opaque finish wood surface paints. Moreover, 28.1% respondents,

who sometimes purchase opaque finish wood surface paints, were service class respondents. 42.6% respondents were service class people who liked to buy opaque finish wood surface paints often. Furthermore, it was also observed that there was a significant difference (Chi-Square = 26.548; p value = 0.001) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of opaque finish wood surface paints.

- In Ahmedabad, it was observed that majority i.e., 66.7% of the respondents who never purchase opaque finish wood surface paints were service class people while 27.3% respondents were professionals. Out of total 30% business class respondents, only 6.1% respondents never buy opaque finish wood surface paints. Moreover, only 52.5% respondents, who sometimes purchase opaque finish wood surface paints, were service class respondents and25% respondents were business class people. While, 62.5% respondents were professional respondents who always preferred to buy opaque finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 35.726; p value = 0.000) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of opaque finish wood surface paints.
- In Surat, it was observed that majority i.e., 48.3% of the respondents who never purchase opaque finish wood surface paints were service class people while 39.7% respondents were professionals. Out of total 30% business class respondents, only 12.1% respondents never buy opaque finish wood surface paints. Moreover, 33.3% respondents, who sometimes purchase opaque finish wood surface paints, were service class respondents. 36.4% respondents were business class people who liked to buy opaque finish wood surface paints often. While, 55.6% respondents were professional respondents who always preferred to buy opaque finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 19.445; p value = 0.013) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of opaque finish wood surface paints.
- In Rajkot, it was observed that majority i.e., 60.7% of the respondents who never purchase opaque finish wood surface paints were service class people while 19.6% respondents were professionals. Out of total 30% business class respondents, only 19.6% respondents never

buy opaque finish wood surface paints. Moreover, 66.7% respondents, who sometimes purchase opaque finish wood surface paints, were service class and professional respondents each. 34.9% respondents were business class people who liked to buy opaque finish wood surface paints often. While, 50% respondents were business class respondents who always preferred to buy opaque finish wood surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 20.073; p value = 0.003) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of opaque finish wood surface paints. (Ref. Table 5.4.104)

Table 5.4.105: Respondents' city wise opinion regarding their Consistency of Purchasing **Opaque Finish Wood Surface Paints across their Monthly Income Group**

						Pur	chasing (Consist	ency						
Citv*	MI**	No	ever	Ra	rely	Som	etime	0	ften	Al	lways	T	otal	Significa	nce #
City	IVII	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	MI – 1	15	55.6	1	16.7	21	32.8	40	39.6	2	100	79	39.5		
V	MI - 2	8	29.6	3	50.0	23	35.9	30	29.7	0	.0	64	32.0	9.637	0.291
	MI - 3	4	14.8	2	33.3	20	31.3	31	30.7	0	.0	57	28.5		
	Total	27	15.5	6	4.6	64	51.2	101	29.3	2	8.0	200	25.0		
	MI – 1	23	69.7	23	39.0	16	40.0	31	51.7	4	50.0	97	48.5		
A	MI - 2	6	18.2	14	23.7	8	20.0	10	16.7	0	.0	38	19.0	13.394	0.099
	MI - 3	4	12.1	22	37.3	16	40.0	19	31.7	4	50.0	65	32.5		
Total 33 19.0 59 45.0 40 32.0 60 17.4 8 32.0 200 25.0															
	MI – 1	24	41.4	14	21.2	3	25.0	18	32.7	3	33.3	62	31.0		
S	MI - 2	21	36.2	26	39.4	3	25.0	10	18.2	2	22.2	62	31.0	15.100	0.061
	MI – 3	13	22.4	26	39.4	6	50.0	27	49.1	4	44.4	76	38.0		
	Total	58	33.3	66	50.4	12	9.6	55	15.9	9	36.0	200	25.0		
	MI – 1	9	16.1	0	.0	2	22.2	20	15.5	3	50.0	34	17.0		
R	MI - 2	26	46.4	0	.0	4	44.4	66	51.2	2	33.3	98	49.0	5.474	0.485
	MI - 3	21	37.5	0	.0	3	33.3	43	33.3	1	16.7	68	34.0		
	Total	56	32.2	0	.0	9	7.2	129	37.4	6	24.0	200	25.0		
	MI – 1	71	40.8	38	29.0	42	33.6	109	31.6	12	48.0	272	34.0		
О	MI - 2	61	35.1	43	32.8	38	30.4	116	33.6	4	16.0	262	32.8	13.963	0.083
	MI - 3	42	24.1	50	38.2	45	36.0	120	34.8	9	36.0	266	33.3		
	Total	174	100.0	131	100.0	125	100.0	345	100.0	25	100.0	800	100.0		
	Vadodara,				/ .			/			•	,		•	
** Mo	nthly Inco	me : N	II − 1: <=	29166.	67, MI –	2: 2910	66.68-462	250.00,	MI − 3:	>4625	0.00			-	
# Statis	stic is sign	ificant	at 0.05 l	evel											

In overall, it was observed that majority i.e., 40.8%, respondents, with monthly income Rs.29166.67 or less, never buy opaque finish wood surface paints. While, 38.2% respondents, with monthly income above Rs.46250.00, rarely buy opaque finish wood surface paints. Moreover, majority i.e., 36%, respondents who buy opaque finish wood surface paint sometimes, had monthly income above Rs.46250. Further, 48% respondents who always buy opaque finish wood surface paints had monthly income no more than Rs.29166.67. Furthermore, it was also observed that in Gujarat state i.e., collectively from Vadodara, Ahmedabad, Surat and Rajkot, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 13.963; p value = 0.083) in regularity of purchasing opaque finish wood surface paints.

In Vadodara, it was observed that majority i.e., 55.6%, respondents, with monthly income Rs.29166.67 or less, never buy opaque finish wood surface paints. While, only 16.7% respondents, with monthly income Rs.29166.67 or less, rarely buy opaque finish wood surface paints. Moreover, majority i.e., 35.9%, respondents who buy opaque finish wood

surface paint sometimes, had monthly income between above Rs.46250. Further, none of the respondents who always buy opaque finish wood surface paints had monthly income above Rs.29166.67. Furthermore, it was also observed that in Vadodara, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 9.637; p value = 0.291) in regularity of purchasing opaque finish wood surface paints.

- In Ahmedabad, it was observed that majority i.e., 69.7%, respondents, with monthly income Rs.29166.67 or less, never buy opaque finish wood surface paints. While, only 23.7% respondents, with monthly income between Rs.29166.67 to Rs.46250.00, rarely buy opaque finish wood surface paints. Moreover, only 20%, respondents who buy opaque finish wood surface paint sometimes, had monthly income between Rs.29166.67 to Rs.46250.00. Further, 51.7% respondents who often buy opaque finish wood surface paints and 50% respondents who always buy opaque finish wood surface paints had monthly income Rs.29166.67 or less. Furthermore, it was also observed that in Ahmedabad, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 13.394; p value = 0.099) in regularity of purchasing opaque finish wood surface paints.
- In Surat, it was observed that majority i.e., 41.4%, respondents, with monthly income Rs.29166.67 or less, never buy opaque finish wood surface paints. While, 39.4% respondents, with monthly income between above Rs.46250.00, rarely buy opaque finish wood surface paints. Moreover, majority i.e., 50%, respondents who buy opaque finish wood surface paint sometimes, had monthly income above Rs.46250. Further, 49.1% respondents who often buy opaque finish wood surface paints and 44.4% respondents who always buy opaque finish wood surface paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Surat, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 15.100; p value = 0.061) in regularity of purchasing opaque finish wood surface paints.
- In Rajkot, it was observed that majority i.e., 46.4%, respondents, with monthly income Rs.29166.67 to Rs.46250, never buy opaque finish wood surface paints. Moreover, only 22.2%, respondents who buy opaque finish wood surface paint sometimes, had monthly

income Rs.29166.67 or less. Further, 50% respondents who always buy opaque finish wood surface paints had monthly income Rs.29166.67 or less. Furthermore, it was also observed that in Rajkot, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have significant difference (Chi-Square = 5.474; p value = 0.485) in regularity of purchasing opaque finish wood surface paints. (Ref. Table 5.4.105)

Table 5.4.106: Respondents' city wise opinion regarding their Consistency of Purchasing
Opaque Finish Wood Surface Paints across their Per Capita Income

						Pur	chasing (Consist	tency						
Citv*	PCI**	N	ever	Ra	rely	Som	etime	0	ften	Al	lways	T	otal	Significa	nce #
City	rcı	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	Low	16	59.3	1	16.7	16	25.0	35	34.7	1	50.0	69	34.5		
V	Mod.	6	22.2	3	50.0	24	37.5	27	26.7	1	50.0	61	30.5	13.558	0.094
	High	5	18.5	2	33.3	24	37.5	39	38.6	0	.0	70	35.0		
	Total	27	15.5	6	4.6	64	51.2	101	29.3	2	8.0	200	25.0		
	Low	22	66.7	23	39.0	17	42.5	29	48.3	3	37.5	94	47.0		
A	Mod.	8	24.2	13	22.0	9	22.5	12	20.0	3	37.5	45	22.5	11.611	0.169
	High	3	9.1	23	39.0	14	35.0	19	31.7	2	25.0	61	30.5		
	Total	33	19.0	59	45.0	40	32.0	60	17.4	8	32.0	200	25.0		
	Low	27	46.6	16	24.2	3	25.0	16	29.1	3	33.3	65	32.5		
S	Mod.	19	32.8	24	36.4	4	33.3	12	21.8	2	22.2	61	30.5	14.400	0.072
	High	12	20.7	26	39.4	5	41.7	27	49.1	4	44.4	74	37.0		
	Total	58	33.3	66	50.4	12	9.6	55	15.9	9	36.0	200	25.0		
	Low	16	28.6	0	.0	3	33.3	27	20.9	3	50.0	49	24.5		
R	Mod.	25	44.6	0	.0	3	33.3	65	50.4	2	33.3	95	47.5	4.303	0.636
	High	15	26.8	0	.0	3	33.3	37	28.7	1	16.7	56	28.0		
	Total	56	32.2	0	.0	9	7.2	129	37.4	6	24.0	200	25.0		
	Low	81	46.6	40	30.5	39	31.2	107	31.0	10	40.0	277	34.6		
0	Mod.	58	33.3	40	30.5	40	32.0	116	33.6	8	32.0	262	32.8	21.601	0.002
	High	35	20.1	51	38.9	46	36.8	122	35.4	7	28.0	261	32.6		
	Total	174	100.0	131	100.0	125	100.0	345	100.0	25	100.0	800	100.0		
* V = '	Vadodara,	A=Ahı	medabad,	, S=Sur	at, R=Ra	jkot, O	= Overall	l;							
** PEI	R CAPITA	INCO	ME: M	od.= M	oderate									-	
# Statis	stic is sign	ificant	at 0.05 l	evel											

- In overall, it was observed that majority i.e., 46.6%, respondents, with low per capita income level, never buy opaque finish wood surface paints. While, 38.5% respondents,
- majority i.e., 36.8%, respondents who buy opaque finish wood surface paint sometimes, had high per capita income. Further, 35.4% respondents who often buy opaque finish wood surface paints and only 28% respondents who always buy opaque finish wood surface paints had high per capita income. Furthermore, it was also observed that in Gujarat state i.e., collectively from Vadodara, Ahmedabad, Surat and Rajkot, respondents with different

with high per capita income level, rarely buy opaque finish wood surface paints. Moreover,

- per capita income group i.e., low, moderate and high, had significant difference (Chi-Square = 21 601: p value = 0.002) in regularity of purchasing opaque finish wood surface
- Square = 21.601; p value = 0.002) in regularity of purchasing opaque finish wood surface paints.
- In Vadodara, it was observed that majority i.e., 59.3%, respondents, with low per capita income level, never buy opaque finish wood surface paints. While, 50% respondents, with moderate per capita income level, rarely buy opaque finish wood surface paints. Moreover, only 25%, respondents who buy opaque finish wood surface paint sometimes, had high per

capita income. Further, 38.6% respondents who often buy opaque finish wood surface paints and none of the respondents who always buy opaque finish wood surface paints had high per capita income. Furthermore, it was also observed that in Vadodara, respondents with different per capita income group i.e., low, moderate and high, didn't have significant difference (Chi-Square = 13.558; p value = 0.094) in regularity of purchasing opaque finish wood surface paints.

- In Ahmedabad, it was observed that majority i.e., 66.7%, respondents, with low per capita income level, never buy opaque finish wood surface paints. While, only 22% respondents, with moderate per capita income level, rarely buy opaque finish wood surface paints. Moreover, majority i.e., 42.5%, respondents, who buy opaque finish wood surface paint sometimes, also had low per capita income. Further, 48.3% respondents who often buy opaque finish wood surface paints and 37.5% respondents who always buy opaque finish wood surface paints had low per capita income. Furthermore, it was also observed that in Ahmedabad, respondents with different per capita income group i.e., low, moderate and high, didn't have a significant difference (Chi-Square = 11.611; p value = 0.169) in regularity of purchasing opaque finish wood surface paints.
- In Surat, it was observed that majority i.e., 46.6%, respondents, with low per capita income level, never buy opaque finish wood surface paints. While, 39.4% respondents, with high per capita income level, rarely buy opaque finish wood surface paints. Moreover, majority i.e., 41.7%, respondents who buy opaque finish wood surface paint sometimes, had high per capita income. Further, 49.1% respondents who often buy opaque finish wood surface paints and 44.4% respondents who always buy opaque finish wood surface paints had high per capita income. Furthermore, it was also observed that in Surat, respondents with different per capita income group i.e., low, moderate and high, didn't have a significant difference (Chi-Square = 14.400; p value = 0.072) in regularity of purchasing opaque finish wood surface paints.
- In Rajkot, it was observed that majority i.e., 44.6%, respondents, with moderate per capita income level, never buy opaque finish wood surface paints. Further, 50.4% respondents who often buy opaque finish wood surface paints and 33.3% respondents who always buy opaque finish wood surface paints had moderate per capita income. Furthermore, it was also observed that in Rajkot, respondents with different per capita income group i.e., low,

moderate and high, didn't have a significant difference (Chi-Square = 4.303; p value = 0.636) in regularity of purchasing opaque finish wood surface paints. (Ref. Table 5.4.106)

Table 5.4.107: Respondents' city wise opinion regarding their Consistency of Purchasing
Opaque Finish Wood Surface Paints across their Marital Status

						Pur	chasing (Consist	ency						
	Marital	No	ever	Ra	rely	Som	etime	0	ften	A	lways	T	otal	Signific	ance #
CITY*	Marital Status**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	Mar.	19	70.4	6	100.0	55	85.9	89	88.1	2	100.0	171	85.5		
V	UM	8	29.6	0	.0	9	14.1	12	11.9	0	.0	29	14.5	6.911	0.141
	Total	27	15.5	6	4.6	64	51.2	101	29.3	2	8.0	200	25.0		
	Mar.	23	69.7	53	89.8	31	77.5	59	98.3	6	75.0	172	86.0		
A	UM	10	30.3	6	10.2	9	22.5	1	1.7	2	25.0	28	14.0	18.789	0.001
	Total	33	19.0	59	45.0	40	32.0	60	17.4	8	32.0	200	25.0		
	Mar.	49	84.5	63	95.5	12	100.0	49	89.1	9	100.0	182	91.0		
S	UM	9	15.5	3	4.5	0	.0	6	10.9	0	.0	18	9.0	6.929	0.140
	Total	58	33.3	66	50.4	12	9.6	55	15.9	9	36.0	200	25.0		
	Mar.	46	82.1	0	.0	5	55.6	101	78.3	5	83.3	157	78.5		
R	UM	10	17.9	0	.0	4	44.4	28	21.7	1	16.7	43	21.5	3.334	0.343
	Total	56	32.2	0	.0	9	7.2	129	37.4	6	24.0	200	25.0		
	Mar.	137	78.7	122	93.1	103	82.4	298	86.4	22	88.0	682	85.3		
О	UM	37	21.3	9	6.9	22	17.6	47	13.6	3	12.0	118	14.8	13.647	0.009
	Total	174	100.0	131	100.0	125	100.0	345	100.0	25	100.0	800	100.0		
* V = Va	adodara, A=A	hmedat	oad, S=Su	rat, R=	Rajkot, O	= Overa	all;								
** Marita	al Status: Mar	. = Mar	ried; UM	: Unmai	ried										
# Statisti	o is significa	nt at 0.1	05 lovel					•			•				•

Statistic is significant at 0.05 level

- In overall, it was observed that majority i.e., 78.7% married respondents never purchase opaque finish wood surface paint while 93.1% married respondents rarely purchase opaque finish wood surface paints. Moreover, compared to total 14.8% unmarried respondents from Gujarat, 17.6% unmarried respondents sometimes purchase opaque finish wood surface paints while 12% unmarried respondents always prefer to buy opaque finish wood surface paints for their houses. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 13.647; p value = 0.009) between married and unmarried respondents regarding their regularity of opaque finish wood surface paint purchase.
- In Vadodara, it was observed that majority i.e., 70.4% married respondents never purchase opaque finish wood surface paint while all respondents who rarely purchase opaque finish wood surface paints were married. Moreover, compared to total 14.5% unmarried respondents from Vadodara, none of the unmarried respondents always purchase opaque finish wood surface paints for their houses. Further, in Vadodara, there wasn't a significant difference (Chi-Square = 6.911; p value = 0.141) between married and unmarried respondents regarding their regularity of opaque finish wood surface paint purchase.

- In Ahmedabad, it was observed that majority i.e., 69.7% married respondents never purchase opaque finish wood surface paint while 89.8% married respondents rarely purchase opaque finish wood surface paints. Moreover, compared to total 14% unmarried respondents from Ahmedabad, 22.5% unmarried respondents sometimes purchase opaque finish wood surface paints while 25% unmarried respondents always prefer to buy opaque finish wood surface paints for their houses. Further, in Ahmedabad, there was a significant difference (Chi-Square = 18.789; p value = 0.001) between married and unmarried respondents regarding their regularity of opaque finish wood surface paint purchase.
- In Surat, it was observed that majority i.e., 84.5% married respondents never purchase opaque finish wood surface paint while 95.5% married respondents rarely purchase opaque finish wood surface paints. Moreover, compared to total 9% unmarried respondents from Surat, 10.9% unmarried respondents often purchase opaque finish wood surface paints while none of the unmarried respondents always prefer to buy opaque finish wood surface paints for their houses. Further, in Surat, there wasn't a significant difference (Chi-Square = 6.929; p value = 0.140) between married and unmarried respondents regarding their regularity of opaque finish wood surface paint purchase.
- In Rajkot, it was observed that majority i.e., 82.1% married respondents never purchase opaque finish wood surface paint. Moreover, compared to total 21.5% unmarried respondents from Rajkot, 44.4% unmarried respondents sometimes purchase opaque finish wood surface paints while 16.7% unmarried respondents always prefer to buy opaque finish wood surface paints for their houses. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 3.334; p value = 0.343) between married and unmarried respondents regarding their regularity of opaque finish wood surface paint purchase. (Ref. Table 5.4.107)

Table 5.4.108: Respondents' city wise opinion regarding their Consistency of Purchasing
Opaque Finish Wood Surface Paints across their Family Size

						Pur	chasing (Consist	ency						
	Family	No	ever	Ra	rely	Som	etime	О	ften	A	ways	T	otal	Signific	ance #
CITY*	Family Size**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	1-4	16	59.3	5	83.3	52	81.3	79	78.2	2	100.0	154	77.0		
V	5+	11	40.7	1	16.7	12	18.8	22	21.8	0	.0	46	23.0	6.269	0.180
	Total	27	15.5	6	4.6	64	51.2	101	29.3	2	8.0	200	25.0		
	1-4	25	75.8	39	66.1	28	70.0	49	81.7	6	75.0	147	73.5		
A	5+	8	24.2	20	33.9	12	30.0	11	18.3	2	25.0	53	26.5	4.060	0.398
	Total	33	19.0	59	45.0	40	32.0	60	17.4	8	32.0	200	25.0		
	1-4	30	51.7	41	62.1	8	66.7	41	74.5	4	44.4	124	62.0		
S	5+	28	48.3	25	37.9	4	33.3	14	25.5	5	55.6	76	38.0	7.562	0.109
	Total	58	33.3	66	50.4	12	9.6	55	15.9	9	36.0	200	25.0		
	1-4	33	58.9	0	.0	6	66.7	72	55.8	4	66.7	115	57.5		
R	5+	23	41.1	0	.0	3	33.3	57	44.2	2	33.3	85	42.5	0.713	0.870
	Total	56	32.2	0	.0	9	7.2	129	37.4	6	24.0	200	25.0		
	1-4	104	59.8	85	64.9	94	75.2	241	69.9	16	64.0	540	67.5		
O	5+	70	40.2	46	35.1	31	24.8	104	30.1	9	36.0	260	32.5	9.501	0.051
	Total	174	100.0	131	100.0	125	100.0	345	100.0	25	100.0	800	100.0		
* V = Va	dodara, A=	Ahmeda	abad, S=S	urat, R=	-Rajkot, ()= Ove	rall;								
# Statistic	c is signific	ant at 0	.05 level												

- In overall, it was observed that majority i.e., 59.8% respondents, who never purchase opaque finish wood surface paint, while 64.9% respondents, who rarely purchase opaque finish wood surface paints, had family members no more than 4. Moreover, 75.2% respondents, who sometimes purchase opaque finish wood surface paints, while 64% respondents, who always prefer to buy opaque finish wood surface paints for their houses, had family member no more than 4. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there wasn't a significant difference (Chi-Square = 9.501; p value = 0.051) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of opaque finish wood surface paint purchase.
- In Vadodara, it was observed that majority i.e., 59.3% respondents, who never purchase opaque finish wood surface paint, while 83.3% respondents, who rarely purchase opaque finish wood surface paints, had family members no more than 4. Moreover, 81.3% respondents, who sometimes purchase opaque finish wood surface paints, while all of the respondents, who always prefer to buy opaque finish wood surface paints for their houses, had family member no more than 4. Further, in Vadodara, there wasn't significant difference (Chi-Square = 6.269; p value = 0.180) between respondents, with family size up

- to 4, and respondents, with family size above 4, regarding their regularity of opaque finish wood surface paint purchase.
- In Ahmedabad, it was observed that majority i.e., 75.8% respondents, who never purchase opaque finish wood surface paint, while 66.1% respondents, who rarely purchase opaque finish wood surface paints, had family members no more than 4. Moreover, 70% respondents, who sometimes purchase opaque finish wood surface paints, while 75% respondents, who always prefer to buy opaque finish wood surface paints for their houses, had family member no more than 4. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 4.060; p value = 0.398) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of opaque finish wood surface paint purchase.
- In Surat, it was observed that majority i.e., 51.7% respondents, who never purchase opaque finish wood surface paint, while 62.1% respondents, who rarely purchase opaque finish wood surface paints, had family members no more than 4. Moreover, 66.7% respondents, who sometimes purchase opaque finish wood surface paints, while only 44.4% respondents, who always prefer to buy opaque finish wood surface paints for their houses, had family member no more than 4. Further, in Surat, there wasn't a significant difference (Chi-Square = 7.562; p value = 0.109) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of opaque finish wood surface paint purchase.
- In Rajkot, it was observed that majority i.e., 58.9% respondents, who never purchase opaque finish wood surface paint had family members no more than 4, while none of the respondents rarely purchase opaque finish wood surface paints. Moreover, 66.7% respondents, who sometimes purchase opaque finish wood surface paints, while 66.7% respondents, who always prefer to buy opaque finish wood surface paints for their houses, had family member no more than 4. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 0.713; p value = 0.870) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of opaque finish wood surface paint purchase. (Ref. Table 5.4.108)

Table 5.4.109: Respondents' city wise opinion regarding their Consistency of Purchasing
Opaque Finish Wood Surface Paints across their Family Size

						Pur	chasing (Consist	ency						
	Family	No	ever	Ra	rely	Som	etime	О	ften	A	ways	T	otal	Signific	ance#
CITY*	Type**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	Nuclear	10	37.0	5	83.3	47	73.4	74	73.3	2	100.0	138	69.0		
V	Joint	17	63.0	1	16.7	17	26.6	27	26.7	0	.0	62	31.0	15.820	0.003
	Total	27	15.5	6	4.6	64	51.2	101	29.3	2	8.0	200	25.0		
	Nuclear	22	66.7	43	72.9	28	70.0	48	80.0	6	75.0	147	73.5		
A	Joint	11	33.3	16	27.1	12	30.0	12	20.0	2	25.0	53	26.5	2.365	0.669
	Total	33	19.0	59	45.0	40	32.0	60	17.4	8	32.0	200	25.0		
	Nuclear	28	48.3	44	66.7	9	75.0	42	76.4	6	66.7	129	64.5		
S	Joint	30	51.7	22	33.3	3	25.0	13	23.6	3	33.3	71	35.5	10.780	0.029
	Total	58	33.3	66	50.4	12	9.6	55	15.9	9	36.0	200	25.0		
	Nuclear	28	50.0	0	.0	8	88.9	81	62.8	4	66.7	121	60.5		
R	Joint	28	50.0	0	.0	1	11.1	48	37.2	2	33.3	79	39.5	5.997	0.112
	Total	56	32.2	0	.0	9	7.2	129	37.4	6	24.0	200	25.0		
	Nuclear	88	50.6	92	70.2	92	73.6	245	71.0	18	72.0	535	66.9		
О	Joint	86	49.4	39	29.8	33	26.4	100	29.0	7	28.0	265	33.1	27.052	0.000
	Total	174	100.0	131	100.0	125	100.0	345	100.0	25	100.0	800	100.0		
* V = Va	idodara, A=A	Ahmeda	bad, S=Sı	ırat, R=	Rajkot, O	= Over	all;								
# Statisti	c is significa	nt at 0.	05 level		•								•		

- In overall, it was observed that majority i.e., 50.6% respondents, who never purchase opaque finish wood surface paint, while 70.2% respondents, who rarely purchase opaque finish wood surface paints, were from nuclear family type. Moreover, 73.6% respondents, who sometimes purchase opaque finish wood surface paints, while 72% respondents, who always prefer to buy opaque finish wood surface paints for their houses, were also having nuclear family type. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 27.052; p value = 0.000) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of opaque finish wood surface paint purchase.
- In Vadodara, it was observed that majority i.e., 63% respondents, who never purchase opaque finish wood surface paint, had a joint family while 83.3% respondents, who rarely purchase opaque finish wood surface paints, were from nuclear family type. Moreover, 73.4% respondents, who sometimes purchase opaque finish wood surface paints, while all of the respondents, who always prefer to buy opaque finish wood surface paints for their houses, were also having nuclear family type. Further, in Vadodara, there was a significant difference (Chi-Square = 15.820; p value = 0.003) between respondents, with nuclear

- family, and respondents with joint family, regarding their regularity of opaque finish wood surface paint purchase.
- In Ahmedabad, it was observed that majority i.e., 66.7% respondents, who never purchase opaque finish wood surface paint, while 72.9% respondents, who rarely purchase opaque finish wood surface paints, were from nuclear family type. Moreover, 70% respondents, who sometimes purchase opaque finish wood surface paints, while 75% respondents, who always prefer to buy opaque finish wood surface paints for their houses, were also having nuclear family type. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 2.365; p value = 0.669) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of opaque finish wood surface paint purchase.
- In Surat, it was observed that majority i.e., 48.3% respondents, who never purchase opaque finish wood surface paint, while 66.7% respondents, who rarely purchase opaque finish wood surface paints, were from nuclear family type. Moreover, 75% respondents, who sometimes purchase opaque finish wood surface paints, while 66.7% respondents, who always prefer to buy opaque finish wood surface paints for their houses, were also having nuclear family type. Further, in Surat, there was a significant difference (Chi-Square = 10.780; p value = 0.029) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of opaque finish wood surface paint purchase.
- In Rajkot, it was observed that majority i.e., 50% respondents, who never purchase opaque finish wood surface paint were from nuclear family type. Moreover, 88.9% respondents, who sometimes purchase opaque finish wood surface paints, while 66.7% respondents, who always prefer to buy opaque finish wood surface paints for their houses, were also having nuclear family type. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 5.997; p value = 0.112) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of opaque finish wood surface paint purchase. (Ref. Table 5.4.109)

Table 5.4.110: Respondents' city wise opinion regarding their Consistency of Purchasing
Opaque Finish Wood Surface Paints across Children Group

		Purc	hasing C	onsiste	ency										
Citv*	Child	Neve	r	Rare	ly	Some	etime	Ofter	1	Alw	ays	Total		Significa	nce #
City"	**	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	0	8	29.6	0	.0	13	20.3	15	14.9	0	.0	36	18.0		
V	1	7	25.9	3	50.0	17	26.6	26	25.7	1	50.0	54	27.0	6.838	0.554
v	2	12	44.4	3	50.0	34	53.1	60	59.4	1	50.0	110	55.0	0.030	0.334
	3 or +	0	.0	0	.0	0	.0	0	.0	0	.0	0	.0		
	Total	27	15.5	6	4.6	64	51.2	101	29.3	2	8.0	200	25.0		
	0	12	36.4	8	13.6	13	32.5	6	10.0	2	25.0	41	20.5		
A	1	5	15.2	16	27.1	4	10.0	13	21.7	2	25.0	40	20.0	21.568	0.043
A	2	14	42.4	30	50.8	21	52.5	40	66.7	4	50.0	109	54.5	21.300	0.043
	3 or +	2	6.1	5	8.5	2	5.0	1	1.7	0	.0	10	5.0		
Total 33 19.0 59 45.0 40 32.0 60 17.4 8 32.0 200 25.0															
	0	9	15.5	3	4.5	0	.0	8	14.5	0	.0	20	10.0		
S	1	8	13.8	15	22.7	3	25.0	8	14.5	2	22.2	36	18.0	18.851	0.092
3	2	40	69.0	45	68.2	8	66.7	38	69.1	5	55.6	136	68.0	10.051	0.092
	3 or +	1	1.7	3	4.5	1	8.3	1	1.8	2	22.2	8	4.0		
	Total	58	33.3	66	50.4	12	9.6	55	15.9	9	36.0	200	25.0		
	0	11	19.6	0	.0	4	44.4	36	27.9	2	33.3	53	26.5		
R	1	5	8.9	0	.0	0	.0	5	3.9	0	.0	10	5.0	6.920	0.645
K	2	37	66.1	0	.0	5	55.6	85	65.9	4	66.7	131	65.5	0.920	0.045
	3 or +	3	5.4	0	.0	0	.0	3	2.3	0	.0	6	3.0		
	Total	56	32.2	0	.0	9	7.2	129	37.4	6	24.0	200	25.0		
	0	40	23.0	11	8.4	30	24.0	65	18.8	4	16.0	150	18.8		
0	1	25	14.4	34	26.0	24	19.2	52	15.1	5	20.0	140	17.5	30.091	0.003
U	2	103	59.2	78	59.5	68	54.4	223	64.6	14	56.0	486	60.8	30.091	0.003
	3 or +	6	3.4	8	6.1	3	2.4	5	1.4	2	8.0	24	3.0		
	Total	174	100.0	131	100.0	125	100.0	345	100.0	25	100.0	800	100.0	_	
* V = V	Vadodara,	A=Ah	medabad	, S=Su	rat, R=Ra	jkot, O	= Overal	1;							
** Chil	dren : 0 =	No chi	ld; 1 = 1	Child;	2 = 2 Ch	ildren;	3 + = 3 or	more t	han 3						
# Statis	tic is sign	ificant	at 0.05	level											

• In overall, majority of the respondents, who never paint their houses with opaque finish wood surface paint, majority i.e., 59.2%, had two children while only 3.4% respondents had three or more children. Moreover, majority i.e., 59.5%, respondents, who rarely paint their houses with opaque finish wood surface paint, had two children while 8.4% respondents didn't have any child. Further, majority i.e., 64.6%, respondents, who often paint their houses with opaque finish wood surface paint, had two children while 18.8% respondents didn't have a child. Furthermore, majority i.e., 56%, respondents, who always paint their houses with opaque finish wood surface paint, had two children while 20% respondents had one child. In overall, significant difference (Chi-Square Value = 30.091 & p Value = 0.003) was observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy opaque finish wood surface paints.

- In Vadodara, majority of the respondents, who never paint their houses with opaque finish wood surface paint, majority i.e., 44.4%, had two children. Moreover, majority i.e., 50%, respondents, who rarely paint their houses with opaque finish wood surface paint, had two children while 50% respondents had a child. Further, majority i.e., 59.4%, respondents, who often paint their houses with opaque finish wood surface paint, had two children while 14.9% respondents didn't have a child. In Vadodara, significant difference (Chi-Square Value = 6.838 & p Value = 0.554) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy opaque finish wood surface paints.
- In Ahmedabad, majority of the respondents, who never paint their houses with opaque finish wood surface paint, majority i.e., 42.4%, had two children while only 6.1% respondents had three or more children. Moreover, majority i.e., 50.8%, respondents, who rarely paint their houses with opaque finish wood surface paint, had two children while 13.6% respondents didn't have any child. Further, majority i.e., 66.7%, respondents, who often paint their houses with opaque finish wood surface paint, had two children while 10% respondents didn't have a child. Furthermore, majority i.e., 50%, respondents, who always paint their houses with opaque finish wood surface paint, had two children while 25% respondents had one child. In Ahmedabad, significant difference (Chi-Square Value = 21.568 & p Value = 0.043) was observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy opaque finish wood surface paints.
- In Surat, majority of the respondents, who never paint their houses with opaque finish wood surface paint, majority i.e., 69%, had two children while only 15.5% respondents had three or more children. Moreover, majority i.e., 68.2%, respondents, who rarely paint their houses with opaque finish wood surface paint, had two children while 4.5% respondents didn't have any child. Further, majority i.e., 66.7%, respondents, who often paint their houses with opaque finish wood surface paint, had two children. Furthermore, majority i.e., 55.6%, respondents, who always paint their houses with opaque finish wood surface paint, had two children while 22.2% respondents had one child. In Surat, significant difference (Chi-Square Value = 18.851 & p Value = 0.092) was not observed between respondents with different number of children i.e., no child, one child, two

- children and 3 or more children, regarding their regularity to buy opaque finish wood surface paints.
- In Rajkot, majority of the respondents, who never paint their houses with opaque finish wood surface paint, majority i.e., 66.1%, had two children while only 5.4% respondents had three or more children. Further, majority i.e., 65.9%, respondents, who often paint their houses with opaque finish wood surface paint, had two children while 27.9% respondents didn't have a child. Furthermore, only 66.7% respondents, who always paint their houses with opaque finish wood surface paint, had two children while 33.3% respondents didn't have a child. In Rajkot, significant difference (Chi-Square Value = 6.920 & p Value = 0.645) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy opaque finish wood surface paints. (Ref. Table 5.4.110)

Table 5.4.111: Respondents' opinion regarding their Consistency of Purchasing Metal
Surface Paints across Selected Cities of Gujarat

					Purc	hasing (Consis	stency				
	N	ever	Ra	rely	Son	etime	o	ften	A	lways	Т	otal
CITY	N	%	N	%	N	%	N	%	N	%	N	%
Vadodara	38	20.3	119	44.1	40	26.3	2	1.8	1	1.2	200	25.0
Ahmedabad	53	28.3	61	22.6	55	36.2	23	20.9	8	9.9	200	25.0
Surat	36	19.3	30	11.1	20	13.2	62	56.4	52	64.2	200	25.0
Rajkot	60	32.1	60	22.2	37	24.3	23	20.9	20	24.7	200	25.0
Total	187	100.0	270	100.0	152	100.0	110	100.0	81	100.0	800	100.0
Chi-Square value	230.4	43										
p Value	0.000	(Statistic	is signif	icant at 0.0	5 level)							

- It could be observed from above table that respondents from Surat and Rajkot were more likely to buy metal surface paint, when they wanted to paint their places, compare to respondents from Vadodara and Ahmedabad.
- 56.4% respondents who purchase metal surface paint often were from Surat and 20.9% respondents were from Ahmedabad. While, in this case respondents from Vadodara were only 1.8% and 20.9% respondents were from Rajkot.
- 64.2% respondents who always purchase metal surface paint were from Surat and 9.9% respondents were from Ahmedabad. While, in this case respondents from Vadodara were only 1.2% and 24.7% respondents were from Rajkot.
- 32.1% respondents who never purchase metal surface paint were from Rajkot while 22.2% respondents and 44.1% respondents who purchase metal surface paints rarely were from Rajkot and Vadodara respectively.
- With high Chi-Square value (230.443) and high significance level (p=0.000), it could be said that there was a significant difference in purchase of metal surface paint between respondents of all four cities of Gujarat state. (Ref. Table 5.4.111)

Table 5.4.112: Respondents' city wise opinion regarding their Consistency of Purchasing

Metal Surface Paints across Age Group

						Pur	chasing (Consist	tency						
Citv*	Ago	No	ever	Ra	rely	Son	netime	0	ften	A	lways	T	otal	Significa	nce #
City	Age	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	<=37	14	36.8	44	37.0	14	35.0	1	50.0	1	100	74	37.0		
V	38-46	3	7.9	49	41.2	20	50.0	1	50.0	0	.0	73	36.5	28.528	0.000
	>46	21	55.3	26	21.8	6	15.0	0	.0	0	.0	53	26.5		
	Total	38	20.3	119	44.1	40	26.3	2	1.8	1	1.2	200	25.0		
	<=37	12	22.6	21	34.4	22	40.0	7	30.4	5	62.5	67	33.5		
A	38-46	10	18.9	20	32.8	17	30.9	10	43.5	2	25.0	59	29.5	18.393	0.018
	>46	31	58.5	20	32.8	16	29.1	6	26.1	1	12.5	74	37.0		
	Total	53	28.3	61	22.6	55	36.2	23	20.9	8	9.9	200	25.0		
	<=37	2	5.6	14	46.7	8	40.0	24	38.7	19	36.5	67	33.5		
\mathbf{S}	38-46	6	16.7	8	26.7	9	45.0	22	35.5	22	42.3	67	33.5	43.757	0.000
	>46	28	77.8	8	26.7	3	15.0	16	25.8	11	21.2	66	33.0		
	Total	36	19.3	30	11.1	20	13.2	62	56.4	52	64.2	200	25.0		
	<=37	9	15.0	27	45.0	18	48.6	13	56.5	11	55.0	78	39.0		
R	38-46	14	23.3	18	30.0	10	27.0	7	30.4	5	25.0	54	27.0	34.131	0.000
	>46	37	61.7	15	25.0	9	24.3	3	13.0	4	20.0	68	34.0		
	Total	60	32.1	60	22.2	37	24.3	23	20.9	20	24.7	200	25.0		
	<=37	37	19.8	106	39.3	62	40.8	45	40.9	36	44.4	286	35.8		
O	38-46	33	17.6	95	35.2	56	36.8	40	36.4	29	35.8	253	31.6	100.884	0.000
	>46	117	62.6	69	25.6	34	22.4	25	22.7	16	19.8	261	32.6		
	Total	187	100.0	270	100.0	152	100.0	110	100.0	81	100.0	800	100.0		
* V =	- Vadod	lara, A	A=Ahm	edaba	d, S=Si	urat, F	R=Rajko	ot, O=	Overa	11;				_	
	stic is sign														
	5.5.		5100												

- In overall, respondents who never purchase metal surface paints, majority i.e., 62.6% respondents were of age above 46 years. Moreover, respondents who purchase metal surface paints rarely, only 25.6% respondents were of age more than 46 years while 39.3% respondents were of age 37 years or less. Further, 40.8% respondents, who buy metal surface paints sometimes, and 40.9% respondents, who often buy metal surface paints, were of age 37 years or less. Respondents who always buy metal surface paints, 48.9% were of age between 37 years and 46 years. Furthermore, in overall, high significant difference (Chi-Square Value = 100.884 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy metal surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Vadodara, respondents who never purchase metal surface paints, majority i.e., 55.3% respondents were of age above 46 years. Moreover, respondents who purchase metal surface paints rarely, only 21.8% respondents were of age more than 46 years while 41.2% respondents were of age between 37 years and 46 years. Further, 50% respondents, who

often buy metal surface paints, and all of the respondents, who always buy metal surface paints, were of age 37 years or less. Respondents who sometimes buy metal surface paints, 50% were of age between 37 years and 46 years. Furthermore, in Vadodara, high significant difference (Chi-Square Value = 28.528 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy metal surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.

- In Ahmedabad, respondents who never purchase metal surfaces, majority i.e., 58.5% respondents were of age above 46 years. Moreover, respondents who purchase metal surface paints rarely, only 32.8% respondents were of age more than 46 years while 34.4% respondents were of age 37 years or less. Further, only30.9% respondents, who buy metal surface paints sometimes, and 43.5% respondents, who often buy metal surface paints, were of age between 37 years to 46 years. Respondents who always buy metal surface paints, only 12.5% were of age above 46 years and 62.5% respondents were of age no more than 37 years. Furthermore, in Ahmedabad, significant difference (Chi-Square Value = 18.393 & p Value = 0.018) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy metal surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.
- In Surat, respondents who never purchase metal surfaces, majority i.e., 77.8% respondents were of age above 46 years. Moreover, respondents who purchase metal surface paints rarely, only 26.7% respondents were of age more than 46 years while 46.7% respondents were of age 37 years or less. Further, 40% respondents, who buy metal surface paints sometimes, and 38.7% respondents, who often buy metal surface paints, were of age 37 years or less. Respondents who always buy metal surface paints, 42.3% were of age between 37 years and 46 years. Furthermore, in Surat, high significant difference (Chi-Square Value = 43.757 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy metal surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years.

• In Rajkot, respondents who never purchase metal surfaces, majority i.e., 61.7% respondents were of age above 46 years. Moreover, respondents who purchase metal surface paints rarely, only 25% respondents were of age more than 46 years while 45% respondents were of age 37 years or less. Further, 48.6% respondents, who buy metal surface paints sometimes, and 56.5% respondents, who often buy metal surface paints, were of age 37 years or less. Respondents who always buy metal surface paints, only 25% were of age between 37 years and 46 years while 55% respondents were of age 37 years or less. Furthermore, in Rajkot, high significant difference (Chi-Square Value = 34.131 & p Value = 0.000) of opinions, regarding consistency i.e., never, rarely, sometimes, often and always, of respondents to buy metal surface paints, was observed between respondents from three age groups i.e. below or equal to 37 years, 38 to 46 years and above 46 years. (Ref. Table 5.4.112)

Table 5.4.113: Respondents' city wise opinion regarding their Consistency of Purchasing

Metal Surface Paints across Gender

						Pur	chasing (Consist	ency						
		No	ever	Ra	rely	Son	netime	0	ften	Al	lways	T	otal	Signific	ance #
CITY*	Gender	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Male	24	63.2	88	73.9	28	70.0	1	50.0	1	100.0	142	71.0	2,494	0.646
V	Female	14	36.8	31	26.1	12	30.0	1	50.0	0	.0	58	29.0	2.494	0.040
	Total	38	20.3	119	44.1	40	26.3	2	1.8	1	1.2	200	25.0		
Α	Male	43	81.1	45	73.8	41	74.5	20	87.0	3	37.5	152	76.0	9.010	0.061
A	Female	10	18.9	16	26.2	14	25.5	3	13.0	5	62.5	48	24.0	9.010	0.001
	Total	53	28.3	61	22.6	55	36.2	23	20.9	8	9.9	200	25.0		
S	Male	35	97.2	23	76.7	10	50.0	35	56.5	38	73.1	141	70.5	23.000	0.000
	Female	1	2.8	7	23.3	10	50.0	27	43.5	14	26.9	59	29.5	23.000	0.000
	Total	36	19.3	30	11.1	20	13.2	62	56.4	52	64.2	200	25.0		
R	Male	54	90.0	36	60.0	25	67.6	13	56.5	17	85.0	145	72.5	18.883	0.001
N	Female	6	10.0	24	40.0	12	32.4	10	43.5	3	15.0	55	27.5	10.003	0.001
	Total	60	32.1	60	22.2	37	24.3	23	20.9	20	24.7	200	25.0		
0	Male	156	83.4	192	71.1	104	68.4	69	62.7	59	72.8	580	72.5	17.993	0.001
U	Female	31	16.6	78	28.9	48	31.6	41	37.3	22	27.2	220	27.5	17.993	0.001
	Total	187	100.0	270	100.0	152	100.0	110	100.0	81	100.0	800	100.0	·	
* V = V	/adodara,	A=A	nmedaba	ad, S=	Surat, R	e=Rajl	cot, O=	Overa	.11;						
# Statistic	c is significa	nt at 0.	.05 level												

- In overall, it was observed that majority i.e., 83.4% male respondents never purchase metal surface paint while 71.1% male respondents rarely purchase metal surface paints. Moreover, compared to total 27.5% female respondents from Gujarat, 31.6% female respondents sometimes purchase metal surface paints while 27.2% female respondents always prefer to buy metal surface paints for their houses. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 17.993; p value = 0.001) between male and female respondents regarding their regularity of metal surface paint purchase.
- In Vadodara, it was observed that majority i.e., 50% male respondents often purchase metal surface paint while only 63.2% male respondents never purchase metal surface paints. Moreover, compared to total 29% female respondents from Vadodara, 36.8% female respondents never purchase metal surface paints while 34.2% female respondents sometimes prefer to buy metal surface paints for their houses. Further, in Vadodara, there wasn't a significant difference (Chi-Square = 2.494; p value = 0.646) between male and female respondents regarding their regularity of metal surface paint purchase.
- In Ahmedabad, it was observed that majority i.e., 81.1% male respondents never purchase metal surface paint while 73.8% male respondents rarely purchase metal surface paints.

Moreover, compared to total 24% female respondents from Ahmedabad, 13% female respondents often purchase metal surface paints while 62.5% female respondents always prefer to buy metal surface paints for their houses. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 9.010; p value = 0.061) between male and female respondents regarding their regularity of metal surface paint purchase.

- In Surat, it was observed that majority i.e., 97.2% male respondents never purchase metal surface paint while 76.7% male respondents rarely purchase metal surface paints. Moreover, compared to total 29.5% female respondents from Surat, 50% female respondents sometimes purchase metal surface paints while 26.9% female respondents always prefer to buy metal surface paints for their houses. Further, in Surat, there was a significant difference (Chi-Square = 23.000; p value = 0.000) between male and female respondents regarding their regularity of metal surface paint purchase.
- In Rajkot, it was observed that majority i.e., 90% male respondents never purchase metal surface paint while 60% male respondents rarely purchase metal surface paints. Moreover, compared to total 27.5% female respondents from Rajkot, 32.4% female respondents sometimes purchase metal surface paints while 15% female respondents always prefer to buy metal surface paints for their houses. Further, in Rajkot, there was a significant difference (Chi-Square = 18.883; p value = 0.001) between male and female respondents regarding their regularity of metal surface paint purchase. (Ref. Table 5.4.113)

Table 5.4.114: Respondents' city wise opinion regarding their Consistency of Purchasing

Metal Surface Paints across Educational Qualifications

						Purc	hasing C	onsister	ісу						
		No	ever	Ra	rely	Som	etime	Of	iten	A	lways	To	otal	Significa	ance#
City*	Ed.**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	UG	10	26.3	2	1.7	2	5.0	0	.0	0	.0	14	7.0		
V	Gr	19	50.0	46	38.7	12	30.0	1	50.0	1	100	79	39.5	37.169	0.000
	PG	9	23.7	71	59.7	26	65.0	1	50.0	0	.0	107	53.5		
	Total	38	20.3	119	44.1	40	26.3	2	1.8	1	1.2	200	25.0		
	UG	19	35.8	12	19.7	2	3.6	2	8.7	0	.0	35	17.5		
A	Gr	25	47.2	33	54.1	34	61.8	15	65.2	2	25.0	109	54.5	31.197	0.000
	PG	9	17.0	16	26.2	19	34.5	6	26.1	6	75.0	56	28.0		
	Total	53	28.3	61	22.6	55	36.2	23	20.9	8	9.9	200	25.0		
	UG	11	30.6	4	13.3	4	20.0	7	11.3	12	23.1	38	19.0		
S	Gr	24	66.7	20	66.7	10	50.0	36	58.1	26	50.0	116	58.0	15.959	0.043
	PG	1	2.8	6	20.0	6	30.0	19	30.6	14	26.9	46	23.0		
	Total	36	19.3	30	11.1	20	13.2	62	56.4	52	64.2	200	25.0		
	UG	16	26.7	8	13.3	4	10.8	2	8.7	5	25.0	35	17.5		
R	Gr	37	61.7	38	63.3	18	48.6	12	52.2	13	65.0	118	59.0	19.413	0.013
	PG	7	11.7	14	23.3	15	40.5	9	39.1	2	10.0	47	23.5		
	Total	60	32.1	60	22.2	37	24.3	23	20.9	20	24.7	200	25.0		
	UG	56	29.9	26	9.6	12	7.9	11	10.0	17	21.0	122	15.3		
O	Gr	105	56.1	137	50.7	74	48.7	64	58.2	42	51.9	422	52.8	73.765	0.000
	PG	26	13.9	107	39.6	66	43.4	35	31.8	22	27.2	256	32.0		
	Total	187	100.0	270	100.0	152	100.0	110	100.0	81	100.0	800	100.0		
* V = 1	Vadodara,	A=Ahn	nedabad, S	=Surat,	R=Rajko	t, O=O	verall;								
** Edu	cational Q	ualificat	tion: UG=	= Under	Graduate	e; Gr. = 0	Graduate	PG = F	ostgradu	ate					
# Statis	stic is sign	ificant	at 0.05 lev	el											

- In overall, it was observed that majority i.e., 56.1% of the respondents who never purchase metal surface paints were graduates while 13.9% respondents were postgraduates. Out of total 15.3% undergraduate respondents, 29.9% respondents never buy metal surface paints. Moreover, 39.6% respondents, who rarely purchase metal surface paints, were postgraduate respondents while only 9.6% respondents were undergraduates. 10% respondents were undergraduates who liked to buy metal surface paints often. While, 21% respondents were postgraduate respondents who always preferred to buy metal surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 73.765; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of metal surface paints.
- In Vadodara, it was observed that majority i.e., 50% of the respondents who never purchase metal surface paints were graduates while 23.7% respondents were postgraduates. Out of total 7% undergraduate respondents from Vadodara, 26.3% respondents never buy metal surface paints. Moreover, 59.7% respondents, who rarely purchase metal surface paints,

were postgraduate respondents while only 1.7% respondents were undergraduates. None of the respondents were undergraduates who liked to buy metal surface paints often. While, 65% respondents were postgraduate respondents who sometimes preferred to buy metal surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 37.169; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of metal surface paints.

- In Ahmedabad, it was observed that majority i.e., 47.2% of the respondents who never purchase metal surface paints were graduates while 17% respondents were postgraduates. Out of total 17.5% undergraduate respondents, 35.8% respondents never buy metal surface paints. Moreover, 54.1% respondents, who rarely purchase metal surface paints, were graduate respondents while only 26.2% respondents were postgraduates. 8.7% respondents were undergraduates who liked to buy metal surface paints often. While, 75% respondents were postgraduate respondents who always preferred to buy metal surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 31.197; p value = 0.000) between respondents with different educational qualifications regarding their regularity in purchase of metal surface paints.
- In Surat, it was observed that majority i.e., 66.7% of the respondents who never purchase metal surface paints were graduates while 2.8% respondents were postgraduates. Out of total 19% undergraduate respondents, 30.6% respondents never buy metal surface paints. Moreover, 66.7% respondents, who rarely purchase metal surface paints, were graduate respondents while only 14.3% respondents were undergraduates. 11.3% respondents were undergraduates who liked to buy metal surface paints often. While, 50% respondents were graduate respondents who always preferred to buy metal surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 15.959; p value = 0.043) between respondents with different educational qualifications regarding their regularity in purchase of metal surface paints.
- In Rajkot, it was observed that majority i.e., 61.7% of the respondents who never purchase metal surface paints were graduates while 11.7% respondents were postgraduates. Out of total 17.5% undergraduate respondents, 26.7% respondents never buy metal surface paints. Moreover, 63.3% respondents, who rarely purchase metal surface paints, were graduate respondents while only 13.3% respondents were undergraduates. 52.2% respondents were

graduates who liked to buy metal surface paints often. While, only 10% respondents were postgraduate respondents who always preferred to buy metal surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 19.413; p value = 0.013) between respondents with different educational qualifications regarding their regularity in purchase of metal surface paints. (Ref. Table 5.4.114)

Table 5.4.115: Respondents' city wise opinion regarding their Consistency of Purchasing

Metal Surface Paints across Occupation

						Purc	hasing C	onsistei	ісу						
		No	ever	Ra	rely	Som	etime	Of	ften	A	lways	To	otal	Significa	ance #
City*	Oc.**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
	S	22	57.9	43	36.1	14	35.0	1	50.0	0	.0	80	40.0		
V	В	7	18.4	40	33.6	12	30.0	0	.0	1	100	60	30.0	10.044	0.262
	P	9	23.7	36	30.3	14	35.0	1	50.0	0	.0	60	30.0		
	Total	38	20.3	119	44.1	40	26.3	2	1.8	1	1.2	200	25.0		
	S	25	47.2	26	42.6	21	38.2	3	13.0	5	62.5	80	40.0		
A	В	10	18.9	20	32.8	18	32.7	11	47.8	1	12.5	60	30.0	13.352	0.100
	P	18	34.0	15	24.6	16	29.1	9	39.1	2	25.0	60	30.0		
	Total	53	28.3	61	22.6	55	36.2	23	20.9	8	9.9	200	25.0		
	S	20	55.6	15	50.0	9	45.0	26	41.9	10	19.2	80	40.0		
S	В	2	5.6	8	26.7	6	30.0	23	37.1	21	40.4	60	30.0	24.025	0.002
	P	14	38.9	7	23.3	5	25.0	13	21.0	21	40.4	60	30.0		
	Total	36	19.3	30	11.1	20	13.2	62	56.4	52	64.2	200	25.0		
	S	31	51.7	19	31.7	15	40.5	8	34.8	7	35.0	80	40.0		
R	В	16	26.7	19	31.7	10	27.0	9	39.1	6	30.0	60	30.0	7.028	0.536
	P	13	21.7	22	36.7	12	32.4	6	26.1	7	35.0	60	30.0		
	Total	60	32.1	60	22.2	37	24.3	23	20.9	20	24.7	200	25.0		
	S	98	52.4	103	38.1	59	38.8	38	34.5	22	27.2	320	40.0		
О	В	35	18.7	87	32.2	46	30.3	43	39.1	29	35.8	240	30.0	25.916	0.001
	P	54	28.9	80	29.6	47	30.9	29	26.4	30	37.0	240	30.0		
	Total	187	100.0	270	100.0	152	100.0	110	100.0	81	100.0	800	100.0		
			nedabad, S												
** Occi	upation : S	S = Serv	ice Class;	B = Bus	iness clas	ss; P = P	rofession	als							
# Statis	tic is sign	ificant	at 0.05 lev	el									-	•	

- In overall, it was observed that majority i.e., 52.4% of the respondents who never purchase metal surface paints were service class people while 28.9% respondents were professionals. Out of total 30% business class respondents, only 18.7% respondents never buy metal surface paints. Moreover, 38.8% respondents, who sometimes purchase metal surface paints, were service class respondents. 39.1% respondents were business class people who liked to buy metal surface paints often. While, 37% respondents were professional respondents who always preferred to buy metal surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 25.916; p value = 0.001) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of metal surface paints.
- In Vadodara, it was observed that majority i.e., 57.9% of the respondents who never purchase metal surface paints were service class people while 23.7% respondents were professionals. Out of total 30% business class respondents, only 18.4% respondents never buy metal surface paints. Moreover, 35% respondents, who sometimes purchase metal

surface paints, were service class respondents. 50% respondents were service class people who liked to buy metal surface paints often. Furthermore, it was also observed that there wasn't a significant difference (Chi-Square = 10.044; p value = 0.262) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of metal surface paints.

- In Ahmedabad, it was observed that majority i.e., 47.2% of the respondents who never purchase metal surface paints were service class people while 34% respondents were professionals. Out of total 30% business class respondents, only 18.9% respondents never buy metal surface paints. Moreover, only 38.2% respondents, who sometimes purchase metal surface paints, were service class respondents and 32.7% respondents were business class people. While, 62.5% respondents were service class respondents who always preferred to buy metal surface paints. Furthermore, it was also observed that there wasn't a significant difference (Chi-Square = 13.352; p value = 0.100) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of metal surface paints.
- In Surat, it was observed that majority i.e., 55.6% of the respondents who never purchase metal surface paints were service class people while 38.9% respondents were professionals. Out of total 30% business class respondents, only 5.6% respondents never buy metal surface paints. Moreover, 45% respondents, who sometimes purchase metal surface paints, were service class respondents. 37.1% respondents were business class people who liked to buy metal surface paints often. While, 40.4% respondents were from professional and business class each, who always preferred to buy metal surface paints. Furthermore, it was also observed that there was a significant difference (Chi-Square = 24.025; p value = 0.002) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of metal surface paints.
- In Rajkot, it was observed that majority i.e., 51.7% of the respondents who never purchase metal surface paints were service class people while 21.7% respondents were professionals. Out of total 30% business class respondents, only 26.7% respondents never buy metal surface paints. Moreover, 40.5% respondents, who sometimes purchase metal surface paints, were service class respondents. 39.1% respondents were business class people who liked to buy metal surface paints often. While, 30% respondents were business class

respondents who always preferred to buy metal surface paints. Furthermore, it was also observed that there wasn't a significant difference (Chi-Square = 7.028; p value = 0.536) between respondents with different occupations i.e., service, business and other profession, regarding their regularity in purchase of metal surface paints. (Ref. Table 5.4.115)

paints.

Table 5.4.116: Respondents' city wise opinion regarding their Consistency of Purchasing

Metal Surface Paints across Monthly Income Group

						Pur	chasing (Consist	ency						
City*	MI**	No	ever	Ra	rely	Som	etime	0	ften	Al	lways	T	otal	Significa	nce#
City	IVII	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	MI – 1	21	55.3	43	36.1	13	32.5	1	50.0	1	100	79	39.5		
V	MI – 2	13	34.2	37	31.1	13	32.5	1	50.0	0	.0	64	32.0	11.342	0.183
	MI – 3	4	10.5	39	32.8	14	35.0	0	.0	0	.0	57	28.5		
	Total	38	20.3	119	44.1	40	26.3	2	1.8	1	1.2	200	25.0		
	MI – 1	30	56.6	29	47.5	25	45.5	9	39.1	4	50.0	97	48.5		
A	MI – 2	8	15.1	14	23.0	11	20.0	2	8.7	3	37.5	38	19.0	9.186	0.327
	MI – 3	15	28.3	18	29.5	19	34.5	12	52.2	1	12.5	65	32.5		
	Total	53	28.3	61	22.6	55	36.2	23	20.9	8	9.9	200	25.0		
	MI – 1	20	55.6	11	36.7	4	20.0	16	25.8	11	21.2	62	31.0		
S	MI – 2	13	36.1	8	26.7	9	45.0	19	30.6	13	25.0	62	31.0	24.953	0.002
	MI – 3	3	8.3	11	36.7	7	35.0	27	43.5	28	53.8	76	38.0		
	Total	36	19.3	30	11.1	20	13.2	62	56.4	52	64.2	200	25.0		
	MI – 1	9	15.0	13	21.7	4	10.8	2	8.7	6	30.0	34	17.0		
R	MI – 2	29	48.3	26	43.3	17	45.9	15	65.2	11	55.0	98	49.0	10.135	0.256
	MI – 3	22	36.7	21	35.0	16	43.2	6	26.1	3	15.0	68	34.0		
	Total	60	32.1	60	22.2	37	24.3	23	20.9	20	24.7	200	25.0		
	MI – 1	80	42.8	96	35.6	46	30.3	28	25.5	22	27.2	272	34.0		
О	MI – 2	63	33.7	85	31.5	50	32.9	37	33.6	27	33.3	262	32.8	17.558	0.044
	MI – 3	44	23.5	89	33.0	56	36.8	45	40.9	32	39.5	266	33.3		
	Total	187	100.0	270	100.0	152	100.0	110	100.0	81	100.0	800	100.0		
* V = V	Vadodara,	A=Ahr	nedabad,	S=Sura	at, R=Raj	kot, O=	Overall	,							
** Mo	nthly Inco	ne : M	I – 1: <=	29166.	67, MI –	2: 2916	66.68-462	250.00,	MI – 3∶	>4625	0.00				
# Statis	stic is sign	ificant	at 0.05 le	evel											

• In overall, it was observed that majority i.e., 42.8%, respondents, with monthly income Rs.29166.67 or less, never buy metal surface paints. Moreover, majority i.e., 36.8%, respondents who buy metal surface paint sometimes, had monthly income above Rs.46250. Further, 40.9% respondents who often buy metal surface paints and 39.5% respondents who always buy metal surface paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Gujarat state i.e., collectively from Vadodara,

Ahmedabad, Surat and Rajkot, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, had significant

difference (Chi-Square = 17.558; p value = 0.044) in regularity of purchasing metal surface

• In Vadodara, it was observed that majority i.e., 55.3%, respondents, with monthly income Rs.29166.67 or less, never buy metal surface paints. While, 32.5% respondents, with monthly income Rs.29166.67 or less, rarely buy metal surface paints. Moreover, majority i.e., 35%, respondents who buy metal surface paint sometimes, had monthly income above Rs.46250. Further, 50% respondents who often buy metal surface paints and all of the

respondents who always buy metal surface paints had monthly income Rs.29166.67 or less. Furthermore, it was also observed that in Vadodara, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 11.342; p value = 0.183) in regularity of purchasing metal surface paints.

- In Ahmedabad, it was observed that majority i.e., 56.6%, respondents, with monthly income Rs.29166.67 or less, never buy metal surface paints. While, only 23% respondents, with monthly income between Rs.29166.67 to Rs.46250.00, rarely buy metal surface paints. Moreover, majority i.e., 45.5%, respondents who buy metal surface paint sometimes, had monthly income Rs.29166.67 or less. Further, 52.2% respondents who often buy metal surface paints and only 12.5% respondents who always buy metal surface paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Ahmedabad, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have a significant difference (Chi-Square = 9.186; p value = 0.327) in regularity of purchasing metal surface paints.
- In Surat, it was observed that majority i.e., 55.6%, respondents, with monthly income Rs.29166.67 or less, never buy metal surface paints. While, 36.7% respondents, with monthly income between above Rs.46250.00, rarely buy metal surface paints. Moreover, only 20%, respondents who buy metal surface paint sometimes, had monthly income Rs.29166.67 or less. Further, 43.5% respondents who often buy metal surface paints and 53.8% respondents who always buy metal surface paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in Surat, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, had significant difference (Chi-Square = 24.953; p value = 0.002) in regularity of purchasing metal surface paints.
- In Rajkot, it was observed that majority i.e., 48.3%, respondents, with monthly income Rs.29166.67 or less, never buy metal surface paints. While, 43.3% respondents who rarely buy metal surface paints and 45.9% respondents who sometimes buy metal surface paints had monthly income between Rs.29166.67 to Rs.46250.00. Further, 65.2% respondents who often buy metal surface paints while 66.7% respondents who always buy metal surface paints had monthly income above Rs.46250.00. Furthermore, it was also observed that in

Rajkot, respondents with different monthly income group i.e., Rs.29166.67 or less, Rs.29166.68 to Rs.46250.00 and above Rs.46250, didn't have significant difference (Chi-Square = 10.135; p value = 0.256) in regularity of purchasing metal surface paints. (Ref. Table 5.4.116)

Table 5.4.117: Respondents' city wise opinion regarding their Consistency of Purchasing

Metal Surface Paints across Per Capita Income

		Purchasing Consistency													
City*	PCI**	Never		Rarely		Sometime		0	ften	Always		Total		Significance #	
City		N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	Low	19	50.0	39	32.8	10	25.0	0	.0	1	100	69	34.5		0.079
V	Mod.	11	28.9	33	27.7	15	37.5	2	100	0	.0	61	30.5	14.094	
	High	8	21.1	47	39.5	15	37.5	0	.0	0	.0	70	35.0		
	Total	38	20.3	119	44.1	40	26.3	2	1.8	1	1.2	200	25.0		
	Low	30	56.6	29	47.5	23	41.8	9	39.1	3	37.5	94	47.0		
A	Mod.	12	22.6	14	23.0	12	21.8	3	13.0	4	50.0	45	22.5	10.839	0.211
	High	11	20.8	18	29.5	20	36.4	11	47.8	1	12.5	61	30.5		
	Total	53	28.3	61	22.6	55	36.2	23	20.9	8	9.9	200	25.0		
	Low	22	61.1	10	33.3	3	15.0	19	30.6	11	21.2	65	32.5		0.000
\mathbf{S}	Mod.	11	30.6	5	16.7	10	50.0	20	32.3	15	28.8	61	30.5	29.332	
	High	3	8.3	15	50.0	7	35.0	23	37.1	26	50.0	74	37.0		
	Total	36	19.3	30	11.1	20	13.2	62	56.4	52	64.2	200	25.0		
	Low	16	26.7	12	20.0	5	13.5	6	26.1	10	50.0	49	24.5		0.108
R	Mod.	25	41.7	30	50.0	23	62.2	12	52.2	5	25.0	95	47.5	13.125	
	High	19	31.7	18	30.0	9	24.3	5	21.7	5	25.0	56	28.0		
	Total	60	32.1	60	22.2	37	24.3	23	20.9	20	24.7	200	25.0		
	Low	87	46.5	90	33.3	41	27.0	34	30.9	25	30.9	277	34.6		0.003
O	Mod.	59	31.6	82	30.4	60	39.5	37	33.6	24	29.6	262	32.8	23.194	
	High	41	21.9	98	36.3	51	33.6	39	35.5	32	39.5	261	32.6		
	Total	187	100.0	270	100.0	152	100.0	110	100.0	81	100.0	800	100.0		
	Vadodara,				/ .	kot, O	Overall -	;		-	•	,	•	•	•
** PEI	R CAPITA	INCO	ME: Mo	od.= Mo	oderate										
# Statis	stic is sign	ificant	at 0.05 l	evel											

• In overall, it was observed that majority i.e., 46.5%, respondents, with low per capita income level, never buy metal surface paints. While, 30.4% respondents, with moderate per capita income level, rarely buy metal surface paints. Moreover, majority i.e., 39.5%, respondents who buy metal surface paint sometimes, had moderate per capita income. Further, 35.5% respondents who often buy metal surface paints and 39.5% respondents who always buy metal surface paints had high per capita income. Furthermore, it was also observed that in Gujarat state i.e., collectively from Vadodara, Ahmedabad, Surat and Rajkot, respondents with different per capita income group i.e., low, moderate and high, had significant difference (Chi-Square = 23.294; p value = 0.003) in regularity of purchasing metal surface paints.

• In Vadodara, it was observed that majority i.e., 50%, respondents, with low per capita income level, never buy metal surface paints. While, 39.5% respondents, with high per capita income level, rarely buy metal surface paints. Moreover, majority i.e., 37.5%, respondents who buy metal surface paint sometimes, had high per capita income. Furthermore, it was also observed that in Vadodara, respondents with different per capita

- income group i.e., low, moderate and high, didn't have significant difference (Chi-Square = 14.094; p value = 0.079) in regularity of purchasing metal surface paints.
- In Ahmedabad, it was observed that majority i.e., 56.6%, respondents, with low per capita income level, never buy metal surface paints. While, 47.5% respondents, with low per capita income level, rarely buy metal surface paints. Moreover, majority i.e., 41.8%, respondents, who buy metal surface paint sometimes, also had low per capita income. Further, 47.8% respondents who often buy metal surface paints and only 12.5% respondents who always buy metal surface paints had high per capita income. Furthermore, it was also observed that in Ahmedabad, respondents with different per capita income group i.e., low, moderate and high, didn't have a significant difference (Chi-Square = 10.839; p value = 0.211) in regularity of purchasing metal surface paints.
- In Surat, it was observed that majority i.e., 61.1%, respondents, with low per capita income level, never buy metal surface paints. While, only 16.7% respondents, with moderate per capita income level, rarely buy metal surface paints. Moreover, majority i.e., 50%, respondents who buy metal surface paint sometimes, had moderate per capita income. Further, 37.1% respondents who often buy metal surface paints and 50% respondents who always buy metal surface paints had high per capita income. Furthermore, it was also observed that in Surat, respondents with different per capita income group i.e., low, moderate and high, had significant difference (Chi-Square = 29.332; p value = 0.000) in regularity of purchasing metal surface paints.
- In Rajkot, it was observed that majority i.e., 41.7%, respondents, with moderate per capita income level, never buy metal surface paints. While, 50% respondents, with moderate per capita income level, rarely buy metal surface paints. Moreover, majority i.e., 62.2%, respondents who buy metal surface paint sometimes, had moderate per capita income. Further, 52.2% respondents who often buy metal surface paints and 25% respondents who always buy metal surface paints had moderate per capita income. Furthermore, it was also observed that in Rajkot, respondents with different per capita income group i.e., low, moderate and high, didn't have a significant difference (Chi-Square = 13.125; p value = 0.108) in regularity of purchasing metal surface paints. (Ref. Table 5.4.117)

Table 5.4.118: Respondents' city wise opinion regarding their Consistency of Purchasing

Metal Surface Paints across Marital Status

		Purchasing Consistency													
	Marital Status**	N	ever	Rarely		Sometime		Often		Always		Total		Significance #	
CITY*		N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Mar.	26	68.4	108	90.8	34	85.0	2	100.0	1	100.0	171	85.5	12.110	0.017
	UM	12	31.6	11	9.2	6	15.0	0	.0	0	.0	29	14.5	12.110	
	Total	38	20.3	119	44.1	40	26.3	2	1.8	1	1.2	200	25.0		
A	Mar.	41	77.4	53	86.9	50	90.9	21	91.3	7	87.5	172	86.0	4.980	0.200
A	UM	12	22.6	8	13.1	5	9.1	2	8.7	1	12.5	28	14.0		0.289
	Total	53	28.3	61	22.6	55	36.2	23	20.9	8	9.9	200	25.0		
S	Mar.	28	77.8	26	86.7	18	90.0	59	95.2	51	98.1	182	91.0	12.888	0.012
3	UM	8	22.2	4	13.3	2	10.0	3	4.8	1	1.9	18	9.0		
	Total	36	19.3	30	11.1	20	13.2	62	56.4	52	64.2	200	25.0		
D	Mar.	55	91.7	48	80.0	23	62.2	15	65.2	16	80.0	157	78.5	14.536	0.006
R	UM	5	8.3	12	20.0	14	37.8	8	34.8	4	20.0	43	21.5	14.526	0.006
	Total	60	32.1	60	22.2	37	24.3	23	20.9	20	24.7	200	25.0		
0	Mar.	150	80.2	235	87.0	125	82.2	97	88.2	75	92.6	682	85.3	9.780	0.044
U	UM	37	19.8	35	13.0	27	17.8	13	11.8	6	7.4	118	14.8		0.044
	Total	187	100.0	270	100.0	152	100.0	110	100.0	81	100.0	800	100.0		
* V = Va	dodara, A=A	hmedal	oad, S=Su	rat, R=1	Rajkot, O	= Overa	all;								
** Marita	ıl Status: Mar	. = Mar	ried; UM	: Unmar	ried										
# Statisti	c is significa	nt at A I	15 lovel												

- # Statistic is significant at 0.05 level
 - In overall, it was observed that majority i.e., 80.2% married respondents never purchase metal surface paint while 87% married respondents rarely purchase metal surface paints. Moreover, compared to total 14.8% unmarried respondents from Gujarat, 17.8% unmarried respondents sometimes purchase metal surface paints while only 7.4% unmarried respondents always prefer to buy metal surface paints for their houses. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 9.780; p value = 0.044) between married and unmarried respondents regarding their regularity of metal surface paint purchase.
 - In Vadodara, it was observed that majority i.e., 68.4% married respondents never purchase metal surface paint while 90.8% married respondents rarely purchase metal surface paints. Moreover, compared to total 14.5% unmarried respondents from Vadodara, only 15% unmarried respondents sometimes purchase metal surface paints for their houses. Further, in Vadodara, there was a significant difference (Chi-Square = 12.110; p value = 0.017) between married and unmarried respondents regarding their regularity of metal surface paint purchase.
 - In Ahmedabad, it was observed that majority i.e., 77.4% married respondents never purchase metal surface paint while 86.9% married respondents rarely purchase metal

surface paints. Moreover, compared to total 14% unmarried respondents from Ahmedabad, 9.1% unmarried respondents sometimes purchase metal surface paints while 12.5% unmarried respondents always prefer to buy metal surface paints for their houses. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 4.980; p value = 0.289) between married and unmarried respondents regarding their regularity of metal surface paint purchase.

- In Surat, it was observed that majority i.e., 77.8% married respondents never purchase metal surface paint while 86.7% married respondents rarely purchase metal surface paints. Moreover, compared to total 9% unmarried respondents from Surat, 4.8% unmarried respondents often purchase metal surface paints while 1.9% unmarried respondents always prefer to buy metal surface paints for their houses. Further, in Surat, there was a significant difference (Chi-Square = 12.888; p value = 0.012) between married and unmarried respondents regarding their regularity of metal surface paint purchase.
- In Rajkot, it was observed that majority i.e., 91.7% married respondents never purchase metal surface paint while 80% married respondents rarely purchase metal surface paints. Moreover, compared to total 21.5% unmarried respondents from Rajkot, 37.8% unmarried respondents sometimes purchase metal surface paints while 20% unmarried respondents always prefer to buy metal surface paints for their houses. Further, in Rajkot, there was a significant difference (Chi-Square = 14.526; p value = 0.006) between married and unmarried respondents regarding their regularity of metal surface paint purchase. (Ref. Table 5.4.118)

Table 5.4.119: Respondents' city wise opinion regarding their Consistency of Purchasing

Metal Surface Paints across Family Size

		Purchasing Consistency													
CITY*	Family Size**	No	ever	Rarely		Sometime		Often		Always		Total		Significance #	
		N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	1-4	24	63.2	91	76.5	36	90.0	2	100.0	1	100.0	154	77.0	8.843	0.065
v	5+	14	36.8	28	23.5	4	10.0	0	.0	0	.0	46	23.0		0.005
	Total	38	20.3	119	44.1	40	26.3	2	1.8	1	1.2	200	25.0		
	1-4	39	73.6	44	72.1	38	69.1	19	82.6	7	87.5	147	73.5	2.393	0.664
A	5+	14	26.4	17	27.9	17	30.9	4	17.4	1	12.5	53	26.5		0.664
	Total	53	28.3	61	22.6	55	36.2	23	20.9	8	9.9	200	25.0		
S	1-4	17	47.2	23	76.7	12	60.0	40	64.5	32	61.5	124	62.0	6.281	0.179
3	5+	19	52.8	7	23.3	8	40.0	22	35.5	20	38.5	76	38.0		
	Total	36	19.3	30	11.1	20	13.2	62	56.4	52	64.2	200	25.0		
R	1-4	37	61.7	32	53.3	22	59.5	13	56.5	11	55.0	115	57.5	0.071	0.914
K	5+	23	38.3	28	46.7	15	40.5	10	43.5	9	45.0	85	42.5	0.971	
	Total	60	32.1	60	22.2	37	24.3	23	20.9	20	24.7	200	25.0		
0	1-4	117	62.6	190	70.4	108	71.1	74	67.3	51	63.0	540	67.5	4.726	0.317
U	5+	70	37.4	80	29.6	44	28.9	36	32.7	30	37.0	260	32.5		
	Total	187	100.0	270	100.0	152	100.0	110	100.0	81	100.0	800	100.0		
* V = Vadodara, A=Ahmedabad, S=Surat, R=Rajkot, O= Overall;															
# Statistic	# Statistic is significant at 0.05 level														

- In overall, it was observed that majority i.e., 62.6% respondents, who never purchase metal surface paint, while 70.4% respondents, who rarely purchase metal surface paints, had family members no more than 4. Moreover, 71.1% respondents, who sometimes purchase metal surface paints, while 63% respondents, who always prefer to buy metal surface paints for their houses, had family member no more than 4. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there wasn't a significant difference (Chi-Square = 4.726; p value = 0.317) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of metal surface paint purchase.
- In Vadodara, it was observed that majority i.e., 63.2% respondents, who never purchase metal surface paint, while 76.5% respondents, who rarely purchase metal surface paints, had family members no more than 4. Moreover, 90% respondents, who sometimes purchase metal surface paints, while all of the respondents, who always prefer to buy metal surface paints for their houses, had family member no more than 4. Further, in Vadodara, there wasn't a significant difference (Chi-Square = 8.843; p value = 0.065) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of metal surface paint purchase.

- In Ahmedabad, it was observed that majority i.e., 73.6% respondents, who never purchase metal surface paint, while 72.1% respondents, who rarely purchase metal surface paints, had family members no more than 4. Moreover, 69.1% respondents, who sometimes purchase metal surface paints, while 87.5% respondents, who always prefer to buy metal surface paints for their houses, had family member no more than 4. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 2.339; p value = 0.664) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of metal surface paint purchase.
- In Surat, it was observed that majority i.e., 47.2% respondents, who never purchase metal surface paint, while 76.7% respondents, who rarely purchase metal surface paints, had family members no more than 4. Moreover, 60% respondents, who sometimes purchase metal surface paints, while 61.5% respondents, who always prefer to buy metal surface paints for their houses, had family member no more than 4. Further, in Surat, there wasn't a significant difference (Chi-Square = 6.281; p value = 0.179) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of metal surface paint purchase.
- In Rajkot, it was observed that majority i.e., 61.7% respondents, who never purchase metal surface paint, while 53.3% respondents, who rarely purchase metal surface paints, had family members no more than 4. Moreover, 59.5% respondents, who sometimes purchase metal surface paints, while 55% respondents, who always prefer to buy metal surface paints for their houses, had family member no more than 4. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 0.971; p value = 0.914) between respondents, with family size up to 4, and respondents, with family size above 4, regarding their regularity of metal surface paint purchase. (Ref. Table 5.4.119)

Table 5.4.120: Respondents' city wise opinion regarding their Consistency of Purchasing

Metal Surface Paints across Family Type

						Pur	chasing (Consist	ency						
	Family	No	ever	Ra	rely	Som	etime	0	ften	A	ways	T	otal	Signific	ance #
CITY*	Family Type**	N	%	N	%	N	%	N	%	N	%	N	%	Chi- Square	p value
V	Nuclear	15	39.5	85	71.4	35	87.5	2	100.0	1	100.0	138	69.0	23.564	0.000
v	Joint	23	60.5	34	28.6	5	12.5	0	.0	0	.0	62	31.0	23.504	0.000
	Total	38	20.3	119	44.1	40	26.3	2	1.8	1	1.2	200	25.0		
A	Nuclear	38	71.7	44	72.1	38	69.1	20	87.0	7	87.5	147	73.5	3.639	0.457
A	Joint	15	28.3	17	27.9	17	30.9	3	13.0	1	12.5	53	26.5	3.039	0.457
	Total	53	28.3	61	22.6	55	36.2	23	20.9	8	9.9	200	25.0		
S	Nuclear	15	41.7	23	76.7	12	60.0	42	67.7	37	71.2	129	64.5	11.603	0.021
3	Joint	21	58.3	7	23.3	8	40.0	20	32.3	15	28.8	71	35.5	11.003	0.021
	Total	36	19.3	30	11.1	20	13.2	62	56.4	52	64.2	200	25.0		
R	Nuclear	31	51.7	36	60.0	27	73.0	16	69.6	11	55.0	121	60.5	5.418	0.247
K	Joint	29	48.3	24	40.0	10	27.0	7	30.4	9	45.0	79	39.5	3.410	0.247
	Total	60	32.1	60	22.2	37	24.3	23	20.9	20	24.7	200	25.0		
0	Nuclear	99	52.9	188	69.6	112	73.7	80	72.7	56	69.1	535	66.9	22.383	0.000
U	Joint	88	47.1	82	30.4	40	26.3	30	27.3	25	30.9	265	33.1	22.363	0.000
	Total	187	100.0	270	100.0	152	100.0	110	100.0	81	100.0	800	100.0		
* V = Va	dodara, A=A	hmeda	bad, S=Sı	ırat, R=	Rajkot, O	= Over	all;						•		•
# Statistic	c is significa	nt at 0.	05 level	•			•						•		•

- In overall, it was observed that majority i.e., 52.9% respondents, who never purchase metal surface paint, while 69.6% respondents, who rarely purchase metal surface paints, were from nuclear family type. Moreover, 73.7% respondents, who sometimes purchase metal surface paints, while 69.1% respondents, who always prefer to buy metal surface paints for their houses, were also having nuclear family type. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 22.383; p value = 0.000) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of metal surface paint purchase.
- In Vadodara, it was observed that majority i.e., 60.5% respondents, who never purchase metal surface paint, had a joint family while 71.4% respondents, who rarely purchase metal surface paints, were from nuclear family type. Moreover, 87.5% respondents, who sometimes purchase metal surface paints, while all of the respondents, who always prefer to buy metal surface paints for their houses, were also having nuclear family type. Further, in Vadodara, there was a significant difference (Chi-Square = 23.564; p value = 0.000) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of metal surface paint purchase.

- In Ahmedabad, it was observed that majority i.e., 71.7 respondents, who never purchase metal surface paint, while 72.1% respondents, who rarely purchase metal surface paints, were from nuclear family type. Moreover, 69.1% respondents, who sometimes purchase metal surface paints, while 87.5% respondents, who always prefer to buy metal surface paints for their houses, were also having nuclear family type. Further, in Ahmedabad, there wasn't a significant difference (Chi-Square = 3.639; p value = 0.457) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of metal surface paint purchase.
- In Surat, it was observed that 41.7% respondents, who never purchase metal surface paint, while 76.7% respondents, who rarely purchase metal surface paints, were from nuclear family type. Moreover, 60% respondents, who sometimes purchase metal surface paints, while 71.2% respondents, who always prefer to buy metal surface paints for their houses, were also having nuclear family type. Further, in Gujarat, i.e., from Vadodara, Surat, Ahmedabad and Rajkot collectively, there was a significant difference (Chi-Square = 11.603; p value = 0.021) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of metal surface paint purchase.
- In Rajkot, it was observed that majority i.e., 51.7% respondents, who never purchase metal surface paint, while 60% respondents, who rarely purchase metal surface paints, were from nuclear family type. Moreover, 73% respondents, who sometimes purchase metal surface paints, while 55% respondents, who always prefer to buy metal surface paints for their houses, were also having nuclear family type. Further, in Rajkot, there wasn't a significant difference (Chi-Square = 5.418; p value = 0.247) between respondents, with nuclear family, and respondents with joint family, regarding their regularity of metal surface paint purchase. (Ref. Table 5.4.120)

Table 5.4.121: Respondents' city wise opinion regarding their Consistency of Purchasing

Metal Surface Paints across Children Group

						Pur	chasing (Consist	encv						
Citv*	Child	Ne	ever	Ra	rely		etime		ften	A	lways	T	otal	Significa	nce #
City*	**	N	%	N	%	N	%	N	%	N	%	N	%	Chi-Square	p value
	0	13	34.2	16	13.4	7	17.5	0	.0	0	.0	36	18.0		
V	1	10	26.3	33	27.7	9	22.5	1	50.0	1	100	54	27.0	12.883	0.116
v	2	15	39.5	70	58.8	24	60.0	1	50.0	0	.0	110	55.0	12.863	0.110
	3 or +	0	.0	0	.0	0	.0	0	.0	0	.0	0	.0		
	Total	38	20.3	119	44.1	40	26.3	2	1.8	1	1.2	200	25.0		
	0	14	26.4	11	18.0	13	23.6	2	8.7	1	12.5	41	20.5		
A	1	8	15.1	11	18.0	10	18.2	8	34.8	3	37.5	40	20.0	9.861	0.628
A	2	28	52.8	35	57.4	29	52.7	13	56.5	4	50.0	109	54.5	2.001	0.020
	3 or +	3	5.7	4	6.6	3	5.5	0	.0	0	.0	10	5.0		
	Total	53	28.3	61	22.6	55	36.2	23	20.9	8	9.9	200	25.0		
	0	8	22.2	5	16.7	2	10.0	3	4.8	2	3.8	20	10.0		
S	1	3	8.3	7	23.3	3	15.0	12	19.4	11	21.2	36	18.0	20.132	0.065
3	2	24	66.7	18	60.0	15	75.0	45	72.6	34	65.4	136	68.0	20.132	0.003
	3 or +	1	2.8	0	.0	0	.0	2	3.2	5	9.6	8	4.0		
	Total	36	19.3	30	11.1	20	13.2	62	56.4	52	64.2	200	25.0		
	0	7	11.7	18	30.0	15	40.5	8	34.8	5	25.0	53	26.5		
R	1	6	10.0	2	3.3	0	.0	0	.0	2	10.0	10	5.0	19.475	0.078
K	2	45	75.0	37	61.7	21	56.8	15	65.2	13	65.0	131	65.5	19.473	0.076
	3 or +	2	3.3	3	5.0	1	2.7	0	.0	0	.0	6	3.0		
	Total	60	32.1	60	22.2	37	24.3	23	20.9	20	24.7	200	25.0		
	0	42	22.5	50	18.5	37	24.3	13	11.8	8	9.9	150	18.8		
0	1	27	14.4	53	19.6	22	14.5	21	19.1	17	21.0	140	17.5	17.908	0.119
U	2	112	59.9	160	59.3	89	58.6	74	67.3	51	63.0	486	60.8	17.900	0.119
	3 or +	6	3.2	7	2.6	4	2.6	2	1.8	5	6.2	24	3.0		
	Total	187	100.0	270	100.0	152	100.0	110	100.0	81	100.0	800	100.0		
	Vadodara,			,		, ,									
** Chil	dren : 0 =	No chi	1d; 1 = 1	Child;	2 = 2 Chi	ildren;	3 + = 3 or	more t	han 3						
# Statis	stic is sigr	ificant	at 0.05	level			·				·				

• In overall, majority of the respondents, who never paint their houses with metal surface paint, majority i.e., 59.9%, had two children while only 3.2% respondents had three or more children. Moreover, majority i.e., 59.3%, respondents, who rarely paint their houses with metal surface paint, had two children while 18.5% respondents didn't have any child. Further, majority i.e., 58.6%, respondents, who often paint their houses with metal surface paint, had two children while 24.3% respondents didn't have a child. Furthermore, majority i.e., 63%, respondents, who always paint their houses with metal surface paint, had two children while 21% respondents had one child. In overall, significant difference (Chi-Square Value = 17.908 & p Value = 0.119) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy metal surface paints.

- In Vadodara, majority of the respondents, who never paint their houses with metal surface paint, majority i.e., 39.5%, had two children. Moreover, majority i.e., 58.8%, respondents, who rarely paint their houses with metal surface paint, had two children while 13.4% respondents didn't have any child. Further, majority i.e., 50%, respondents, who often paint their houses with metal surface paint, had two children while 50% respondents had a child. In Vadodara, significant difference (Chi-Square Value = 12.883 & p Value = 0.116) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy metal surface paints.
- In Ahmedabad, majority of the respondents, who never paint their houses with metal surface paint, majority i.e., 52.8%, had two children while only 5.7% respondents had three or more children. Moreover, majority i.e., 57.4%, respondents, who rarely paint their houses with metal surface paint, had two children while 18% respondents didn't have any child. Further, majority i.e., 56.5%, respondents, who often paint their houses with metal surface paint, had two children while 8.7% respondents didn't have a child. Furthermore, majority i.e., 50%, respondents, who always paint their houses with metal surface paint, had two children while 37.5% respondents had one child. In Ahmedabad, significant difference (Chi-Square Value = 9.861 & p Value = 0.628) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy metal surface paints.
- In Surat, majority of the respondents, who never paint their houses with metal surface paint, majority i.e., 66.7%, had two children while only 2.8% respondents had three or more children. Moreover, majority i.e., 60%, respondents, who rarely paint their houses with metal surface paint, had two children while 30% respondents didn't have any child. Further, majority i.e., 72.6%, respondents, who often paint their houses with metal surface paint, had two children while 4.8% respondents didn't have a child. Furthermore, majority i.e., 65.4%, respondents, who always paint their houses with metal surface paint, had two children while 21.2% respondents had one child. In Surat, significant difference (Chi-Square Value = 20.132 & p Value = 0.065) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy metal surface paints.

• In Rajkot, majority of the respondents, who never paint their houses with metal surface paint, majority i.e., 75%, had two children while only 11.7% respondents had three or more children. Moreover, majority i.e., 61.7%, respondents, who rarely paint their houses with metal surface paint, had two children while 30% respondents didn't have any child. Further, majority i.e., 65.2%, respondents, who often paint their houses with metal surface paint, had two children while 34.8% respondents didn't have a child. Furthermore, 65% respondents, who always paint their houses with metal surface paint, had two children while 25% respondents didn't have a child. In Rajkot, significant difference (Chi-Square Value = 19.475 & p Value = 0.078) was not observed between respondents with different number of children i.e., no child, one child, two children and 3 or more children, regarding their regularity to buy metal surface paints. (Ref. Table 5.4.121)

Table 5.4.122: Respondents' opinions on whether they were commonly exposed to information related to environmental responsibility with reference to their demographic characteristics.

					Opi	nion					
	Response	Ŋ	l'es	1	No	Ca	n't say	T	otal	Chi C	p- value
Demographic Factor	Sub factor	N	%	N	%	N	%	N	%	Chi-Square	Significance #
1	Vadodara	181	26.4	13	13.0	6	40.0	200	25.0		
City	Ahmedabad	176	25.7	19	19.0	5	33.3	200	25.0	20.834	0.002
City	Surat	164	23.9	32	32.0	4	26.7	200	25.0	20.034	0.002
	Rajkot	164	23.9	36	36.0	0	.0	200	25.0		
	<=37	282	41.2	3	3.0	1	6.7	286	35.8		
Respondent Age	38-46	236	34.5	13	13.0	4	26.7	253	31.6	152.496	0.000
	>46	167	24.4	84	84.0	10	66.7	261	32.6		
Gender	Male	477	69.6	92	92.0	11	73.3	580	72.5	21.897	0.000
Gender	Female	208	30.4	8	8.0	4	26.7	220	27.5	21.097	0.000
	Under Graduate	70	10.2	43	43.0	9	60.0	122	15.3		
Education	Graduate	362	52.8	54	54.0	6	40.0	422	52.8	118.349	0.000
	Postgraduate	253	36.9	3	3.0	0	.0	256	32.0		
	Service	248	36.2	60	60.0	12	80.0	320	40.0		
Occupation	Business	231	33.7	9	9.0	0	.0	240	30.0	41.366	0.000
_	Profession	206	30.1	31	31.0	3	20.0	240	30.0		
Marital Status	Married	589	86.0	83	83.0	10	66.7	682	85.3	4.817	0.090
Marital Status	Unmarried	96	14.0	17	17.0	5	33.3	118	14.8	4.017	0.090
	<=29166.67	217	31.7	42	42.0	13	86.7	272	34.0		
Monthly income	29166.68-46250.00	221	32.3	39	39.0	2	13.3	262	32.8	30.894	0.000
	>46250.00	247	36.1	19	19.0	0	.0	266	33.3		
	LOW	213	31.1	52	52.0	12	80.0	277	34.6		
PER CAPITA INCOME	MODERATE	226	33.0	33	33.0	3	20.0	262	32.8	37.547	0.000
	HIGH	246	35.9	15	15.0	0	.0	261	32.6		
Eamily size	1-4	475	69.3	55	55.0	10	66.7	540	67.5	8.188	0.017
Family size	5+	210	30.7	45	45.0	5	33.3	260	32.5	0.100	0.017
Family Type	Nuclear	487	71.1	42	42.0	6	40.0	535	66.9	38.329	0.000
ranny Type	Joint	198	28.9	58	58.0	9	60.0	265	33.1	30.349	0.000
	No child	126	18.4	19	19.0	5	33.3	150	18.8		
Children group	1 child	126	18.4	12	12.0	2	13.3	140	17.5	6.162	0.405
	2 child	414	60.4	64	64.0	8	53.3	486	60.8	0.102	0.403
	3+ child	19	2.8	5	5.0	0	.0	24	3.0		
	Total	685	100.0	100	100.0	15	100.0	800	100.0		
# Statistic is significant at 0.05	level										

Opinions of respondents were taken from four selected cities of Gujarat regarding whether they
were commonly exposed to information related to individual's environmental responsibility.
Moreover, differences in opinions with reference to their demographic characteristics were
also analysed.

- It could be observed from table that there was a significant opinion difference (p = 0.002) between respondents from four selected cities of Gujarat. Higher Chi-Square value (20.834) also supports the significant difference. Respondents who were not generally exposed to information regarding environmental responsibility, 36% respondents were from Rajkot and 32% respondents were from Surat which was quite higher values than total 25% contribution from each city.
- It was also observed that there was significant difference (p = 0.000) between opinions of respondents from three different age groups. Moreover, higher Chi-Square value (152.496) also supported the difference. From figures it could be observed that younger people were more exposed compared to older one. Respondents who were commonly exposed to information regarding environmental responsibility, 41.2% were of age no more than 37 years while who were not commonly exposed to the fact, 84% were of age more than 46 years.
- It could be said that female were more exposed to information regarding environmental responsibility compared to male. Respondents who were not commonly exposed to the fact, 92% respondents were male. From higher Chi-Square value (21.897) and higher significance level (p= 0.000), it could be said that there was significant difference between opinion of male respondents and female respondents.
- Significant difference (p=0.000) was also found between opinions of respondents from three different educational qualification categories. Chi-Square value was 118.349. It could be said that education level increases exposure to information regarding environmental responsibility. Out of 256 postgraduate respondents 253 were commonly exposed to such information.
- Moreover, significant difference (p=0.000) was also found between opinions of respondents from three different categories of occupation. Chi-Square value was 41.366. It could be said that exposure to information regarding environmental responsibility of business person was more than service class people and professionals. Out of 240 business class respondents 231 were commonly exposed to such information.
- It could be seen that there was no significant difference between opinions of married and unmarried respondents (Chi-Square = 4.817 & p = 0.090).
- It was also observed that there was significant difference (p = 0.000) between opinions of respondents from three different monthly income groups. Moreover, higher Chi-Square value (30.894) also supported the difference. From figures it could be observed that people with

higher monthly were more exposed compared to people with lesser monthly income. Respondents who were commonly exposed to information regarding environmental responsibility, 36.1% were having monthly income more than Rs.46250 while who were not commonly exposed to the fact, 42% were having monthly income lesser than Rs.29166.67.

- Significant difference (p=0.000) was also found between opinions of respondents from three different per capita income categories. Chi-Square value was 37.547. It could be said that per capita income level increases, exposure to information regarding environmental responsibility increases. Out of 261 respondents with high per capita income 246 were commonly exposed to such information.
- There was a significant difference (p = 0.017, Chi-Square = 8.188) between opinions of respondents having family size no more than four and respondents having family size at least 5. Respondents with smaller family size were more exposed to such information regarding environmental responsibility.
- There was a significant difference (p = 0.000, Chi-Square = 38.329) between opinions of respondents having nuclear family and respondents having joint family. Respondents with nuclear family were more exposed to information regarding environmental responsibility.
- There was no significant difference (p = 0.405, Chi-Square = 6.162) between opinions of respondents having no child, one child, two children and 3 or more children. (Ref. Table 5.4.122)

Table 5.4.123: Respondents' opinions on whether they would prefer environment friendly paint in future across all demographic factors from all four cities of Gujarat.

					Opi	nion					
Demographic	Response	,	l'es		No	Ca	n't say	T	otal	Chi-	p- value
Factor	Sub factor	N	%	N	%	N	%	N	%	Square	Significance #
	Vadodara	192	26.9	4	8.3	4	10.3	200	25.0		
C:t-	Ahmedabad	183	25.7	9	18.8	8	20.5	200	25.0	27.646	0.000
City	Surat	164	23.0	24	50.0	12	30.8	200	25.0	27.040	0.000
	Rajkot	174	24.4	11	22.9	15	38.5	200	25.0		
D 1.4	<=37	282	39.6	2	4.2	2	5.1	286	35.8		
Respondent Age	38-46	241	33.8	4	8.3	8	20.5	253	31.6	110.260	0.000
Age	>46	190	26.6	42	87.5	29	74.4	261	32.6		
Gender	Male	498	69.8	45	93.8	37	94.9	580	72.5	23.181	0.000
Genuer	Female	215	30.2	3	6.3	2	5.1	220	27.5	23.161	0.000
	Under Graduate	85	11.9	22	45.8	15	38.5	122	15.3		
Education	Graduate	375	52.6	25	52.1	22	56.4	422	52.8	73.435	0.000
	Postgraduate	253	35.5	1	2.1	2	5.1	256	32.0		
	Service	272	38.1	28	58.3	20	51.3	320	40.0		
Occupation	Business	232	32.5	3	6.3	5	12.8	240	30.0	21.312	0.000
	Profession	209	29.3	17	35.4	14	35.9	240	30.0		
Marital Status	Married	609	85.4	40	83.3	33	84.6	682	85.3	0.168	0.919
Maritai Status	Unmarried	104	14.6	8	16.7	6	15.4	118	14.8	0.100	0.515
	<=29166.67	233	32.7	24	50.0	15	38.5	272	34.0		
Monthly income	29166.68- 46250.00	230	32.3	16	33.3	16	41.0	262	32.8	11.660	0.020
	>46250.00	250	35.1	8	16.7	8	20.5	266	33.3		
DED CARITA	LOW	230	32.3	27	56.3	20	51.3	277	34.6		
PER CAPITA INCOME	MODERATE	234	32.8	13	27.1	15	38.5	262	32.8	22.594	0.000
INCOME	HIGH	249	34.9	8	16.7	4	10.3	261	32.6		
Family size	1-4	494	69.3	27	56.3	19	48.7	540	67.5	10.076	0.006
ranny size	5+	219	30.7	21	43.8	20	51.3	260	32.5	10.076	0.000
Family Type	Nuclear	498	69.8	20	41.7	17	43.6	535	66.9	26.155	0.000
ranny rype	Joint	215	30.2	28	58.3	22	56.4	265	33.1	20.133	0.000
	No child	135	18.9	7	14.6	8	20.5	150	18.8		
Children	1 child	132	18.5	3	6.3	5	12.8	140	17.5	10.232	0.115
group	2 child	426	59.7	37	77.1	23	59.0	486	60.8	10.232	0.113
	3+ child			1	2.1	3	7.7	24	3.0		
Т	otal	713	100.0	48	100.0	39	100.0	800	100.0	<u> </u>	· · · · · · · · · · · · · · · · · · ·
# Statistic is sign	ificant at 0.05 level										

- Opinions of respondents were taken from four selected cities of Gujarat regarding whether they would prefer environment friendly paint in future. Moreover, differences in opinions with reference to their demographic characteristics were also analysed.
- It could be observed from table that there was a significant opinion difference (p = 0.000) between respondents from four selected cities of Gujarat. Higher Chi-Square value (27.646) also supports the significant difference. Respondents who would not prefer environment friendly paint in future, 50% respondents were from Surat which was quite higher value than total 25% contribution from each city.
- It was also observed that there was significant difference (p = 0.000) between opinions of respondents from three different age groups. Moreover, higher Chi-Square value (110.260)

also supported the difference. From figures it could be observed that younger people would more likely to prefer environment friendly paint in future. Respondents who would prefer environment friendly paint in future, 39.6% were of age no more than 37 years while who would not prefer environment friendly paint in future, 87.5% were of age more than 46 years.

- It could be said that female would more likely to prefer environment friendly paint in future compare to male. Respondents who would not prefer environment friendly paint in future, 93.8% respondents were male. From higher Chi-Square value (23.181) and higher significance level (p= 0.000), it could be said that there was significant difference between opinion of male respondents and female respondents.
- Significant difference (p=0.000) was also found between opinions of respondents from three different educational qualification categories. Chi-Square value was 73.435. It could be said that education level increases preference of environment friendly paint in future. Out of respondents who would prefer environment friendly paint in future, only 11.9% respondents were undergraduates while respondents would not prefer environment friendly paint in future, 45.85 respondents were undergraduates.
- Moreover, significant difference (p=0.000) was also found between opinions of respondents from three different categories of occupation. Chi-Square value was 21.312. It could be said that preference of environment friendly paint in future of business person was more than service class people and professionals. Out of 240 business class respondents 232 would prefer environment friendly paint in future.
- It could be seen that there was no significant difference between opinions, regarding preference of environment friendly paint in future of married and unmarried respondents (Chi-Square = 0.168 & p = 0.919).
- It was also observed that there was significant difference (p = 0.020) between opinions of respondents from three different monthly income groups. Moreover, higher Chi-Square value (11.660) also supported the difference. From figures it could be observed that people with higher monthly would more likely to prefer environment friendly paint in future compared to people with lesser monthly income. Respondents who would prefer environment friendly paint in future, 35.1% were having monthly income more than Rs.46250 while who would not prefer environment friendly paint in future, 50% were having monthly income lesser than Rs.29166.67.

- Significant difference (p=0.000) was also found between opinions of respondents from three different per capita income categories. Chi-Square value was 22.594. It could be said that per capita income level increases, preference of environment friendly paint in future increases. Out of 261 respondents with high per capita income 249 would prefer environment friendly paints in future.
- There was a significant difference (p = 0.006, Chi-Square = 10.076) between opinions of respondents having family size no more than four and respondents having family size at least 5. Respondents with smaller family size would more likely to prefer environment friendly paint in future.
- There was a significant difference (p = 0.000, Chi-Square = 26.155) between opinions of respondents having nuclear family and respondents having joint family. Respondents with nuclear family would more likely to prefer environment friendly paint in future.
- There was no significant difference (p = 0.115, Chi-Square = 10.232) between opinions, regarding preference of environment friendly paint in future. (Ref. Table 5.4.123)

Following tables represent brand preferences of decorative paint consumers from four selected cities of Gujarat. For this study, five top most brands, of decorative paints from India, were selected and respondents were asked about their preferences on rank basis. Here, minimum rank would suggest most preferable brand. Following is a tabular representation of some important outcomes of brand preferences across all demographic factors of consumers from all four selected cities of Gujarat.

Table 5.4.124: Table showing mean comparison of average preference rank assign to effecting interior paint brand regarding intention of purchasing environment friendly paints across four selected cities.

City	Brand	Royale	Pentalite	Impression	Breathe Easy	Superlac
•				Eco Clean	•	•
Vadodara	N	200	200	200	200	200
	Mean	1.32	3.32	1.98	3.49	4.89
	Std. Dev.	0.549	0.679	0.757	0.862	0.450
Ahmedabad	N	200	200	200	200	200
	Mean	2.02	2.87	1.97	3.60	4.55
	Std. Dev.	1.105	1.150	0.961	0.978	0.912
Surat	N	200	200	200	200	200
	Mean	2.04	3.49	1.73	3.43	4.31
	Std. Dev.	1.041	0.833	1.030	1.217	1.025
Rajkot	N	200	200	200	200	200
-	Mean	2.13	2.95	2.64	3.42	3.86
	Std. Dev.	1.264	1.239	1.407	1.209	1.283
Total	N	800	800	800	800	800
(GUJARAT)	Mean	1.88	3.16	2.08	3.48	4.40
	Std. Dev.	1.073	1.033	1.115	1.078	1.033
F	value	26.312	17.755	26.729	1.145	39.288
Significa	ance Level	0.000	0.000	0.000	0.330	0.000
tatistic is significant	t at 0.05 level					

- It was observed that, in overall (Gujarat), Royale Paints (Mean = 1.88) brand of Asian Paints Ltd. was the most preferred decorative interior paint brand among consumers while Superlac (Mean = 4.40) of Shalimar Paints Ltd was the least preferred brand among consumers of Gujarat. Moreover, Impression Eco Clean (Mean = 2.08) was the second most preferred decorative interior paint brand.
- It was also observed that across all four cities i.e., Vadodara, Ahmedabad, Surat and Rajkot, there was a significant difference between consumers' brand preferences. In Vadodara (Mean = 1.32) and Rajkot (Mean = 2.13), Royale was the most preferred decorative interior paint brand while in Surat (Mean = 1.73) and Ahmedabad (Mean = 1.97), Impression Eco Clean was the most preferred paint brand.

- Moreover, for preference of Royale (F Value = 26.312; p Value = 0.000), Pentalite (F Value = 17.755; p Value = 0.000), Impression Eco Clean (F Value = 26.729; p Value = 0.000) and Superlac (F Value = 39288; p Value = 0.000) brands, there exist significant difference between consumers from all four cities i.e., Vadodara, Ahmedabad, Rajkot and Surat.
- From post-hoc analysis (Annexure A1), it was observed that, for Royale brand, preferences of respondents from Vadodara were very different from preferences of respondents of Surat (p value = 0.000), Ahmedabad (p value = 0.000) and Rajkot (p value = 0.000). While, preferences of respondents from Ahmedabad were quite similar to respondents from Surat (p value = 0.999) and respondents from Rajkot (p value = 0.813). Moreover, there was also similarity between opinion of respondents from Rajkot and respondents from Surat (p value = 0.876). Hence, it could be said that Royale was the most preferred brand among consumers from Vadodara (Mean = 1.32) compared to consumers from Ahmedabad (Mean = 2.02), Surat (Mean = 2.04) and Rajkot (Mean = 2.13).
- Further, for Pentalite, preferences of respondents from Vadodara were very different compared to preferences of respondents from Ahmedabad (p value = 0.000) and Rajkot (p value = 0.000). While, preferences of respondents from Ahmedabad were different from respondents from Surat (p value = 0.000) and similar to respondents from Rajkot (p value = 0.868). Moreover, there was also difference between preferences of respondents from Rajkot and respondents from Surat (p value = 0.000).
- For, Impression Eco Clean, preferences of respondents from Rajkot were very different compared to preferences of respondents from Surat (p value = 0.000), Ahmedabad (p value = 0.000) and Vadodara (p value = 0.000). While, preferences of respondents from Ahmedabad were quite similar to respondents from Surat (p value = 0.183) and respondents from Vadodara (p value = 1.000). Moreover, there was also similarity between respondents from Vadodara and respondents from Surat (p value = 0.153). Hence, it was observed that Impression Eco Clean by Kansai Nerolac Ltd was the most preferable brand among consumers from Surat (Mean = 1.73) compared to other consumers from Vadodara (Mean = 1.98), Ahmedabad (Mean = 1.97) and Rajkot (Mean = 2.64).
- For, Superlac, preferences of respondents from Vadodara were very different that preferences of respondents from Surat (p value = 0.000), Ahmedabad (p value = 0.006) and Rajkot (p value = 0.000). While, preferences of respondents from Ahmedabad were quite similar to

respondents from Surat (p value = 0.130). Moreover, there was also difference between opinions of respondents of Rajkot from Ahmedabad (p value = 0.000) and respondents from Surat (p value = 0.000).

- For, Breathe Easy, there wasn't a significance difference between respondents across all four cities (F Value = 1.145; p Value = 0.330).
- Here, it was observed that consumers across all four cities of Gujarat had almost different brand
 preferences while making purchase of decorative interior paints. Hence, it could be said there
 was a regional difference in decorative interior paint brand preferences. (Ref. Table 5.4.124)

Table 5.4.125: Table showing mean comparison of average preference rank assign to effecting interior paint brand regarding intention of purchasing environment friendly paints across age groups of respondents.

Vadodara					BRAND OI	F DECORATIVE IN	NTERIOR PAINTS	
Vadodara	City	Age	Statistics	Royale	Pentalite		Breathe Easy	Superlac
Std. Dev. 0.587 0.631 0.738 0.910 0.00			N			, ,	, ,	74
Vadodara		<=37						4.92
Vadodara			Std. Dev.					0.361
N			N					73
N 53 53 53 53 53 53 53		38-46	Mean	1.25	3.30	2.14	3.47	4.85
N 3-3	Vadadara		Std. Dev.	0.521	0.739	0.787	0.851	0.569
Std. Dev. 0.527 0.663 0.709 0.823 0.824 Total Mean 1.32 3.32 1.98 3.49 F value 1.185 0.644 3.024 0.081 0.851 Significance Level 0.308 0.526 0.052 0.922 0.852 Significance Level 0.308 0.526 0.052 0.922 0.852 N	v auduai a		N			53		53
Total Mean 1.32 3.32 1.98 3.49		>46	Mean		3.42			4.89
F value			Std. Dev.	0.527	0.663	0.709	0.823	0.375
Significance Level 0.308		Total	Mean	1.32	3.32	1.98	3.49	4.89
Ahmedabad				1.185	0.644	3.024	0.081	0.437
Color		Signifi	icance Level	0.308	0.526	0.052	0.922	0.647
Std. Dev. 1.051 1.128 1.015 .997			N	67	67	67	67	67
Ahmedabad N S9 S9 S9 S9 S9 S9 S9		<=37	Mean	2.04	2.70	1.97	3.72	4.57
Ahmedabad Ahmedabad			Std. Dev.	1.051	1.128	1.015	.997	.802
Std. Dev. 1.240 1.157 .813 .971			N	59	59	59	59	59
Ahmedabad N		38-46	Mean	2.25	2.73	1.83	3.47	4.71
N	Alama dala d		Std. Dev.	1.240	1.157	.813	.971	.671
Std. Dev. 1.012 1.134 1.017 9.65 1.018 1.018 1.017 1.018 1.017 1.018 1.017 1.018 1.017 1.018	Anmedabad		N	74	74	74	74	74
Total Mean 2.02 2.87 1.97 3.60 F value 2.540 2.990 1.117 0.972 2 Significance Level 0.081 0.053 0.329 0.380 0 N 67 67 67 67 67 Std. Dev. 1.081 8.23 1.081 1.280 1 N 67 67 67 67 67 67 38-46 Mean 2.07 3.51 1.88 3.24 Std. Dev. 1.197 8.77 1.122 1.195 1 N 66 66 66 66 66 Std. Dev. 7.76 8.05 8.65 1.159 Total Mean 2.04 3.49 1.73 3.43 F value 2.248 0.326 1.009 1.804 0 Significance Level 0.108 0.722 0.366 0.167 0 Significance Level 0.108 0.722 0.		>46	Mean	1.82	3.12	2.08	3.58	4.39
F value 2.540 2.990 1.117 0.972 2			Std. Dev.	1.012	1.134	1.017	.965	1.133
Significance Level 0.081 0.053 0.329 0.380 0		Total	Mean	2.02	2.87	1.97	3.60	4.55
N		I		2.540	2.990	1.117	0.972	2.071
Surat Std. Dev. 1.081 .823 1.081 1.280 1		Signifi	icance Level	0.081	0.053	0.329	0.380	0.129
Surat Std. Dev. 1.081 .823 1.081 1.280 1 N 67 67 67 67 67 38-46 Mean 2.07 3.51 1.88 3.24 Std. Dev. 1.197 877 1.122 1.195 1 N 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 7 3.64 1.17 3.64 1.17 3.64 1.159			N	67	67	67	67	67
Surat N		<=37	Mean	2.21	3.54	1.66	3.40	4.21
Surat N			Std. Dev.	1.081	.823	1.081	1.280	1.067
Surat Std. Dev. 1.197 .877 1.122 1.195 1 N 66 66 66 66 66 66 66 >46 Mean 1.83 3.42 1.67 3.64 3.64 Std. Dev. .776 .805 .865 1.159 1.159 Total Mean 2.04 3.49 1.73 3.43 F value 2.248 0.326 1.009 1.804 0 Significance Level 0.108 0.722 0.366 0.167 0 N 78<				67	67	67	67	67
Surat Std. Dev. 1.197 .877 1.122 1.195 1 N 66 66 66 66 66 66 66 >46 Mean 1.83 3.42 1.67 3.64 3.64 Std. Dev. .776 .805 .865 1.159 1.159 Total Mean 2.04 3.49 1.73 3.43 F value 2.248 0.326 1.009 1.804 0 Significance Level 0.108 0.722 0.366 0.167 0 N 78<		38-46	Mean	2.07	3.51	1.88	3.24	4.30
N 66 66 66 66 >46 Mean 1.83 3.42 1.67 3.64 Std. Dev. .776 .805 .865 1.159 Total Mean 2.04 3.49 1.73 3.43 F value 2.248 0.326 1.009 1.804 0 Significance Level 0.108 0.722 0.366 0.167 0	G .		Std. Dev.		.877	1.122	1.195	1.045
N	Surat			66	66	66	66	66
Std. Dev. .776 .805 .865 1.159 Total Mean 2.04 3.49 1.73 3.43 F value 2.248 0.326 1.009 1.804 0 Significance Level 0.108 0.722 0.366 0.167 0 N 78 78 78 78 78 ≪37 Mean 1.94 3.01 2.51 3.62 Std. Dev. 1.155 1.087 1.375 1.198 1 N 54 54 54 54 Std. Dev. 1.359 1.380 1.373 1.160 1 N 68 68 68 68 >46 Mean 2.41 2.82 2.69 3.18 Std. Dev. 1.272 1.292 1.479 1.233 1 Total Mean 2.13 2.95 2.64 3.42		>46		1.83	3.42	1.67	3.64	4.44
Total Mean 2.04 3.49 1.73 3.43 F value 2.248 0.326 1.009 1.804 0 Significance Level 0.108 0.722 0.366 0.167 0 N 78 78 78 78 Std. Dev. 1.155 1.087 1.375 1.198 1 N 54 54 54 54 Std. Dev. 1.359 1.380 1.373 1.160 1 N 68 68 68 68 N 68 68 68 68 N 68 68 68 68 Atch Dev. 1.272 1.292 1.479 1.233 1 Total Mean 2.13 2.95 2.64 3.42			Std. Dev.	.776	.805	.865	1.159	.963
F value		Total	Mean	2.04	3.49	1.73	3.43	4.31
N 78 78 78 78 78 78 78		I	value	2.248	0.326	1.009	1.804	0.852
C=37 Mean 1.94 3.01 2.51 3.62 Std. Dev. 1.155 1.087 1.375 1.198 1 N		Signifi	icance Level	0.108	0.722	0.366	0.167	0.428
Column								78
N 54 54 54 54 Mean 2.04 3.02 2.76 3.44 Std. Dev. 1.359 1.380 1.373 1.160 1 N 68 68 68 68 Mean 2.41 2.82 2.69 3.18 Std. Dev. 1.272 1.292 1.479 1.233 1 Total Mean 2.13 2.95 2.64 3.42		<=37	Mean	1.94		2.51	3.62	3.92
N 54 54 54 54 Mean 2.04 3.02 2.76 3.44 Std. Dev. 1.359 1.380 1.373 1.160 1 N 68 68 68 68 Mean 2.41 2.82 2.69 3.18 Std. Dev. 1.272 1.292 1.479 1.233 1 Total Mean 2.13 2.95 2.64 3.42			Std. Dev.	1.155	1.087	1.375	1.198	1.287
Rajkot Mean 2.04 3.02 2.76 3.44 Std. Dev. 1.359 1.380 1.373 1.160 1 N 68 68 68 68 46 Mean 2.41 2.82 2.69 3.18 Std. Dev. 1.272 1.292 1.479 1.233 1 Total Mean 2.13 2.95 2.64 3.42								54
N 68 68 68 68 Mean 2.41 2.82 2.69 3.18 Std. Dev. 1.272 1.292 1.479 1.233 1 Total Mean 2.13 2.95 2.64 3.42		38-46		2.04	3.02	2.76	3.44	3.74
N 68 68 68 68	D **			1.359			1.160	1.200
Std. Dev. 1.272 1.292 1.479 1.233 1 Total Mean 2.13 2.95 2.64 3.42	Kajkot			68	68			68
Std. Dev. 1.272 1.292 1.479 1.233 1 Total Mean 2.13 2.95 2.64 3.42		>46	Mean	2.41	2.82	2.69	3.18	3.90
Total Mean 2.13 2.95 2.64 3.42								1.351
		Total						3.86
F value			Value	2.804	0.535	0.555	2.445	0.352
								0.703

Table 5.4.125 Cont....

Table 5.4.125 Cont

				BRAND OF	DECORATIVE I	NTERIOR PAINTS	
City	Age	Statistics	Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac
		N	286	286	286	286	286
	<=37	Mean	1.88	3.13	2.04	3.56	4.40
		Std. Dev.	1.037	.982	1.122	1.106	1.020
		N	253	253	253	253	253
	38-46	Mean	1.87	3.16	2.13	3.40	4.43
TOTAL		Std. Dev.	1.166	1.073	1.085	1.044	.980
(FROM GUJARAT)		N	261	261	261	261	261
	>46	Mean	1.89	3.18	2.08	3.48	4.38
		Std. Dev.	1.019	1.050	1.139	1.076	1.098
	Total	Mean	1.88	3.16	2.08	3.48	4.40
	F	value	0.021	0.146	0.456	1.353	0.215
	Signifi	cance Level	0.979	0.864	0.634	0.259	0.807
	Statistic i	s significant at	0.05 level				

- In Gujarat, it was observed that there wasn't a significant difference between respondents across all three age groups regarding their decorative interior paints brand preferences. From the mean scores, it was observed that Royale was the most preferred brand among respondents with age from 38 years to 46 years (Mean = 1.87). However, there wasn't a significant difference (F Value = 0.021; p value = 0.979) between respondents with different age groups regarding their preference for Royale. Similarly, there wasn't a significant difference between respondents from different age groups regarding their choice for Pentalite (F Value = 0.146; p value = 0.864), Impression Eco Clean (F Value = 0.456; p value = 0.634), Breathe Easy (F Value = 1.353; p value = 0.259) and Superlac (F Value = 0.215; p value = 0.807).
- Hence, it could be said that younger and older respondents had similar choice of decorative
 interior paint brands. In Vadodara, Ahmedabad, Surat and Rajkot individually also, there
 was almost similar brand preferences among respondents with different age groups i.e., up
 to 37 years, 38 years to 46 years and above 46 years.
- In Vadodara, there wasn't a significant difference between respondents from different age groups regarding their choice for Royale (F Value = 1.185; p value = 0.308), Pentalite (F Value = 0.644; p value = 0.526), Impression Eco Clean (F Value = 3.024; p value = 0.052), Breathe Easy (F Value = 0.081; p value = 0.922) and Superlac (F Value = 0.437; p value = 0.647).
- In Ahmedabad, there wasn't a significant difference between respondents from different age groups regarding their choice for Royale (F Value = 2.540; p value = 0.081), Pentalite

- (F Value = 2.990; p value = 0.053), Impression Eco Clean (F Value = 1.117; p value = 0.329), Breathe Easy (F Value = 0.972; p value = 0.380) and Superlac (F Value = 2.071; p value = 0.129).
- In Surat, there wasn't a significant difference between respondents from different age groups regarding their choice for Royale (F Value = 2.248; p value = 0.108), Pentalite (F Value = 0.326; p value = 0.722), Impression Eco Clean (F Value = 1.009; p value = 0.366), Breathe Easy (F Value = 1.804; p value = 0.167) and Superlac (F Value = 0.852; p value = 0.428).
- In Rajkot, there wasn't a significant difference between respondents from different age groups regarding their choice for Royale (F Value = 2.804; p value = 0.063), Pentalite (F Value = 0.535; p value = 0.587), Impression Eco Clean (F Value = 0.555; p value = 0.575), Breathe Easy (F Value = 2.445; p value = 0.0.089) and Superlac (F Value = 0.352; p value = 0.703).
- It was found that there was almost similar pattern of brand preference, for all five interior paint brands i.e., Royale, Pentalite, Impression Eco Clean, Breathe Easy and Superlac, among respondents with different age groups from all four cities of Gujrat. (Ref. Table 5.4.125)

Table 5.4.126: Table showing mean comparison of average preference rank assign to effecting interior paint brand regarding intention of purchasing environment friendly paints across gender.

				BRAND OF	DECORATIVE I	NTERIOR PAINTS	
City	Gender	Statistics	Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac
		N	142	142	142	142	142
	Male	Mean	1.32	3.30	1.97	3.54	4.87
		Std. Dev.	0.566	0.692	0.734	0.847	0.474
		N	58	58	58	58	58
Vadodara	Female	Mean	1.33	3.40	2.00	3.36	4.91
		Std. Dev.	0.509	0.647	0.816	0.892	0.388
	Total	Mean	1.32	3.32	1.98	3.49	4.89
		alue	0.002	0.905	0.057	1.805	0.333
	Significa	ance Level	0.966	0.342	0.812	0.181	0.565
		N	152	152	152	152	152
	Male	Mean	2.01	2.96	1.92	3.58	4.53
		Std. Dev.	1.061	1.133	.980	1.007	.920
		N	48	48	48	48	48
Ahmedabad	Female	Mean	2.06	2.56	2.13	3.65	4.60
		Std. Dev.	1.245	1.165	.890	.887	.893
	Total	Mean	2.02	2.87	1.97	3.60	4.55
		alue	0.072	4.443	1.648	0.170	0.265
	Significa	ance Level	0.788	0.036	0.201	0.681	0.607
		N	141	141	141	141	141
	Male	Mean	2.04	3.43	1.74	3.38	4.40
		Std. Dev.	.985	.864	1.058	1.205	.985
		N	59	59	59	59	59
Surat	Female	Mean	2.03	3.63	1.71	3.53	4.10
		Std. Dev.	1.174	.740	.966	1.251	1.094
	Total	Mean	2.04	3.49	1.73	3.43	4.31
		alue	0.003	2.284	0.042	0.568	3.671
	Significa	ance Level	0.957	0.132	0.838	0.452	0.057
		N	145	145	145	145	145
	Male	Mean	2.17	2.92	2.62	3.43	3.85
		Std. Dev.	1.277	1.225	1.415	1.241	1.282
		N	55	55	55	55	55
Rajkot	Female	Mean	2.00	3.02	2.69	3.38	3.91
		Std. Dev.	1.232	1.284	1.399	1.130	1.295
	Total	Mean	2.13	2.95	2.64	3.42	3.86
		/alue	0.741	0.229	0.099	0.075	0.089
	Significa	ance Level	0.390	0.633	0.754	0.784	0.765
		N	580	580	580	580	580
	Male	Mean	1.89	3.15	2.07	3.49	4.41
	Std. Dev.		1.058	1.026	1.122	1.086	1.027
TOTAL		N	220	220	220	220	220
(FROM GUJARAT)	Female	Mean	1.85	3.18	2.12	3.47	4.38
(= 10.11 00011111)		Std. Dev.	1.112	1.053	1.097	1.057	1.051
	Total	Mean	1.88	3.16	2.08	3.48	4.40
		alue	0.292	0.168	0.419	0.025	0.181
		ance Level	0.589	0.682	0.517	0.875	0.671
	Statistic is s	significant at 0.	05 level				

• In Gujarat, it was observed that there wasn't a significant difference in decorative interior paints brand preferences of male and female consumers. There wasn't a significant difference (t Value = 0.292; p value = 0.589) between respondents with different gender regarding their preference for Royale. Similarly, there wasn't a significant difference

between respondents with different marital status regarding their choice for Pentalite (t Value = 0.168; p value = 0.682), Impression Eco Clean (t Value = 0.419; p value = 0.517), Breathe Easy (t Value = 0.025; p value = 0.875) and Superlac (t Value = 0.181; p value = 0.671).

- Hence, it could be said that male and female respondents had similar choice of decorative interior paint brands. In Vadodara, Ahmedabad, Surat and Rajkot individually also, there was almost similar brand preferences among male and female respondents.
- In Vadodara, there wasn't a significant difference between male and female respondents regarding their choice for Royale (t Value = 0.002; p value = 0.966), Pentalite (t Value = 0.905; p value = 0.342), Impression Eco Clean (t Value = 0.057; p value = 0.812), Breathe Easy (t Value = 1.805; p value = 0.181) and Superlac (t Value = 0.333; p value = 0.565).
- In Ahmedabad, there wasn't a significant difference between male and female respondents regarding their choice for Royale (t Value = 0.072; p value = 0.788), Impression Eco Clean (t Value = 1.648; p value = 0.201), Breathe Easy (t Value = 0.170; p value = 0.681) and Superlac (t Value = 0.265; p value = 0.607). In Ahmedabad, there exists a significant difference (t Value = 4.443; p value = 0.036) between male and female respondents regarding their preference towards Pentalite brand as an interior paint brand. For Pentalite brand, average brand preference mean score for male respondents was 2.96 while the same for female respondents was 2.56. Hence, it could be observed from mean score that, in Ahmedabad, female consumers give more preference to Pentalite brand for interior decorative interior paints compared to male consumers.
- In Surat, there wasn't a significant difference between male and female respondents regarding their choice for Royale (t Value = 0.003; p value = 0.957), Pentalite (t Value = 2.284; p value = 0.132), Impression Eco Clean (t Value = 0.042; p value = 0.838), Breathe Easy (t Value = 0.568; p value = 0.452) and Superlac (t Value = 3.671; p value = 0.057).
- In Rajkot, there wasn't a significant difference between male and female respondents regarding their choice for Royale (t Value = 0.741; p value = 0.390), Pentalite (t Value = 0.229; p value = 0.633), Impression Eco Clean (t Value = 0.099; p value = 0.754), Breathe Easy (t Value = 0.075; p value = 0.784) and Superlac (Chi-Square = 0.089; p value = 0.765).

• It was found that there was almost similar pattern of brand preference, for all five interior paint brands i.e., Royale, Pentalite, Impression Eco Clean, Breathe Easy and Superlac, among male and female respondents of Gujrat as well as Vadodara, Surat and Rajkot individually. However, in Ahmedabad, male consumers gave less preference to Pentalite brand compared to female consumers while for Royale, Impression Eco Clean, Breathe Easy and Superlac, female and male respondents had similar liking. (Ref. Table 5.4.126)

Table 5.4.127: Table showing mean comparison of average preference rank assign to effecting interior paint brand regarding intention of purchasing environment friendly paints across educational qualifications.

			Bl	RAND OF D	ECORATIVE	INTERIOR PAI	NTS
City	Educational Qualifications	Statistics	Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac
		N	14	14	14	14	14
	Under Graduate	Mean	1.57	3.43	1.57	3.50	4.93
		Std. Dev.	0.646	0.646	0.646	0.760	0.267
		N	79	79	79	79	79
	Graduate	Mean	1.37	3.29	1.99	3.47	4.90
Vadodara		Std. Dev.	0.624	0.682	0.776	0.945	0.343
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		N	107	107	107	107	107
	Post Graduate	Mean	1.26	3.34	2.03	3.50	4.87
		Std. Dev.	0.462	0.686	0.746	0.817	0.533
	Total	Mean	1.32	3.32	1.98	3.49	4.89
	F value	•	2.391	0.274	2.290	0.041	0.167
	Significance Le		0.094	0.761	0.104	0.960	0.846
		N	35	35	35	35	35
	Under Graduate	Mean	1.91	3.00	2.29	3.54	4.26
		Std. Dev.	1.067	1.393	1.045	1.067	1.146
	Cma-lt-	N	109 2.04	109 2.82	109 1.92	109 3.62	109 4.61
	Graduate	Mean					
Ahmedabad		Std. Dev.	1.162	1.148	.862	.931	.817
	Deat Code deate	N	2.07	2.87	56 1.87	56 3.57	56 4.61
	Post Graduate	Mean		.992			.908
	T-4-1	Std. Dev.	1.024		1.063	1.024	
	Total F value	Mean	2.02 0.230	2.87 0.338	1.97 2.357	3.60 0.113	4.55 2.136
	Significance Le	vol.	0.795	0.338	0.097	0.894	0.121
	Significance Le	N N	38	38	38	38	38
	Under Graduate	Mean	2.08	3.58	1.66	3.34	4.37
	Onuci Graduate	Std. Dev.	1.171	.758	1.097	.966	1.076
		N N	116	116	116	116	116
	Graduate	Mean	2.04	3.51	1.76	3.46	4.23
	Graduate	Std. Dev.	.982	.870	1.076	1.295	1.025
Surat		N N	46	46	46	46	46
	Post Graduate	Mean	2.00	3.37	1.74	3.41	4.48
	T ost Gradante	Std. Dev.	1.095	.799	.855	1.222	.983
	Total	Mean	2.04	3.49	1.73	3.43	4.31
	F value		0.060	0.725	0.136	0.129	1.008
	Significance Le	vel	0.941	0.486	0.873	0.879	0.367
	9	N	35	35	35	35	35
	Under Graduate	Mean	2.14	3.09	2.83	3.20	3.74
		Std. Dev.	1.264	1.292	1.505	1.208	1.379
		N	118	118	118	118	118
	Graduate	Mean	2.12	2.83	2.68	3.53	3.85
D-214		Std. Dev.	1.269	1.222	1.426	1.196	1.265
Rajkot		N	47	47	47	47	47
	Post Graduate	Mean	2.13	3.15	2.40	3.32	4.00
		Std. Dev.	1.279	1.233	1.280	1.235	1.268
	Total	Mean	2.13	2.95	2.64	3.42	3.86
	F Value	•	0.005	1.370	1.017	1.195	0.428
	Significance Le	vel	0.995	0.257	0.364	0.305	0.653

Table 5.4.127 cont...

Table 5.4.127 cont...

				BRAND OF I	DECORATIVE	INTERIOR PAIN	ΓS
City	Educational Qualifications	Statistics	Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac
		N	122	122	122	122	122
	Under Graduate	Mean	1.99	3.25	2.16	3.38	4.22
		Std. Dev.	1.124	1.140	1.269	1.047	1.182
		N	422	422	422	422	422
	Graduate	Mean	1.94	3.10	2.10	3.52	4.35
TOTAL		Std. Dev.	1.098	1.068	1.149	1.117	1.036
(GUJARAT)		N	256	256	256	256	256
	Post Graduate	Mean	1.73	3.21	2.01	3.47	4.58
		Std. Dev.	.991	.912	.972	1.025	.925
	Total	Mean	1.88	3.16	2.08	3.48	4.40
	F value		3.751	1.495	0.889	0.879	6.464
	Significance Level		0.024	0.225	0.411	0.416	0.002
	Statistic is significant at 0.05 le	vel					

- In Gujarat, there was a significant difference between respondents with different level of educational qualifications i.e., undergraduate, graduate and postgraduates, regarding their interior decorative interior paint brands i.e., Royale (F Value = 3.571; p value = 0.024) and Superlac (F Value = 6.464; p value = 0.002). However, for Pentalite (F Value = 1.495; p value = 0.225), Impression Eco Clean (F Value = 0.889; p value = 0.411) and Breathe Easy (F Value = 0.879; p value = 0.416), there wasn't a significant difference between respondents with different educational qualifications. From post-hoc analysis (Annexure-A2), it was observed that for Superlac brand, most significant difference was observed between undergraduate (mean = 4.22) respondents and postgraduate (mean = 4.35) respondents (p Value = 0.006) and second most significant difference was observed between graduate (mean = 4.58) respondents and postgraduate respondents (p Value = 0.015). However, there wasn't any difference observed between any two groups from graduate (mean = 1.94), postgraduate (mean = 1.73) and undergraduate (mean = 1.99) respondents for Royale brand. Hence, it could be said that consumer with higher educational qualifications were more likely to buy Royale paint while they were very less likely to buy Superlac brand.
- In Vadodara, there wasn't a significant difference between respondents with different level of educational qualifications i.e., undergraduate, graduate and postgraduates, regarding their interior decorative interior paint brands i.e., Royale (F Value = 2.391; p value = 0.094) and Superlac (F Value = 0.167; p value = 0.846), Pentalite (F Value = 0.274; p value = 0.761), Impression Eco Clean (F Value = 2.290; p value = 0.104) and Breathe Easy (F Value = 0.041; p value = 0.960). Hence, it could be said that there was no dissimilarity in preference of

- decorative interior paint brands among respondents, from Vadodara, with different educational qualifications.
- In Ahmedabad, there wasn't a significant difference between respondents with different level of educational qualifications i.e., undergraduate, graduate and postgraduates, regarding their interior decorative interior paint brands i.e., Royale (F Value = 0.230; p value = 0.795) and Superlac (F Value = 0.2,136; p value = 0.121), Pentalite (F Value = 0.338; p value = 0.714), Impression Eco Clean (F Value = 2.357; p value = 0.097) and Breathe Easy (F Value = 0.113; p value = 0.894). Hence, it could be said that there was no dissimilarity in preference of decorative interior paint brands among respondents, from Ahmedabad, with different educational qualifications.
- In Surat, there wasn't a significant difference between respondents with different level of educational qualifications i.e., undergraduate, graduate and postgraduates, regarding their interior decorative interior paint brands i.e., Royale (F Value =0.060; p value = 0.941) and Superlac (F Value = 1.008; p value = 0.367), Pentalite (F Value = 0.725; p value = 0.486), Impression Eco Clean (F Value = 0.136; p value = 0.873) and Breathe Easy (F Value = 0.129; p value = 0.879). Hence, it could be said that there was no dissimilarity in preference of decorative interior paint brands among respondents, from Surat, with different educational qualifications.
- In Rajkot, there wasn't a significant difference between respondents with different level of educational qualifications i.e., undergraduate, graduate and postgraduates, regarding their interior decorative interior paint brands i.e., Royale (F Value = 0.005; p value = 0.995) and Superlac (F Value = 0.428; p value = 0.653), Pentalite (F Value = 1.370; p value = 0.257), Impression Eco Clean (F Value = 1.017; p value = 0.364) and Breathe Easy (F Value = 1.195; p value = 0.305). Hence, it could be said that there was no dissimilarity in preference of decorative interior paint brands among respondents, from Rajkot, with different educational qualifications. (Ref. Table 5.4.127)

Table 5.4.128: Table showing mean comparison of average preference rank assign to effecting interior paint brand regarding intention of purchasing environment friendly paints across occupation.

				BRAND OF	DECORATIVE I	NTERIOR PAINTS	
City	Occupation	Statistics	Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac
		N	80	80	80	80	80
	Service	Mean	1.38	3.30	2.00	3.45	4.87
		Std. Dev.	0.603	0.719	0.827	0.926	0.402
		N	60	60	60	60	60
	Business	Mean	1.25	3.40	1.88	3.50	4.97
Vadodara		Std. Dev.	0.474	0.558	0.640	0.676	0.181
v auduai a		N	60	60	60	60	60
	Profession	Mean	1.33	3.28	2.05	3.53	4.82
		Std. Dev.	0.542	0.739	0.769	0.947	0.651
	Total	Mean	1.32	3.32	1.98	3.49	4.89
	F va	lue	0.899	0.530	0773	0.164	1.709
	Significan	ce Level	0.409	0.589	0.463	0.848	0.184
		N	80	80	80	80	80
	Service	Mean	2.21	2.48	2.44	3.86	4.01
		Std. Dev.	1.187	1.292	1.157	1.122	1.196
		N	60	60	60	60	60
	Business	Mean	1.50	3.55	1.83	3.27	4.85
Ahmedabad		Std. Dev.	.701	.746	.693	.954	.444
Anmedabad		N	60	60	60	60	60
	Profession	Mean	2.30	2.70	1.48	3.57	4.95
		Std. Dev.	1.154	.979	.537	.647	.220
	Total	Mean	2.02	2.87	1.97	3.60	4.55
	F va	lue	10.745	18.666	16.408	6.120	19.054
	Significan		0.000	0.000	0.000	0.001	0.000
		N	80	80	80	80	80
	Service	Mean	2.37	3.36	1.29	3.86	4.11
		Std. Dev.	1.205	.733	.532	1.111	1.055
		N	60	60	60	60	60
	Business	Mean	2.08	3.32	2.17	2.75	4.70
C4		Std. Dev.	.869	.701	1.380	1.323	.809
Surat		N	60	60	60	60	60
	Profession	Mean	1.55	3.83	1.90	3.52	4.20
		Std. Dev.	.746	.977	.896	.930	1.086
	Total	Mean	2.04	3.49	1.73	3.43	4.31
	F va	lue	12.043	7.843	15.595	16.887	6.511
	Significan	ce Level	0.000	0.001	0.000	0.000	0.002
		N	80	80	80	80	80
	Service	Mean	2.00	3.09	2.11	3.83	3.97
		Std. Dev.	1.158	1.150	1.169	1.065	1.222
		N	60	60	60	60	60
	Business	Mean	2.03	2.83	3.48	3.07	3.58
D - 21 4		Std. Dev.	1.178	1.304	1.490	1.163	1.394
Rajkot		N	60	60	60	60	60
	Profession	Mean	2.38	2.88	2.50	3.23	4.00
		Std. Dev.	1.451	1.290	1.228	1.294	1.221
	Total	Mean	2.13	2.95	2.64	3.42	3.86
	F Va	lue	1.817	0.844	19.855	8.344	2.096
	Significan	ce Level	0.165	0.431	0.000	0.000	0.126

Table 5.4.128 cont...

Table 5.4.128 cont...

				BRAND OF	DECORATIVE I	NTERIOR PAINTS	3
City	Occupation	Statistics	Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac
		N	320	320	320	320	320
	Service	Mean	1.99	3.06	1.96	3.75	4.24
		Std. Dev.	1.130	1.061	1.042	1.068	1.084
		N	240	240	240	240	240
	Business	Mean	1.72	3.28	2.34	3.15	4.53
TOTAL		Std. Dev.	.912	.910	1.300	1.086	1.002
(FROM GUJARAT)		N	240	240	240	240	240
	Profession	Mean	1.89	3.18	1.98	3.46	4.49
		Std. Dev.	1.126	1.099	.959	.985	.968
	Total	Mean	1.88	3.16	2.08	3.48	4.40
	F val	ue	4.538	3.143	9.581	22.794	6.449
	Significan	ce Level	0.011	0.044	0.000	0.000	0.002
	Statistic is signi	ficant at 0.05 le	evel	•			

- In Gujarat, there was a significant difference between respondents with three different occupations i.e., service, business and profession, regarding their preference of decorative interior paint brands i.e., Royale (F Value = 4.538; p Value = 0.011), Pentalite (F Value = 3.143; p Value = 0.044), Impression Eco Clean (F Value = 9.581; p Value = 0.000), Breathe Easy (F Value = 22.794; p Value = 0.000) and Superlac (F Value = 6.449; p Value = 0.002).
 - o For Royale brand, business class people (mean = 1.72) were more likely to buy Royale compared to service class people (mean = 1.99) and professionals (Mean = 1.89). From post hoc analysis (Annexure − A3), it was observed that the most prominent difference was between business class respondents and service class people (Significance = 0.011) while no other pair had such a noticeable difference in Royale brand preference.
 - o For Pentalite, service class people (Mean = 3.06) were more likely to buy this brand compared to business class (Mean = 3.28) people and professionals (Mean = 3.18). From, post hoc analysis (Annexure A3), it was observed that the most prominent difference was between business class respondents and service class people (Significance = 0.046) while no other pair had such a noticeable choice difference for Pentalite brand.
 - For Impression Eco Clean, service class people (Mean = 1.96) were more likely to buy this brand compared to business class (Mean = 2.34) people and professionals (Mean = 1.98). From, post hoc analysis (Annexure A3), it was observed that the most prominent brand choice difference was between business class respondents and service class people (Significance = 0.000) and business class and professional (Significance

- = 0.002). While no other pair had such a noticeable choice difference for Impression Eco Clean brand.
- o For Breathe Easy, business class people (mean = 3.15) were more likely to buy this brand compared to service class people (mean = 3.75) and professionals (Mean = 3.46).From, post hoc analysis (Annexure − A3), it was observed that the most prominent choice difference was between business class respondents and service class people (Significance = 0.000).
- o Superlac was the least preferred brand among Business class people (Mean = 4.53) compared to service class people (Mean = 4.24) and professionals (Mean = 4.49). Here also, from, post hoc analysis (Annexure − A3), it was observed that the most prominent difference was between business class respondents and service class people (Significance = 0.006).
- Hence, it could be said that, in Gujarat, decorative interior paint brand preference defers across occupation of the consumers and this difference had great effect of brand preferences by service class people and business class people.
- In Vadodara, there wasn't a significant choice difference among respondents with different occupations regarding decorative interior paint brands. For all given choices i.e., Royale (F Value = 0.899; p Value = 0.409), Pentalite (F Value = 0.530; p Value = 0.589), Impression Eco Clean (F Value = 0.773; p Value = 0.463), Breathe Easy (F Value = 0.164; p Value = 0.848) and Superlac (F Value = 1.790; p Value = 0.184), business class respondents, service class people and professionals had similar brand choices.
- In Ahmedabad, there was a significant difference between respondents with three different occupations i.e., service, business and profession, regarding their preference of decorative interior paint brands i.e., Royale (F Value = 10.745; p Value = 0.000), Pentalite (F Value = 18.666; p Value = 0.000), Impression Eco Clean (F Value = 16.408; p Value = 0.000), Breathe Easy (F Value = 6.120; p Value = 0.001) and Superlac (F Value = 19.054; p Value = 0.000).
 - o For Royale brand, business class people (mean = 1.50) were more likely to buy Royale compared to service class people (mean = 2.21) and professionals (Mean = 2.30). From post hoc analysis (Annexure A4), it was observed that the most prominent choice difference was between business class respondents and professional people (Significance = 0.000) followed by business class people and service class people

- (Significance = 0.001). While no other pair had such a noticeable difference in Royale brand preference.
- o For Pentalite, service class people (Mean = 2.48) were more likely to buy this brand compared to business class (Mean = 3.55) people and professionals (Mean = 2.70). From, post hoc analysis (Annexure − A4), it was observed that the most prominent difference was between business class respondents and service class people (Significance = 0.000) and business class people and professionals (Significance = 0.000). While no other pair had such a noticeable choice difference for Pentalite brand.
- o For Impression Eco Clean, service class people (Mean = 2.44) were the least likely to buy this brand compared to business class (Mean = 1.83) people and professionals (Mean = 1.48). From, post hoc analysis (Annexure A4), it was observed that the most prominent brand choice difference was between business class respondents and service class people (Significance = 0.000) and service class and professional (Significance = 0.000). While no other pair had such a noticeable choice difference for Impression Eco Clean brand.
- For Breathe Easy, business class people (mean = 3.27) were more likely to buy this brand compared to service class people (mean = 3.86) and professionals (Mean = 3.57).
 From, post hoc analysis (Annexure A4), it was observed that the most prominent choice difference was between business class respondents and service class people (Significance = 0.000).
- O Superlac was the least preferred brand among professionals (Mean = 4.95) compared to service class people (Mean = 4.01) and business class people (Mean = 4.85). Here also, from, post hoc analysis (Annexure A4), it was observed that the most prominent difference was between business class respondents and service class people (Significance = 0.000) and service class people and professionals (Significance = 0.000). While no other pair had such a noticeable choice difference for Superlac.
- In Surat, there was a significant difference between respondents with three different occupations i.e., service, business and profession, regarding their preference of decorative interior paint brands i.e., Royale (F Value = 12.043; p Value = 0.000), Pentalite (F Value = 7.843; p Value = 0.001), Impression Eco Clean (F Value = 15.595; p Value = 0.000), Breathe Easy (F Value = 16.887; p Value = 0.000) and Superlac (F Value = 6.511; p Value = 0.002).

- o For Royale brand, Professionals (mean = 1.55) were more likely to buy Royale compared to service class people (mean = 2.37) and business class people (Mean = 2.08). From post hoc analysis (Annexure A5), it was observed that the most prominent choice difference was between service class respondents and professional people (Significance = 0.000) followed by business class people and professionals (Significance = 0.014). While no other pair had such a noticeable difference in Royale brand preference.
- o For Pentalite, professionals (Mean = 3.83) were least likely to buy this brand compared to business class (Mean = 3.32) people and service class people (Mean = 3.36). From, post hoc analysis (Annexure A5), it was observed that the most prominent difference was between professionals and service class people (Significance = 0.003) and business class people and professionals (Significance = 0.003). While no other pair had such a noticeable choice difference for Pentalite brand.
- o For Impression Eco Clean, service class people (Mean = 1.23) were the most likely to buy this brand compared to business class (Mean = 2.17) people and professionals (Mean = 1.90). From, post hoc analysis (Annexure A5), it was observed that the most prominent brand choice difference was between business class respondents and service class people (Significance = 0.000) and service class and professional (Significance = 0.001). While no other pair had such a noticeable choice difference for Impression Eco Clean brand.
- o For Breathe Easy, business class people (mean = 2.75) were more likely to buy this brand compared to service class people (mean = 3.86) and professionals (Mean = 3.52). From, post hoc analysis (Annexure − A5), it was observed that the most prominent choice difference was between business class respondents and service class people (Significance = 0.000) followed by business class people and professionals (Significance = 0.001).
- O Superlac was the least preferred brand among business class people (Mean = 4.70) compared to professionals (Mean = 4.20) and service class people (Mean = 4.11). Here also, from, post hoc analysis (Annexure A5), it was observed that the most prominent difference was between business class respondents and service class people (Significance = 0.003) followed by business class people and professionals

(Significance = 0.025). While no other pair had such a noticeable choice difference for Superlac.

- In Rajkot, there was a significant difference between respondents with three different occupations i.e., service, business and profession, regarding their preference of decorative interior paint brands i.e., Impression Eco Clean (F Value = 19.855; p Value = 0.000) and Breathe Easy (F Value = 8.344; p Value = 0.000). While, for Royale (F Value = 1.817; p Value = 0.165), Pentalite (F Value = 0.844; p Value = 0.431), and Superlac (F Value = 2.096; p Value = 0.126), there wasn't a significant difference between business class people, service class people and professionals.
 - o For Impression Eco Clean, service class people (Mean = 2.11) were the most likely to buy this brand compared to business class (Mean = 3.48) people and professionals (Mean = 2.50). From, post hoc analysis (Annexure A6), it was observed that the most prominent brand choice difference was between business class respondents and service class people (Significance = 0.000) and service class and professional (Significance = 0.000). While no other pair had such a noticeable choice difference for Impression Eco Clean brand.
 - o For Breathe Easy, business class people (mean = 3.07) were more likely to buy this brand compared to service class people (mean = 3.83) and professionals (Mean = 3.23). From, post hoc analysis (Annexure A6), it was observed that the most prominent choice difference was between business class respondents and service class people (Significance = 0.001) followed by business class people and professionals (Significance = 0.013). (Ref. Table 5.4.128)

Table 5.4.129: Table showing mean comparison of average preference rank assign to effecting interior paint brand regarding intention of purchasing environment friendly paints across marital status of respondents.

City	Marital Status	BRAND OF DECORATIVE INTERIOR PAINTS						
		Statistics	Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac	
Vadodara		N	171	171	171	171	171	
	Married	Mean	1.30	3.33	1.99	3.50	4.89	
		Std. Dev.	0.521	0.676	0.767	0.829	0.453	
		N	29	29	29	29	29	
	Unmarried	Mean	1.45	3.31	1.93	3.45	4.86	
		Std. Dev.	.686	0.712	0.704	1.055	0.441	
	Total	Mean	1.32	3.32	1.98	3.49	4.89	
	t value		1.719	0.016	0.141	0.079	0.088	
	Significance Level		0.191	0.900	0.707	0.779	0.768	
	Married	N	172	172	172	172	172	
		Mean	1.99	2.90	1.95	3.57	4.59	
		Std. Dev.	1.076	1.143	.935	.974	.878	
		N	28	28	28	28	28	
Ahmedabad	Unmarried	Mean	2.25	2.64	2.07	3.75	4.29	
-		Std. Dev.	1.266	1.193	1.120	1.005	1.084	
	Total	Mean	2.02	2.87	1.97	3.60	4.55	
	t value Significance Level		1.353 0.248	1.215 0.272	0.361 0.548	0.818 0.367	2.652 0.105	
	Significance		182	182	182	182	182	
	Married	N Mean	2.02	3.48	1.71	3.47	4.32	
		Std. Dev.	1.035	.846	.996	1.188	1.013	
	Unmarried Total	N	1.033	18	18	18	1.013	
Surat		Mean	2.22	3.56	2.00	3.00	4.22	
Surat		Std. Dev.	1.114	.705	1.328	1.455	1.166	
		Mean	2.04	3.49	1.73	3.43	4.31	
	t value		0.605	0.122	1.312	2.428	0.161	
	Significance Level		0.428	0.727	0.253	0.121	0.688	
	Married	N	157	157	157	157	157	
		Mean	2.19	2.92	2.70	3.36	3.83	
		Std. Dev.	1.297	1.276	1.434	1.220	1.275	
	Unmarried	N	43	43	43	43	43	
Rajkot		Mean	1.88	3.07	2.42	3.65	3.98	
		Std. Dev.	1.117	1.100	1.295	1.152	1.318	
	Total	Mean	2.13	2.95	2.64	3.42	3.86	
	t Value		2.006	0.511	1.358	2.014	0.415	
	Significance Level		0.158	0.476	0.245	0.157	0.520	
	Married	N	682	682	682	682	682	
		Mean	1.87	3.17	2.07	3.48	4.42	
TOTAL (GUJARAT)	Unmarried	Std. Dev.	1.069	1.035	1.110	1.063	1.017	
		N	118	118	118	118	118	
		Mean	1.92	3.10	2.15	3.53	4.31	
()		Std. Dev.	1.098	1.024	1.144	1.160	1.121	
	Total	Mean	1.88	3.16	2.08	3.48	4.40	
	t value		0.160	0.404	0.565	0.219	1.232	
	Significance Level		0.689	0.525	0.452	0.640	0.267	
Statistic is significant at 0.05 level								

• From Table 5.4.129, in Gujarat, it was observed that there wasn't a significant difference in decorative interior paints brand preferences of married and unmarried consumers. There wasn't a significant difference (t Value = 0.160; p value = 0.689) between respondents with different marital status regarding their preference for Royale. Similarly, there wasn't a

significant difference between respondents from different marital status regarding their choice for Pentalite (t Value = 0.404; p value = 0.525), Impression Eco Clean (t Value = 0.565; p value = 0.452), Breathe Easy (t Value = 0.219; p value = 0.640) and Superlac (t Value = 1.232; p value = 0.267).

- Hence, it could be said that married and unmarried respondents had similar choice of decorative interior paint brands. In Vadodara, Ahmedabad, Surat and Rajkot individually also, there was almost similar brand preferences among married and unmarried respondents.
- In Vadodara, there wasn't a significant difference between married and unmarried respondents regarding their choice for Royale (t Value = 1.719; p value = 0.191), Pentalite (t Value = 0.016; p value = 0.900), Impression Eco Clean (t Value = 0.141; p value = 0.707), Breathe Easy (t Value = 0.079; p value = 0.779) and Superlac (t Value = 0.088; p value = 0.768).
- In Ahmedabad, there wasn't a significant difference between married and unmarried respondents regarding their choice for Royale (t Value = 1.353; p value = 0.248), Pentalite (t Value = 1.215; p value = 0.272), Impression Eco Clean (t Value = 0.361; p value = 0.548), Breathe Easy (t Value = 0.818; p value = 0.367) and Superlac (t Value = 2.652; p value = 0.105).
- In Surat, there wasn't a significant difference between married and unmarried respondents regarding their choice for Royale (t Value = 0.605; p value = 0.428), Pentalite (t Value = 0.122; p value = 0.727), Impression Eco Clean (t Value = 1.312; p value = 0.253), Breathe Easy (t Value = 2.428; p value = 0.121) and Superlac (t Value = 0.161; p value = 0.688).
- In Rajkot, there wasn't a significant difference between married and unmarried respondents regarding their choice for Royale (t Value = 2.006; p value = 0.158), Pentalite (t Value = 0.511; p value = 0.476), Impression Eco Clean (t Value = 1.358; p value = 0.245), Breathe Easy (t Value = 2.014; p value = 0.157) and Superlac (Chi-Square = 0.415; p value = 0.520).
- It was found that there was almost similar pattern of brand preference, for all five interior paint brands i.e., Royale, Pentalite, Impression Eco Clean, Breathe Easy and Superlac, among married and unmarried respondents of Gujarat as well as Vadodara, Surat and Rajkot individually. (Ref. Table 5.4.129)

Table 5.4.130: Table showing mean comparison of average preference rank assign to effecting interior paint brand regarding intention of purchasing environment friendly paints across monthly income group of respondents.

City	Monthly Income (Indian Rupee)		BRAND OF DECORATIVE INTERIOR PAINTS					
		Statistics	Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac	
Vadodara		N	79	79	79	79	79	
	<=29166.67	Mean	1.32	3.34	2.03	3.43	4.89	
		Std. Dev.	0.567	0.714	0.784	0.887	0.392	
		N	64	64	64	64	64	
	29166.68-46250.00	Mean	1.31	3.37	2.05	3.41	4.86	
		Std. Dev.	0.560	0.678	0.785	0.886	0.587	
v auouar a		N	57	57	57	57	57	
	>46250.00	Mean	1.35	3.25	1.84	3.67	4.91	
		Std. Dev.	0.517	0.635	0.676	0.787	0.342	
	Total	N	1.32	3.32	1.98	3.49	4.89	
	F value		0.089	0.584	1.343	1.699	0.207	
	Significance Level		0.915	0.559	0.263	0.186	0.813	
	<=29166.67	N	97	97	97	97	97	
		Mean	2.04	2.78	2.18	3.60	4.40	
		Std. Dev.	1.127	1.285	1.010	1.037	1.037	
		N	38	38	38	38	38	
	29166.68-46250.00	Mean	2.13	2.87	1.63	3.97	4.39	
Ahmedabad		Std. Dev.	1.119	.963	.786	.885	1.001	
Anmedabad		N	65	65	65	65	65	
	>46250.00	Mean	1.94	2.98	1.86	3.37	4.85	
		Std. Dev.	1.074	1.038	.916	.876	.507	
	Total	Mean	2.02	2.87	1.97	3.60	4.55	
	F value		0.384	0.593	5.192	4.758	5.485	
	Significance Level		0.681	0.554	0.006	0.010	0.005	
	<=29166.67	N	62	62	62	62	62	
		Mean	2.47	3.39	1.50	3.66	4.00	
		Std. Dev.	1.327	.776	.844	1.187	1.241	
	29166.68-46250.00	N	62	62	62	62	62	
		Mean	1.92	3.61	1.79	3.47	4.21	
6 4		Std. Dev.	.911	.930	1.073	1.238	1.010	
Surat	>46250.00	N	76	76	76	76	76	
		Mean	1.79	3.47	1.88	3.20	4.66	
		Std. Dev.	.736	.791	1.107	1.200	.703	
	Total	Mean	2.04	3.49	1.73	3.43	4.31	
	F value		8.437	1.165	2.512	2.575	8.035	
	Significance Level		0.000	0.314	0.084	0.079	0.000	
Rajkot	<=29166.67	N	34	34	34	34	34	
		Mean	2.12	2.88	2.56	3.62	3.82	
		Std. Dev.	1.297	1.094	1.541	1.129	1.290	
	29166.68-46250.00	N	98	98	98	98	98	
		Mean	2.12	2.86	2.60	3.53	3.89	
		Std. Dev.	1.195	1.292	1.375	1.203	1.275	
	>46250.00	N	68	68	68	68	68	
		Mean	2.13	3.12	2.74	3.16	3.85	
		Std. Dev.	1.359	1.228	1.400	1.229	1.307	
	Total	Mean	2.13	2.95	2.64	3.42	3.86	
	F Value		0.002	0.948	0.246	2.452	0.036	
	Significance Level		0.998	0.389	0.782	0.089	0.965	

Table 5.4.130 cont...

Table 5.4.130 cont...

City	Monthly Income (Indian Rupee)	Statistics	BRAND OF DECORATIVE INTERIOR PAINTS					
			Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac	
TOTAL (GUJARAT)	<=29166.67	N	272	272	272	272	272	
		Mean	1.94	3.10	2.03	3.57	4.38	
		Std. Dev.	1.152	1.044	1.047	1.043	1.059	
	29166.68-46250.00	N	262	262	262	262	262	
		Mean	1.88	3.16	2.13	3.55	4.27	
		Std. Dev.	1.043	1.083	1.165	1.109	1.101	
	>46250.00	N	266	266	266	266	266	
		Mean	1.82	3.21	2.09	3.33	4.55	
		Std. Dev.	1.016	.969	1.134	1.069	.915	
	Total	Mean	1.88	3.16	2.08	3.48	4.40	
	F value		0.813	0.896	0.628	3.993	4.933	
	Significance Level		0.444	0.409	0.534	0.019	0.007	
	Statistic is significant at 0.05 level					·		

- It was observed from the table that Royale, for the interior paint, was most preferred brand among respondents with monthly income more than Rs.46250 (Mean = 1.82) from Gujarat compared to those with monthly income no more that Rs.29166.67 (Mean = 1.94) and those with monthly income from Rs.29166.67 to Rs.46250 (Mean = 1.88). However, no significant difference was observed between respondents from all three different monthly income groups for Royale (F Value = 0.813; p value = 0.444), Pentalite (F Value = 0.896; p value = 0.409) and Impression Eco Clean (F Value = 0.628; p value = 0.534). While, there was a significant choice difference between respondents with different monthly income level for Breathe Easy (F Value = 3.993; p value = 0.019) and Superlac (F Value = 4.933; p value = 0.007). Here, it was observed that Superlac was most preferred by respondents with monthly income from Rs.29166.68 to Rs.46250 and Breathe Easy was most preferred by respondents with monthly income more than Rs.46250.
 - o Further, it was observed from post-hoc analysis (Annexure A-7) that, for Breathe Easy brand, most significant choice difference was observed between respondents with monthly income no more than Rs.29166.67 and respondents with monthly income above Rs.46250 (Significance = 0.040). While for Superlac, most significant choice difference was observed between respondents with monthly income from Rs.29166.68 to Rs.46250 and respondents with monthly income above Rs.46250 (Significance = 0.008).
- In Vadodara, there wasn't a significant difference between respondents, with different monthly income level, regarding their choice for Royale (F value = 0.089; p value = 0.915), Pentalite

- (F value = 0.584; p value = 0.559), Impression Eco Clean (F value = 1.343; p value = 0.263), Breathe Easy (F value = 1.699; p value = 0.186) and Superlac (F value = 0.207; p value = 0.813).
- In Ahmedabad, there wasn't a significant difference between respondents, with different monthly income level, regarding their choice for Royale (F value = 0.384; p value = 0.681) and Pentalite (F value = 0.593; p value = 0.554). While, there was a significant difference between respondents, with different monthly income level, regarding their choice for Impression Eco Clean (F value = 5.192; p value = 0.006), Breathe Easy (F value = 4.758; p value = 0.010) and Superlac (F value = 5.485; p value = 0.005).
 - o In Ahmedabad, Impression Eco Clean was the most preferred brand among respondent with income between Rs.29166.67 to Rs.46250 (Mean = 1.63). Further, it was observed from post-hoc analysis (Annexure A8) that most significant difference in choice of this brand was between respondents with monthly income below or equal to Rs.29166.67 and respondents with income between Rs.29166.68 and Rs.46250(Significance = 0.012).
 - o Moreover, Breathe Easy was the most preferred brand among respondent with income above Rs.46250 (Mean = 3.37). Further, it was observed from post-hoc analysis (Annexure A8) that most significant difference in choice of this brand was between respondents with monthly income above Rs.46250 and respondents with income between Rs.29166.68 and Rs.46250 (Significance = 0.010).
 - Further, Superlac was the least preferred brand among respondent with income above Rs.46250 (Mean = 4.85). Further, it was observed from post-hoc analysis (Annexure A8) that most significant difference in choice of this brand was between respondents with monthly income below or equal to Rs.29166.67 and respondents with income above Rs.46250 (Significance = 0.009).
- In Surat, there wasn't a significant difference between respondents, with different monthly income level, regarding their choice for Pentalite (F value = 1.165; p value = 0.314), Impression Eco Clean (F value = 2.512; p value = 0.084) and Breathe Easy (F value = 2.575; p value = 0.079). While, there was a significant difference between respondents, with different monthly income level, regarding their choice for Royale (F value = 8.437; p value = 0.000) and Superlac (F value = 8.035; p value = 0.000).

- O Here, Royale was the most preferred brand among respondent with income above Rs.46250 (Mean = 1.79). Further, it was observed from post-hoc analysis (Annexure A9) that most significant difference in choice of this brand was between respondents with monthly income above Rs.46250 and respondents with income no more than Rs.29166.68 (Significance = 0.001).
- Further, Superlac was the least preferred brand among respondent with income above Rs.46250 (Mean = 4.66). Further, it was observed from post-hoc analysis (Annexure A9) that most significant difference in choice of this brand was between respondents with monthly income below or equal to Rs.29166.67 and respondents with income above Rs.46250 (Significance = 0.001).
- In Rajkot, there wasn't a significant difference between respondents, with different monthly income level, regarding their choice for Royale (F value = 0.002; p value = 0.998), Pentalite (F value = 0.948; p value = 0.389), Impression Eco Clean (F value = 0.246; p value = 0.782), Breathe Easy (F value = 2.452; p value = 0.089) and Superlac (F value = 0.036; p value = 0.965). (Ref. Table 5.4.130)

Table 5.4.131: Table showing mean comparison of average preference rank assign to effecting interior paint brand regarding intention of purchasing environment friendly paints across per capita income groups of respondents.

				BRAND OF I	DECORATIVE	INTERIOR PAIN	ΓS
City	PER CAPITA INCOME	Statistics	Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac
		N	69	69	69	69	69
	LOW	Mean	1.38	3.32	1.99	3.39	4.93
		Std. Dev.	0.621	0.717	0.776	0.895	0.312
		N	61	61	61	61	61
	MODERATE	Mean	1.28	3.44	2.08	3.34	4.85
V- d- d		Std. Dev.	0.521	0.696	0.802	0.873	0.573
Vadodara		N	70	70	70	70	70
	HIGH	Mean	1.31	3.23	1.89	3.71	4.87
		Std. Dev.	0.498	0.618	0.692	0.783	0.448
	Total	Mean	1.32	3.32	1.98	3.49	4.89
	F value		0.536	1.632	1.100	3.794	0.496
	Significance Leve	el	0.586	0.198	0.335	0.024	0.610
		N	94	94	94	94	94
	LOW	Mean	2.06	2.76	2.20	3.63	4.35
		Std. Dev.	1.153	1.284	1.063	1.016	1.065
		N	45	45	45	45	45
	MODERATE	Mean	1.93	3.13	1.71	3.67	4.56
Ahmedabad		Std. Dev.	.986	1.057	.695	1.022	.893
Anmedabad		N	61	61	61	61	61
	HIGH	Mean	2.03	2.84	1.80	3.49	4.84
		Std. Dev.	1.125	.969	.891	.887	.522
	Total	Mean	2.02	2.87	1.97	3.60	4.55
	F value		0.213	1.682	5.533	0.511	5.467
	Significance Leve	el	0.809	0.189	0.005	0.601	0.005
		N	65	65	65	65	65
	LOW	Mean	2.40	3.38	1.51	3.60	4.12
		Std. Dev.	1.321	.823	.831	1.183	1.125
		N	61	61	61	61	61
	MODERATE	Mean	1.93	3.72	1.75	3.36	4.23
Surat		Std. Dev.	.854	.859	1.043	1.291	1.007
Surat		N	74	74	74	74	74
	HIGH	Mean	1.81	3.39	1.92	3.32	4.55
		Std. Dev.	.805	.791	1.144	1.183	.909
	Total	Mean	2.13	2.95	2.64	3.42	3.86
	F value		6.313	3.472	2.826	1.010	3.446
	Significance Leve		0.002	0.033	0.062	0.366	0.034
		N	49	49	49	49	49
	LOW	Mean	2.10	2.84	2.49	3.69	3.88
		Std. Dev.	1.246	1.214	1.416	1.140	1.218
		N	95	95	95	95	95
	MODERATE	Mean	2.19	3.00	2.80	3.36	3.65
Rajkot		Std. Dev.	1.291	1.280	1.426	1.288	1.359
Najkut		N	56	56	56	56	56
	HIGH	Mean	2.04	2.96	2.50	3.29	4.21
		Std. Dev.	1.250	1.206	1.362	1.107	1.140
	Total	Mean	2.13	2.95	2.64	3.42	3.86
	F Value		0.269	0.284	1.172	1.742	3.465
	Significance Leve	el	0.764	0.753	0.312	0.178	0.033

Table 5.4.131 cont...

Table 5.4.131 cont...

			В	RAND OF D	ECORATIVE	INTERIOR PAIN	NTS
City	PER CAPITA INCOME	Statistics	Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac
		N	277	277	277	277	277
	LOW	Mean	1.98	3.06	2.04	3.57	4.36
		Std. Dev.	1.164	1.085	1.073	1.052	1.045
	MODERATE	N	262	262	262	262	262
		Mean	1.87	3.29	2.20	3.41	4.22
TOTAL		Std. Dev.	1.056	1.069	1.198	1.160	1.157
(FROM GUJARAT)		N	261	261	261	261	261
	HIGH	Mean	1.78	3.13	2.01	3.46	4.63
		Std. Dev.	.979	.922	1.067	1.013	.829
	Total	Mean	1.88	3.16	2.08	3.48	4.40
	F value	2.361	3.720	2.346	1.679	11.015	
	Significance Leve	0.095	0.025	0.096	0.187	0.000	
	Statistic is significant at 0.0	5 level		•	•	•	

- In Gujarat, no significant difference was observed between respondents from all three different per capita income groups for Royale (F Value = 2.361; p value = 0.095), Impression Eco Clean (F Value = 2.346; p value = 0.096) and Breathe Easy (F Value = 1.679; p value = 0.187). While, there was a significant choice difference between respondents with different per capita income level for Pentalite (F Value = 3.720; p value = 0.025) and Superlac (F Value = 11.015; p value = 0.000). Here, it was observed that Superlac was most preferred by respondents with moderate per capita income and Pentalite was most preferred by respondents with low per capita income.
 - Further, it was observed from post-hoc analysis (Annexure A10) that, for Pentalite brand, most significant choice difference was observed between respondents with low per capita income and respondents with moderate per capita income (Significance = 0.029). While for Superlac, most significant choice difference was observed between respondents with moderate per capita income and respondents with high per capita income (Significance = 0.000).
- In Vadodara, there wasn't a significant difference between respondents, with different per capita income level, regarding their choice for Royale (F value = 0.536; p value = 0.586), Pentalite (F value = 1.632; p value = 0.198), Impression Eco Clean (F value = 1.100; p value = 0.335) and Superlac (F value = 0.496; p value = 0.610). While, there was a significant choice difference between respondents with different per capita income level for Breathe Easy brand (F value = 3.794; p value = 0.024). Further, it was observed from post-hoc analysis (Annexure A11) that, for Breathe Easy brand, most significant choice difference was observed between

- respondents with high per capita income and respondents with moderate per capita income (Significance = 0.048).
- In Ahmedabad, there wasn't a significant difference between respondents, with different per capita income level, regarding their choice for Royale (F value = 0.213; p value = 0.809), Pentalite (F value = 1.682; p value = 0.189) and Breathe Easy (F value = 0.511; p value = 0.601). While, there was a significant difference between respondents, with different per capita income level, regarding their choice for Impression Eco Clean (F value = 5.533; p value = 0.005) and Superlac (F value = 5.467; p value = 0.005).
 - o In Ahmedabad, Impression Eco Clean was the most preferred brand among respondent with moderate per capita income (Mean = 1.71). Further, it was observed from post-hoc analysis (Annexure A12) that most significant difference in choice of this brand was between respondents with low per capita income and respondents with high per capita income (Significance = 0.038).
 - Further, Superlac was the least preferred brand among respondent with high per capita income (Mean = 4.84). Further, it was observed from post-hoc analysis (Annexure A12) that most significant difference in choice of this brand was between respondents with low per capita income and respondents with high per capita income (Significance = 0.005).
- In Surat, there wasn't a significant difference between respondents, with different per capita income level, regarding their choice for Pentalite (F value = 1.165; p value = 0.314), Impression Eco Clean (F value = 2.512; p value = 0.084) and Breathe Easy (F value = 2.575; p value = 0.079). While, there was a significant difference between respondents, with different per capita income level, regarding their choice for Royale (F value = 8.437; p value = 0.000) and Superlac (F value = 8.035; p value = 0.000).
 - Here, Royale was the most preferred brand among respondent with high per capita income (Mean = 1.81). Further, it was observed from post-hoc analysis (Annexure A13) that most significant difference in choice of this brand was between respondents with low per capita income and respondents with high per capita income (Significance = 0.003).

- Moreover, it was observed from post-hoc analysis (Annexure A13) that, for Pentalite brand, most significant choice difference was not observed between respondents with different per capita income.
- Further, Superlac was the least preferred brand among respondent with high per capita income (Mean = 4.55). Further, it was observed from post-hoc analysis (Annexure A13) that most significant difference in choice of this brand was between respondents with low per capita income and respondents with high per capita income (Significance = 0.046).
- In Rajkot, there wasn't a significant difference between respondents, with different per capita income level, regarding their choice for Royale (F value = 0.269; p value = 0.764), Pentalite (F value = 0.284; p value = 0.753), Impression Eco Clean (F value = 1.172; p value = 0.312) and Breathe Easy (F value = 1.742; p value = 0.178).
 - O Superlac was the least preferred brand among respondent with high per capita income (Mean = 4.21). Further, it was observed from post-hoc analysis (Annexure A14) that most significant difference in choice of this brand was between respondents with moderate per capita income and respondents with high per capita income (Significance = 0.033). (Ref. Table 5.4.131)

Table 5.4.132: Table showing mean comparison of average preference rank assign to effecting interior brand regarding intention of purchasing environment friendly paints across family size of respondents.

	Family Size			BRAND OF	DECORATIVE I	NTERIOR PAINTS	8
City	(Members)	Statistics	Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac
		N	154	154	154	154	154
	1-4	Mean	1.31	3.31	2.01	3.49	4.89
		Std. Dev.	0.530	0.680	0.788	0.850	0.451
		N	46	46	46	46	46
Vadodara	5+	Mean	1.37	3.39	1.89	3.48	4.87
		Std. Dev.	0.610	0.682	0.640	0.913	0.453
	Total	Mean	1.32	3.32	1.98	3.49	4.89
	t val		0.393	0.568	0.820	0.011	0.070
	Significan		0.531	0.452	0.366	0.917	0.792
		N	147	147	147	147	147
	1-4	Mean	2.11	2.69	1.96	3.65	4.59
		Std. Dev.	1.111	1.132	.943	.963	.890
		N	53	53	53	53	53
Ahmedabad	5+	Mean	1.79	3.34	2.00	3.43	4.43
	TF 4.1	Std. Dev.	1.063	1.073	1.019	1.010	.971
	Total	Mean	2.02	2.87	1.97	3.60	4.55
	t val		3.231 0.074	13.015	0.070 0.792	1.966	1.069
	Significan		124	0.000 124	124	0.162 124	0.302 124
	1-4	N Mean	2.05	3.44	1.69	3.50	4.31
	1-4	Std. Dev.	1.096	.820	.956	1.200	1.015
		N	76	76	.930	76	76
Surat	5+	Mean	2.03	3.57	1.80	3.30	4.32
Surat		Std. Dev.	.952	.854	1.143	1.244	1.048
	Total	Mean	2.04	3.49	1.73	3.43	4.31
	t val		0.021	1.016	0.528	1.240	0.000
	Significan		0.885	0.315	0.468	0.267	0.993
	Significan	N	115	115	115	115	115
	1-4	Mean	2.09	3.03	2.44	3.44	4.00
		Std. Dev.	1.274	1.195	1.378	1.141	1.214
		N	85	85	85	85	85
Rajkot	5+	Mean	2.18	2.85	2.91	3.39	3.68
,	1	Std. Dev.	1.255	1.296	1.411	1.301	1.356
	Total	Mean	2.13	2.95	2.64	3.42	3.86
	t Val	lue	0.244	1.021	5.394	0.102	3.028
	Significan	ce Level	0.622	0.314	0.021	0.750	0.083
		N	540	540	540	540	540
	1-4	Mean	1.86	3.11	2.01	3.53	4.49
		Std. Dev.	1.074	1.010	1.044	1.032	.962
TOTAL		N	260	260	260	260	260
(FROM GUJARAT)	5+	Mean	1.91	3.25	2.22	3.39	4.23
(FROM GUJAKAI)		Std. Dev.	1.071	1.075	1.240	1.162	1.149
	Total	Mean	1.88	3.16	2.08	3.48	4.40
	t val		0.360	3.362	5.933	2.941	10.778
	Significan		0.549	0.067	0.015	0.087	0.001
	Statistic is signi	ficant at 0.05 le	evel				

• From table 5.4.132, it could be observed that, in Gujarat, Royale (Mean = 1.86), Pentalite (Mean = 3.11) and Impression Eco Clean (Mean = 2.01) were brands mostly preferred by respondents with family size up to 4 while Breathe Easy (Mean = 3.39) and Superlac (Mean

- = 4.23) were brands mostly preferred by respondents with family size more than 4. However, there wasn't a significant difference between respondents with different family size regarding their preferences for Royale (t value = 0.360; p value = 0.549), Pentalite (t value = 3.362; p value = 0.067) and Breathe Easy (t value = 2.941; p value = 0.087).
 - o Moreover, there was a significant difference between respondents with different family size regarding their brand preferences for Impression Eco Clean (t value = 5.933; p value = 0.015) and Superlac (t value = 10.778; p value = 0.001). Majority people with large family size (Mean = 4.23) preferred Superlac compared to people with lower family size (Mean = 4.49). Least people with large family size (Mean = 3.25) preferred Impression Eco Clean compared to people with lower family size (Mean = 3.11).
- In Vadodara, there wasn't a significant difference between respondents, with family size up to 4 and respondents with family size above 4, regarding their choice for Royale (t Value = 0.393; p value = 0.531), Pentalite (t Value = 0.568; p value = 0.452), Impression Eco Clean (t Value = 0.820; p value = 0.366), Breathe Easy (t Value = 0.011; p value = 0.917) and Superlac (t Value = 0.070; p value = 0.792).
- In Ahmedabad, there wasn't a significant difference between respondents, with family size up to 4 and respondents with family size above 4, regarding their choice for Royale (t Value = 3.231; p value = 0.074), Impression Eco Clean (t Value = 0.070; p value = 0.792), Breathe Easy (t Value = 1.966; p value = 0.162) and Superlac (t Value = 1.069; p value = 0.302). While, for Pentalite (t Value = 13.015; p value = 0.000), there was a significant difference between respondents with different family size regarding their brand preferences. Least people with large family size (Mean = 3.34) preferred Pentalite compared to people with lower family size (Mean = 2.69).
- In Surat, there wasn't a significant difference between respondents, with family size up to 4 and respondents with family size above 4, regarding their choice for Royale (t Value = 0.021; p value = 0.885), Pentalite (t Value = 1.016; p value = 0.315), Impression Eco Clean (t Value = 0.528; p value = 0.468), Breathe Easy (t Value = 1.240; p value = 0.267) and Superlac (t Value = 0.000; p value = 0.993).
- In Rajkot, there wasn't a significant difference between respondents, with family size up to 4 and respondents with family size above 4, for Royale (t Value = 0.244; p value =

0.622), Pentalite (t Value = 1.021; p value = 0.314), Breathe Easy (t Value = 0.102; p value = 0.750) and Superlac (Chi-Square = 3.028; p value = 0.083). However, for Impression Eco Clean (t Value = 5.394; p value = 0.021), there was a significant difference between respondents with different family size regarding their brand preferences. Least people with large family size (Mean = 2.91) preferred Impression Eco Clean compared to people with lower family size (Mean = 2.44). (Ref. Table 5.4.132)

Table 5.4.133: Table showing mean comparison of average preference rank assign to effecting interior paint brand regarding intention of purchasing environment friendly paints across family type of respondents.

	Family			BRAND OF	DECORATIVE I	NTERIOR PAINTS	
City	Туре	Statistics	Royale	Pentalite	Impression Eco Clean	Breathe Easy	Superlac
		N	138	138	138	138	138
	Nuclear	Mean	1.30	3.33	2.04	3.46	4.88
		Std. Dev.	0.535	0.696	0.796	0.864	0.469
		N	62	62	62	62	62
Vadodara	Joint	Mean	1.37	3.32	1.85	3.56	4.89
		Std. Dev.	0.579	0.647	0.649	0.861	0.409
	Total	Mean	1.32	3.32	1.98	3.49	4.89
	t v	alue	0.830	0.001	2.477	0.670	0.002
	Significa	ance Level	0.426	0.973	0.117	0.414	0.965
		N	147	147	147	147	147
	Nuclear	Mean	2.09	2.73	1.99	3.64	4.55
		Std. Dev.	1.134	1.150	.940	.965	.938
		N	53	53	53	53	53
Ahmedabad	Joint	Mean	1.85	3.25	1.91	3.47	4.53
		Std. Dev.	1.008	1.072	1.024	1.012	.846
	Total	Mean	2.02	2.87	1.97	3.60	4.55
		alue	1.837	8.163	0.322	1.149	0.024
	Significa	nce Level	0.177	0.005	0.571	0.285	0.877
		N	129	129	129	129	129
	Nuclear	Mean	2.02	3.48	1.74	3.43	4.33
		Std. Dev.	1.086	.811	.972	1.230	1.009
		N	71	71	71	71	71
Surat	Joint	Mean	2.07	3.51	1.73	3.41	4.30
		Std. Dev.	.961 2.04	.876	1.133	1.202	1.061
		Total Mean		3.49	1.73	3.43	4.31
		alue	0.094	0.046	0.001	0.020	0.039
	Significa	ance Level	0.760	0.831	0.979	0.887	0.845
		N	121	121	121	121	121
	Nuclear	Mean	1.98	3.05	2.49	3.51	3.97
		Std. Dev.	1.204	1.168	1.367	1.148	1.251
D-" (T. * 4	N	79	79	79	79	79
Rajkot	Joint	Mean	2.34	2.80	2.87	3.28	3.71
	T. 4-1	Std. Dev.	1.329 2.13	1.334 2.95	1.444 2.64	1.290	1.322 3.86
	Total	Mean				3.42	
		alue ance Level	3.897 0.053	1.989 0.160	3.640 0.058	1.797 0.182	1.944 0.165
	Significa	N	535	535	535	535	535
	Nuclear	Mean	1.85	3.14	2.05	3.51	4.45
	inucicai	Std. Dev.	1.067	1.018	1.058	1.054	1.000
TOTAL (FROM GUJARAT)		N Stu. Dev.	265	265	265	265	265
	Joint	Mean	1.94	3.20	2.14	3.42	4.31
	Joint	Std. Dev.	1.084	1.063	1.223	1.122	1.091
	Total	Mean	1.88	3.16	2.08	3.48	4.40
		alue	1.440	0.671	0.950	1.382	3.494
		ance Level	0.230	0.413	0.330	0.240	0.062
		ignificant at 0.0		0.413	0.550	0.270	0.002
	Statistic 15 5	ignineant at Vil					

• From table 5.4.133, it could be observed that, in Gujarat, Royale (Mean = 1.85), Pentalite (Mean = 3.14) and Impression Eco Clean (Mean = 2.05) were brands mostly preferred by respondents with nuclear family while Breathe Easy (Mean = 3.42) and Superlac (Mean =

- 4.31) were brands mostly preferred by respondents with joint family. However, there wasn't a significant difference between respondents with different family type regarding their preferences for Royale (t value = 1.440; p value = 0.230), Pentalite (t value = 0.671; p value = 0.413), Impression Eco Clean (t value = 0.950; p value = 0.330) Breathe Easy (t value = 1.382; p value = 0.240) and Superlac (t value = 3.494; p value = 0.062).
- In Vadodara, there wasn't a significant difference between respondents, with nuclear family and respondents with joint, regarding their choice for Royale (t Value = 0.830; p value = 0.426), Pentalite (t Value = 0.001; p value = 0.973), Impression Eco Clean (t Value = 2.477; p value = 0.117), Breathe Easy (t Value = 0.670; p value = 0.414) and Superlac (t Value = 0.002; p value = 0.965).
- In Ahmedabad, there wasn't a significant difference between respondents, with nuclear family and respondents with joint family, regarding their choice for Royale (t Value = 1.837; p value = 0.177), Impression Eco Clean (t Value = 0.322; p value = 0.571), Breathe Easy (t Value = 1.149; p value = 0.285) and Superlac (t Value = 0.024; p value = 0.877). While, for Pentalite (t Value = 8.163; p value = 0.005), there was a significant difference between respondents with different family type regarding their brand preferences.
- In Surat, there wasn't a significant difference between respondents, with nuclear family and respondents with joint family, regarding their choice for Royale (t Value = 0.094; p value = 0.760), Pentalite (t Value = 0.046; p value = 0.831), Impression Eco Clean (t Value = 0.001; p value = 0.979), Breathe Easy (t Value = 0.020; p value = 0.887) and Superlac (t Value = 0.039; p value = 0.845).
- In Rajkot, there wasn't a significant difference between respondents, with nuclear family and respondents with joint family, regarding their choices for Royale (t Value = 3.897; p value = 0.053), Pentalite (t Value = 1.989; p value = 0.160), Impression Eco Clean (t Value = 3.640; p value = 0.058), Breathe Easy (t Value = 1.797; p value = 0.182) and Superlac (Chi-Square = 1.944; p value = 0.165). (Ref. Table 5.4.133)

Table 5.4.134: Table showing mean comparison of average preference rank assign to effecting exterior paint brand regarding intention of purchasing environment friendly paints across four selected cities of Gujarat.

		BI	RAND OF DECO	RATIVE EXT	TERIOR PAINTS	
City	Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra
	N	200	200	200	200	200
Vadodara	Mean	2.21	2.90	2.58	3.14	4.17
	Std. Dev.	1.309	1.296	1.230	1.248	1.165
	N	200	200	200	200	200
Ahmedabad	Mean	2.22	2.92	2.68	3.34	3.84
	Std. Dev.	1.284	1.263	1.435	1.222	1.305
	N	200	200	200	200	200
Surat	Mean	2.68	2.94	2.48	3.66	3.22
	Std. Dev.	1.279	1.304	1.407	1.454	1.319
	N	200	200	200	200	200
Rajkot	Mean	1.65	3.45	2.08	3.71	4.12
-	Std. Dev.	0.906	0.965	1.100	1.119	1.096
	N	800	800	800	800	800
Total	Mean	2.19	3.05	2.46	3.46	3.84
	Std. Dev.	1.258	1.234	1.317	1.286	1.280
F val	ue	24.414	9.381	8.149	9.060	25.396
Significano	ce Level	0.000	0.000	0.000	0.000	0.000
		Statistic is significant a	t 0.05 level		<u> </u>	

- It was observed that, in overall (Gujarat), Apex/Ultima Paints (Mean = 2.19), brand of Asian Paints Ltd., was the most preferred decorative exterior paint brand among consumers while Xtra (Mean = 3.84) of Shalimar Paints Ltd was the least preferred brand among consumers of Gujarat. Moreover, Excel (Mean = 2.46) was the second most preferred decorative paint brand.
- It was also observed that across all four cities i.e., Vadodara, Ahmedabad, Surat and Rajkot, there was a significant difference between consumers' brand preferences. In Vadodara (Mean = 2.21), Ahmedabad (Mean = 2.22) and Rajkot (Mean = 1.65), Apex/Ultima was the most preferred decorative paint brand while in Surat (Mean = 2.48) Excel was the most preferred paint brand.
- Moreover, for preference of Apex/Ultima (F Value = 24.414; p Value = 0.000), Weather Shield (F Value = 9.381; p Value = 0.000), Excel (F Value = 8.149; p Value = 0.000), Weather Coat (F Value = 9.060; p Value = 0.000) and Xtra (F Value = 25.396; p Value = 0.000) brands, there exist significant difference between consumers from all four cities i.e., Vadodara, Ahmedabad, Rajkot and Surat.
- From post-hoc analysis (Annexure A15), it was observed that, for Apex/Ultima brand,
 preferences of respondents from Surat were very different from preferences of respondents of

Vadodara (p value = 0.002), Ahmedabad (p value = 0.002) and Rajkot (p value = 0.000). While, preferences of respondents from Ahmedabad were quite similar to respondents from Vadodara (p value = 1.000). Moreover, there was also difference between opinion of respondents from Rajkot and respondents from Vadodara (p value = 0.000). Hence, it could be said that Apex/Ultima was the most preferred brand among consumers from Rajkot (Mean = 1.65) compared to consumers from Ahmedabad (Mean = 2.22), Surat (Mean = 2.68) and Vadodara (Mean = 2.21).

- Further, for Weather Shield, preferences of respondents from Vadodara were very different compared to preferences of respondents from Rajkot (p value = 0.000). While, preferences of respondents from Rajkot were also different from respondents from Surat (p value = 0.001) and respondents from Ahmedabad (p value = 0.000).
- For, Excel, preferences of respondents from Rajkot were very different compared to preferences of respondents from Surat (p value = 0.022), Ahmedabad (p value = 0.000) and Vadodara (p value = 0.002). Hence, it was observed that Excel by Kansai Nerolac Ltd was the most preferable brand among consumers from Rajkot (Mean = 2.08) compared to other consumers from Vadodara (Mean = 2.58), Ahmedabad (Mean = 2.68) and Surat (Mean = 2.48).
- For, Weather coat, preferences of respondents from Vadodara were very different that preferences of respondents from Surat (p value = 0.001) and Rajkot (p value = 0.000). While, preferences of respondents from Ahmedabad were different from respondents from Rajkot (p value = 0.041).
- For, Xtra, preferences of respondents from Surat were very different that preferences of respondents from Vadodara (p value = 0.000), Ahmedabad (p value = 0.000) and Rajkot (p value = 0.000). Hence, it could be said that Xtra was the most preferable brand among consumers from Surat (Mean = 3.22) compared to other consumers from Vadodara (Mean = 4.17), Ahmedabad (Mean = 3.84) and Rajkot (Mean = 4.12).
- Here, it was observed that consumers across all four cities of Gujarat had almost different brand
 preferences while making purchase of decorative paints. Hence, it could be said there was a
 regional difference in decorative exterior paint brand preferences. (Ref. Table 5.4.134)

Table 5.4.135: Table showing mean comparison of average preference rank assign to effecting exterior paint brand regarding intention of purchasing environment friendly paints across age group of respondents

			BRA	ND OF DECOR	ATIVE EXT	TERIOR PAINTS	
City	Age	Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra
		N	74	74	74	74	74
	<=37	Mean	2.14	2.85	2.54	3.14	4.34
		Std. Dev.	1.296	1.362	1.218	1.186	0.940
		N	73	73	73	73	73
	38-46	Mean	2.30	2.86	2.60	3.26	3.97
V- J- J		Std. Dev.	1.266	1.205	1.233	1.365	1.414
Vadodara		N	53	53	53	53	53
	>46	Mean	2.19	3.02	2.58	2.98	4.21
		Std. Dev.	1.401	1.337	1.262	1.168	1.044
	Total	Mean	2.21	2.90	2.58	3.14	4.17
]	F value	0.304	0.303	0.049	0.767	1.858
	Signif	icance Level	0.739	0.739	0.952	0.466	0.159
		N	67	67	67	67	67
	<=37	Mean	2.49	2.82	2.46	3.30	3.93
		Std. Dev.	1.341	1.218	1.396	1.291	1.306
		N	59	59	59	59	59
	38-46	Mean	2.19	2.69	2.93	3.20	3.98
		Std. Dev.	1.279	1.071	1.574	1.141	1.345
Ahmedabad		N	74	74	74	74	74
	>46	Mean	2.00	3.18	2.68	3.50	3.65
		Std. Dev.	1.205	1.408	1.336	1.219	1.265
	Total	Mean	2.22	2.92	2.68	3.34	3.84
		F value	2.657	2.702	1.693	1.040	1.297
		icance Level	0.073	0.070	0.187	0.355	0.276
	9	N	67	67	67	67	67
	<=37	Mean	2.64	3.10	2.40	3.79	3.04
		Std. Dev.	1.240	1.304	1.371	1.441	1.331
		N	67	67	67	67	67
	38-46	Mean	2.87	2.87	2.58	3.51	3.16
6		Std. Dev.	1.325	1.313	1.437	1.521	1.333
Surat		N	66	66	66	66	66
	>46	Mean	2.53	2.86	2.47	3.68	3.45
		Std. Dev.	1.268	1.300	1.427	1.405	1.279
	Total	Mean	2.68	2.94	2.48	3.66	3.22
]	F value	1.190	0.752	0.275	0.646	1.706
	Signif	icance Level	0.306	0.473	0.760	0.525	0.184
	.,	N	78	78	78	78	78
	<=37	Mean	1.49	3.28	2.18	3.85	4.22
		Std. Dev.	.734	.851	1.170	1.129	.976
		N	54	54	54	54	54
	38-46	Mean	1.61	3.56	2.02	3.83	3.98
B !! .		Std. Dev.	.834	1.040	1.073	.966	1.173
Rajkot		N	68	68	68	68	68
	>46	Mean	1.87	3.54	2.01	3.46	4.12
		Std. Dev.	1.091	1.014	1.044	1.190	1.166
	Total	Mean	1.65	3.45	2.08	3.71	4.12
		F Value	3.345	1.840	0.521	2.704	0.741
		icance Level	0.037	0.162	0.595	0.069	0.478

Table 5.4.135 Cont...

Table 5.4.135 Cont...

			BRA	ND OF DECOR	ATIVE EX	TERIOR PAINTS	
City	Age	Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra
		N	286	286	286	286	286
	<=37	Mean	2.16	3.02	2.39	3.52	3.91
		Std. Dev.	1.246	1.202	1.287	1.292	1.240
		N	253	253	253	253	253
	38-46	Mean	2.28	2.97	2.55	3.43	3.76
TOTAL		Std. Dev.	1.277	1.206	1.372	1.300	1.368
(GUJARAT)		N	261	261	261	261	261
	>46	Mean	2.14	3.16	2.43	3.43	3.84
		Std. Dev.	1.254	1.291	1.295	1.268	1.234
	Total	Mean	2.19	3.05	2.46	3.46	3.84
	I	F value	0.900	1.636	1.018	0.442	0.835
	Signifi	icance Level	0.407	0.195	0.362	0.643	0.434
	Statistic is	significant at 0.05	5 level				

- For Apex/Ultima exterior paint brand, it was observed that even if being most preferred exterior paint brand, preference of this brand had no association with consumers' age in Vadodara (F Value = 0.304; p value = 0.739), Ahmedabad (F Value = 2.657; p value = 0.073), Surat (F Value = 1.190; p value = 0.306) as well as collectively from Gujarat (F Value = 0.900; p value = 0.407). While in Rajkot, there was a significant difference (F Value = 3.345; p value = 0.037) between respondents with different age regarding their preference of exterior paint brand. From post-hoc analysis (Annexure A16), it was observed that' in Rajkot, most significant difference was between respondents of age no more than 37 years and respondents with age above 46 years (Significance = 0.040). Hence, it could be said that in Rajkot, Apex/Ultima was the most preferable brand among respondents with age above 46 years (Mean = 1.49) while least preferable among respondents with age above 46 years (Mean = 1.87).
- Moreover, for Weather Shield exterior paint brand, it was observed that preference of this brand had no association with consumers' age in Vadodara (F Value = 0.303; p value = 0.739), Ahmedabad (F Value = 2.702; p value = 0.070), Surat (F Value = 0.752; p value = 0.473) and Rajkot (F Value = 1.840; p value = 0.162) as well as collectively from Gujarat (F Value = 1.636; p value = 0.195).
- Similarly, for Excel exterior paint brand, it was observed that preference of this brand had no association with consumers' age in Vadodara (F Value = 0.049; p value = 0.952), Ahmedabad (F Value = 1.693; p value = 0.187), Surat (F Value = 0.275; p value = 0.760) and Rajkot (F

Value = 0.521; p value = 0.595) as well as collectively from Gujarat (F Value = 1.018; p value = 0.362).

- Further, for Weather Coat exterior paint brand, it was observed that preference of this brand had no association with consumers' age in Vadodara (F Value = 0.767; p value = 0.466), Ahmedabad (F Value = 1.040; p value = 0.355), Surat (F Value = 0.646; p value = 0.525) and Rajkot (F Value = 2.704; p value = 0.069) as well as collectively from Gujarat (F Value = 0.442; p value = 0.643).
- Furthermore, for Xtra exterior paint brand, it was observed that preference of this brand had no association with consumers' age in Vadodara (F Value = 0.1.858; p value = 0.159), Ahmedabad (F Value = 1.297; p value = 0.276), Surat (F Value = 1.706; p value = 0.184) and Rajkot (F Value = 0.741; p value = 0.468) as well as collectively from Gujarat (F Value = 0.835; p value = 0.434).
- Hence, it could be said that, in Gujarat, age factor of consumers had no association with their choice of exterior paint brand. (Ref. Table 5.4.135)

Table 5.4.136: Table showing mean comparison of average preference rank assign to effecting exterior paint brand regarding intention of purchasing environment friendly paints across gender of respondents

			BRAN	D OF DECORA	TIVE EXT	ERIOR PAINTS	
City	Gender	Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra
		N	142	142	142	142	142
	Male	Mean	2.20	2.91	2.55	3.23	4.11
		Std. Dev.	1.301	1.293	1.224	1.218	1.250
		N	58	58	58	58	58
Vadodara	Female	Mean	2.24	2.88	2.64	2.91	4.31
		Std. Dev.	1.342	1.312	1.252	1.302	0.922
	Total	Mean	2.21	2.90	2.58	3.14	4.17
	F	value	0.047	0.035	0.213	2.706	1.186
	Signific	ance Level	0.829	0.889	0.645	0.102	0.277
		N	152	152	152	152	152
	Male	Mean	2.22	2.85	2.75	3.36	3.82
		Std. Dev.	1.328	1.280	1.434	1.199	1.294
		N	48	48	48	48	48
Ahmedabad	Female	Mean	2.21	3.13	2.46	3.29	3.92
		Std. Dev.	1.148	1.196	1.429	1.304	1.350
	Total	Mean	2.22	2.92	2.68	3.34	3.84
	F	value	0.005	1.752	1.512	0.120	0.217
	Signific	ance Level	0.943	0.187	0.220	0.730	0.642
		N	141	141	141	141	141
	Male	Mean	2.65	2.91	2.55	3.65	3.23
		Std. Dev.	1.254	1.334	1.406	1.439	1.356
	Female	N	59	59	59	59	59
Surat		Mean	2.76	3.02	2.34	3.68	3.19
		Std. Dev.	1.343	1.239	1.409	1.502	1.238
	Total	Mean	2.68	2.94	2.48	3.66	3.22
	F	value	0.349	0.254	0.901	0.013	0.054
	Signific	ance Level	0.556	0.615	0.344	0.910	0.817
		N	145	145	145	145	145
	Male	Mean	1.61	3.39	2.08	3.76	4.17
		Std. Dev.	.892	.988	1.007	1.132	1.043
		N	55	55	55	55	55
Rajkot	Female	Mean	1.76	3.58	2.09	3.58	3.98
		Std. Dev.	.942	.896	1.323	1.083	1.225
	Total	Mean	1.65	3.45	2.08	3.71	4.12
	F	Value	1.193	1.528	0.007	0.995	1.207
	Signific	ance Level	0.276	0.218	0.931	0.320	0.273
		N	580	580	580	580	580
	Male	Mean	2.17	3.02	2.48	3.50	3.84
		Std. Dev.	1.259	1.247	1.302	1.265	1.291
TOTAL		N	220	220	220	220	220
(GUJARAT)	Female	Mean	2.25	3.15	2.38	3.37	3.84
(GUJAKAI)		Std. Dev.	1.256	1.196	1.358	1.336	1.252
	Total	Mean	2.19	3.05	2.46	3.46	3.84
	F	value	0.798	1.770	0.937	1.678	0.002
		ance Level	0.372	0.184	0.333	0.196	0.963
	Statistic is sign	gnificant at 0.05 le	evel				

• From table 5.4.136, it could be observed that there was not an association of gender factor with consumers' preference of exterior paint brands. In Vadodara, Ahmedabad, Surat and Rajkot individually as well as collectively from all four cities i.e., from Gujarat, male and female

- respondents had similar preferences among all five exterior decorative paints i.e., Apex/Ultima, Weather Shield, Excel, Weather Coat and Xtra.
- In Gujarat, looking to the mean scores, it could be said that Apex/Ultima (Mean = 1.85), Weather Coat (Mean = 3.47) and Xtra (Mean = 4.38) were more preferred by female consumers but ANOVA results, as explained above, didn't allow to differentiate the male and female consumers' brand preference for exterior paints. (Ref. Table 5.4.136)

Table 5.4.137: Table showing mean comparison of average preference rank assign to effecting exterior paint brand regarding intention of purchasing environment friendly paints across educational qualifications of respondents

	Educational		BRAND	OF DECORA	TIVE EX	TERIOR PAIN	ΓS
City	Qualifications	Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra
		N	14	14	14	14	14
	Under Graduate	Mean	2.00	3.07	2.43	3.14	4.36
		Std. Dev.	1.177	1.385	1.342	1.231	0.842
		N	79	79	79	79	79
	Graduate	Mean	1.92	2.82	2.67	3.28	4.30
Vadodara		Std. Dev.	1.217	1.227	1.195	1.219	1.054
v auduara		N	107	107	107	107	107
	Post Graduate	Mean	2.45	2.93	2.52	3.04	4.05
		Std. Dev.	1.354	1.341	1.246	1.273	1.269
	Total	Mean	2.21	2.90	2.58	3.14	4.17
	F valu		3.954	0.299	0.431	0.846	1.304
	Significance		0.021	0.742	0.650	0.431	0.274
		N	35	35	35	35	35
	Under Graduate	Mean	2.11	3.11	2.43	3.69	3.66
		Std. Dev.	1.255	1.323	1.399	1.157	1.259
		N	109	109	109	109	109
	Graduate	Mean	2.10	2.89	2.83	3.33	3.84
Ahmedabad		Std. Dev.	1.262	1.257	1.450	1.202	1.299
	D (C I (N	56	56	56	56	56 2.05
	Post Graduate	Mean	2.52	2.84	2.54	3.16	3.95
	T	Std. Dev.	1.321	1.247	1.414	1.276	1.354
	Total F valu	Mean	2.22	2.92	2.68	3.34	3.84
	Significance		2.116 0.123	0.555 0.575	1.463 0.234	2.026 0.135	0.528 0.591
	Significanc	N N	38	38	38	38	38
	Under Graduate	Mean	2.66	2.87	2.53	3.87	3.05
	Onder Graduate	Std. Dev.	1.146	1.436	1.466	1.339	1.314
		N	1116	116	116	116	116
	Graduate	Mean	2.66	2.91	2.47	3.70	3.24
	Graduate	Std. Dev.	1.278	1.305	1.441	1.446	1.262
Surat		N N	46	46	46	46	46
	Post Graduate	Mean	2.74	3.11	2.48	3.39	3.30
	1 05t Graduate	Std. Dev.	1.405	1.197	1.295	1.556	1.474
	Total	Mean	2.68	2.94	2.48	3.66	3.22
	F valu		0.064	0.480	0.020	1,218	0.413
	Significance		0.938	0.620	0.980	0.298	0.662
		N	35	35	35	35	35
	Under Graduate	Mean	1.66	3.14	2.03	3.74	4.46
		Std. Dev.	1.027	.974	.857	1.172	.817
		N	118	118	118	118	118
	Graduate	Mean	1.63	3.53	2.03	3.67	4.14
D-H-4		Std. Dev.	.913	.949	1.029	1.117	1.077
Rajkot		N	47	47	47	47	47
	Post Graduate	Mean	1.70	3.45	2.23	3.79	3.83
		Std. Dev.	.805	.974	1.402	1.102	1.257
	Total	Mean	1.65	3.45	2.08	3.71	4.12
	F Valu	ie	0.115	2.243	0.600	0.203	3.394
	Significance	e Level	0.891	0.109	0.550	0.817	0.036

Table 5.4.137 Cont...

Table 5.4.137 Cont ...

	Educational		BRAND	OF DECORA	TIVE EX	TERIOR PAIN	ΓS
City	Qualifications	Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra
		N	122	122	122	122	122
	Under Graduate	Mean	2.14	3.04	2.34	3.70	3.78
		Std. Dev.	1.201	1.269	1.284	1.232	1.256
	Graduate	N	422	422	422	422	422
		Mean	2.09	3.06	2.48	3.52	3.85
TOTAL		Std. Dev.	1.232	1.220	1.327	1.265	1.249
(GUJARAT)		N	256	256	256	256	256
	Post Graduate	Mean	2.38	3.04	2.46	3.27	3.85
		Std. Dev.	1.311	1.246	1.319	1.322	1.344
	Total	Mean	2.19	3.05	2.46	3.46	3.84
	F value	4.351	0.032	0.520	5.458	0.153	
	Significance	Level	0.013	0.969	0.595	0.004	0.858
	Statistic is significant at	0.05 level					

- From table 5.4.137, it was observed that there was a significant association of consumers' educational qualifications with the exterior paint brand preference among consumers from Gujarat. In Gujarat, Apex/Ultima (F Value = 4.351; p value = 0.013) was the brand most preferred among postgraduate (Mean = 1.73) consumers while Weather Coat (F Value = 5.458; p value = 0.004) was the brand mostly preferred among undergraduate consumers (Mean = 3.38). Moreover, respondents with different educational qualification had similar likings for other three exterior paint brands i.e., Weather Shield (F Value = 0.032; p value = 0.969), Excel (F Value = 0.520; p value = 0.595) and Xtra (F Value = 0.153; p value = 0.858). From post-hoc analysis (Annexure A17), it was observed that for Apex/Ultima most prominent difference (Significance = 0.004) was observed between post graduate and graduate respondents. Moreover, it was also observed that for Weather Coat, most prominent difference (Significance = 0.002) was observed between postgraduate and undergraduate respondents while difference between postgraduate respondents and graduate respondents was also significant (Significance = 0.013).
- Moreover, in Ahmedabad and Surat both cities, educational qualification of consumers had no
 association with their exterior paint brand preferences. Hence, it could be said that
 undergraduate, graduate and postgraduate respondents had similar level of preference for each
 exterior paint brand i.e., Apex/Ultima, Weather Shield, Excel, Weather Coat and Xtra.
- However, in Vadodara, for Apex/Ultima brand, there was a significant difference (F Value = 3.954; p value = 0.021) between respondents with different educational qualifications. While,

- in Rajkot, for Xtra brand, there was a significant difference (F Value = 3.394; p value = 0.036) between respondents with different educational qualifications.
- Moreover, from post-hoc analysis (Annexure A18), clear difference (significance = 0.025) was observed between graduate and postgraduate respondents of Vadodara, regarding their preference for Apex/Ultima brand as exterior paint brand. It was also observed from mean score that, in Vadodara, Apex/Ultima brand was most preferred brand among respondents with graduation (Mean = 1.92).
- Further, from post-hoc analysis (Annexure A19), clear difference (significance = 0.037) was observed between undergraduate and postgraduate respondents of Rajkot, regarding their preference for Xtra brand as exterior paint brand. It was also observed from mean score that in Rajkot, Xtra brand was the most preferred by respondents with post-graduation (Mean = 3.83). (Ref. Table 5.4.137)

Table 5.4.138: Table showing mean comparison of average preference rank assign to effecting exterior paint brand regarding intention of purchasing environment friendly paints across occupation of respondents

City			DIVA	AD OF DECO	KAIIVE EA.	TERIOR PAINTS	
	Occupation	Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra
		N	80	80	80	80	80
	Service	Mean	1.79	2.79	2.59	3.26	4.58
		Std. Dev.	.910	1.299	1.122	1.220	.759
		N	60	60	60	60	60
	Business	Mean	2.27	2.92	2.75	3.03	4.03
V- d- d		Std. Dev.	1.388	1.253	1.297	1.235	1.327
Vadodara		N	60	60	60	60	60
	Profession	Mean	2.72	3.03	2.38	3.08	3.77
		Std. Dev.	1.497	1.340	1.290	1.306	1.280
	Total	Mean	2.21	2.90	2.58	3.14	4.17
•	F va	lue	9.453	0.622	1.345	0.664	9.603
•	Significan	ce Level	0.000	0.538	0.263	0.510	0.000
		N	80	80	80	80	80
	Service	Mean	2.15	2.99	2.08	3.76	4.02
	~	Std. Dev.	1.233	1.153	1.111	1.172	1.190
ļ		N	60	60	60	60	60
	Business	Mean	2.05	2.78	3.48	3.18	3.50
		Std. Dev.	1.111	1.367	1.535	1.186	1.347
Ahmedabad		N	60	60	60	60	60
	Profession	Mean	2.48	2.95	2.68	2.95	3.93
	11010351011	Std. Dev.	1.479	1.307	1.334	1.171	1.364
=	Total	Mean	2.22	2.92	2.68	3.34	3.84
-	F va		1.923	0.478	19.613	8.997	3.056
-	Significan		0.149	0.621	0.000	0.000	0.049
	Significan	N	80	80	80	80	80
	Service	Mean	2.94	3.00	2.36	3.80	2.89
	Service	Std. Dev.	1.306	1.350	1.295	1.470	1.293
-		N N	60	60	60	60	60
	Business	Mean	2.60	3.02	2.48	3.83	3.05
	Dusiness	Std. Dev.	1.251	1.269	1.610	1.251	1.281
Surat		N N	60	60	60	60	60
	Profession	Mean	2.42	2.80	2.65	3.30	3.83
	Trotession	Std. Dev.	1.225	1.286	1.338	1.576	1.196
F	Total	Mean	2.68	2.94	2.48	3.66	3.22
-	F va		3.073	0.530	0.714	2.680	10.426
-	Significan		0.048	0.589	0.491	0.071	0.000
	Significan	N	80	80	80	80	80
	Service	Mean	1.46	3.29	2.28	3.76	4.21
	2011100	Std. Dev.	.841	.860	1.125	1.128	1.027
-		N	60	60	60	60	60
	Business	Mean	1.60	3.37	2.00	3.92	4.13
	2 43111033	Std. Dev.	.887	.956	.883	1.124	1.081
Rajkot		N N	60	60	60	60	60
	Profession	Mean	1.95	3.73	1.90	3.43	3.98
		Std. Dev.	.946	1.056	1.231	1.064	1.200
ļ	Total	Mean	1.65	3.45	2.08	3.71	4.12
-	F Va		5.310	4.061	2.247	3.005	0.754
-	Significan		0.006	0.019	0.108	0.052	0.734

Table 5.4.138 Cont...

Table 5.4.138 Cont. ...

			BRAN	ND OF DECOR	ATIVE EX	TERIOR PAINTS	
City TOTAL (GUJARAT)	Occupation	Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra
		N	320	320	320	320	320
	Service	Mean	2.08	3.02	2.33	3.65	3.93
		Std. Dev.	1.217	1.189	1.175	1.268	1.252
	Business	N	240	240	240	240	240
		Mean	2.13	3.02	2.68	3.49	3.68
TOTAL		Std. Dev.	1.222	1.232	1.455	1.254	1.329
(GUJARAT)		N	240	240	240	240	240
	Profession	Mean	2.39	3.13	2.40	3.19	3.88
		Std. Dev.	1.328	1.295	1.328	1.299	1.257
	Total	Mean	2.19	3.05	2.46	3.46	3.84
	F val	lue	4.530	0.684	5.268	8.846	2.723
	Significan	Significance Level		0.505	0.005	0.000	0.066
	Statistic is signifi	cant at 0.05 level					

- In Gujarat, there was a significant difference between respondents with three different occupations i.e., service, business and profession, regarding their preference of decorative exterior paint brands i.e., Apex/Ultima (F Value = 4.530; p Value = 0.011), Excel (F Value = 5.268; p Value = 0.005) and Weather Coat (F Value = 8.846; p Value = 0.000). While, no significant difference was observed between respondents with different occupations regarding their preference of exterior decorative paint brands i.e., Weather Shield (F Value = 0.684; p Value = 0.505) and Xtra (F Value = 2.723; p Value = 0.066).
 - o For Apex/Ultima brand, service class people (mean = 2.08) were more likely to buy Apex/Ultima compared to business class people (mean = 2.13) and professionals (Mean = 2.39). From post hoc analysis (Annexure − A20), it was observed that the most prominent difference was between professionals and service class people (Significance = 0.017) while no other pair had such a noticeable difference in Apex/Ultima brand preference.
 - o For Excel, service class people (Mean = 2.33) were more likely to buy this brand compared to business class (Mean = 2.68) people and professionals (Mean = 2.40). From, post hoc analysis (Annexure A20), it was observed that the most prominent brand choice difference was between business class respondents and service class people (Significance = 0.007) regarding choice difference for Excel brand.
 - o For Weather Coat, professionals (mean = 3.19) were more likely to buy this brand compared to service class people (mean = 3.65) and business class people (Mean = 3.49). From, post hoc analysis (Annexure − A20), it was observed that the most

- prominent choice difference was between professionals and service class people (Significance = 0.000) while little lesser significance was also observed between professionals and business class people (Significance = 0.036).
- Hence, it could be said that, in Gujarat, decorative exterior paint brands preference defers across occupation of the consumers.
- In Vadodara, there was a significant choice difference among respondents with different occupations regarding decorative exterior paint brands i.e., Apex/Ultima (F Value = 9.453; p Value = 0.000) and Xtra (F Value = 9.603; p Value = 0.000). While for brands, Weather Shield (F Value = 0.622; p Value = 0.538), Excel (F Value = 1.345; p Value = 0.263) and Weather Coat (F Value = 0.664; p Value = 0.510), business class respondents, service class people and professionals had similar brand choices.
 - o For Apex/Ultima brand, service class people (mean = 1.79) were more likely to buy Apex/Ultima compared to business class people (mean = 2.27) and professionals (Mean = 2.72). From post hoc analysis (Annexure − A21), it was observed that the most prominent choice difference was between service class respondents and professional people (Significance = 0.000) followed by business class people. While no other pair had such a noticeable difference in Apex/Ultima brand preference.
 - o For Xtra, service class people (Mean = 4.58) were least likely to buy this brand compared to business class (Mean = 4.03) people and professionals (Mean = 3.77). From, post hoc analysis (Annexure − A21), it was observed that the most prominent difference was between professionals and service class people (Significance = 0.000). While no other pair had such a noticeable choice difference for Xtra brand.
- In Ahmedabad, there was a significant difference between respondents with three different occupations i.e., service, business and profession, regarding their preference of decorative exterior paint brands i.e., Excel (F Value = 19.613; p Value = 0.000), Weather Coat (F Value = 8.997; p Value = 0.000) and Xtra (F Value = 3.056; p Value = 0.049). While for Apex/Ultima (F Value = 1.923; p Value = 0.149) and Weather Shield (F Value = 0.478; p Value = 0.621), there was no difference in choice of exterior paint brands among respondents with different occupations.
 - o For Excel, service class people (Mean = 2.08) were the most likely to buy this brand compared to business class (Mean = 3.48) people and professionals (Mean = 2.68).

From, post hoc analysis (Annexure – A22), it was observed that the most prominent brand choice difference was between business class respondents and service class people (Significance = 0.000). While, there was also significant differences between business class respondents and professional (Significance = 0.005) as well as service class respondents and professional (Significance = 0.028).

- o For Weather Coat, service class people (mean = 3.76) were the least likely to buy this brand compared to business class people (mean = 3.18) and professionals (Mean = 2.95). From, post hoc analysis (Annexure − A22), it was observed that the most prominent choice difference was between professionals and service class people (Significance = 0.000).
- o Xtra was the least preferred brand among professionals (Mean = 4.95) compared to service class people (Mean = 4.01) and business class people (Mean = 4.85). Here also, from, post hoc analysis (Annexure − A22), it was observed that the no noticeable choice difference was there between any two respondents group with respect to their occupation. But because of overall significance level (0.049) and mean scores suggested that business class people were more likely to buy Xtra brand compared to professionals and service class people.
- In Surat, there was a significant choice difference among respondents with different occupations regarding decorative exterior paint brands i.e., Apex/Ultima (F Value = 3.073; p Value = 0.048) and Xtra (F Value = 10.426; p Value = 0.000). While for brands, Weather Shield (F Value = 0.530; p Value = 0.589), Excel (F Value = 0.714; p Value = 0.491) and Weather Coat (F Value = 2.680; p Value = 0.071), business class respondents, service class people and professionals had similar brand choices.
 - o For Apex/Ultima brand, service class people (mean = 2.94) were least likely to buy Apex/Ultima compared to business class people (mean = 2.60) and professionals (Mean = 2.42). From post hoc analysis (Annexure − A23), it was observed that the no noticeable choice difference was there between any two respondents group with respect to their occupation. But because of overall significance level (0.048) and mean scores suggested that professionals were more likely to buy Apex/Ultima brand compared to business and service class people.

- o For Xtra, service class people (Mean = 2.89) were most likely to buy this brand compared to business class (Mean = 3.05) people and professionals (Mean = 3.83). From, post hoc analysis (Annexure − A23), it was observed that the most prominent difference was between professionals and service class people (Significance = 0.000). While there was also a significant difference between choice preference of business class people and professionals (Significance = 0.004).
- In Rajkot, there was a significant difference between respondents with three different occupations i.e., service, business and profession, regarding their preference of decorative exterior paint brands i.e., Apex/Ultima (F Value = 5.310; p Value = 0.006), Weather Shield (F Value = 4.061; p Value = 0.019). While, for Excel (F Value = 2.247; p Value = 0.108) and Weather Coat (F Value = 3.005; p Value = 0.052) and Xtra (F Value = 0.754; p Value = 0.472), there wasn't a significant difference between business class people, service class people and professionals.
 - o For Apex/Ultima, service class people (Mean = 1.46) were the most likely to buy this brand compared to business class (Mean = 1.60) people and professionals (Mean = 1.95). From, post hoc analysis (Annexure − A24), it was observed that the most prominent brand choice difference was between professionals and service class people (Significance = 0.006). While no other pair had such a noticeable choice difference for Apex/Ultima brand.
 - o For Weather Shield also, service class people (mean = 3.29) were more likely to buy this brand compared to business class people (mean = 3.37) and professionals (Mean = 3.73). From, post hoc analysis (Annexure − A24), it was observed that the most prominent choice difference was between professionals and service class people (Significance = 0.025). While no other pair had such a noticeable choice difference for Xtra brand. (Ref. Table 5.4.138)

Table 5.4.139: Table showing mean comparison of average preference rank assign to effecting exterior paint brand regarding intention of purchasing environment friendly paints across marital status of respondents

			BRAND OF DECORATIVE EXTERIOR PAINTS		PAINTS		
City	Marital Status	Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra
		N	171	171	171	171	171
	Married	Mean	2.15	2.89	2.65	3.14	4.16
		Std. Dev.	1.293	1.239	1.258	1.262	1.192
		N	29	29	29	29	29
Vadodara	Unmarried	Mean	2.55	2.97	2.14	3.14	4.21
		Std. Dev.	1.378	1.614	.953	1.187	1.013
	Total	Mean	2.21	2.90	2.58	3.14	4.17
	t valu		2.326	0.086	4.358	0.000	0.034
	Significance		0.129	0.769	0.038	0.992	0.854
		N	172	172	172	172	172
	Married	Mean	2.16	2.88	2.75	3.35	3.85
		Std. Dev.	1.251	1.260	1.447	1.203	1.316
		N	28	28	28	28	28
Ahmedabad	Unmarried	Mean	2.57	3.11	2.25	3.29	3.79
		Std. Dev.	1.451	1.286	1.295	1.357	1.258
	Total	Mean	2.22	2.92	2.68	3.34	3.84
	t value		2.455	0.752	2.954	0.076	0.056
	Significance Level		0.119	0.387	0.087	0.783	0.813
	Married	N	182	182	182	182	182
		Mean	2.65	2.98	2.49	3.64	3.23
		Std. Dev.	1.282	1.304	1.405	1.453	1.326
	Unmarried	N	18	18	18	18	18
Surat		Mean	3.00	2.61	2.39	3.89	3.11
		Std. Dev.	1.237	1.290	1.461	1.491	1.278
	Total Mean		2.68	2.94	2.48	3.66	3.22
	t value		1.240	1.299	0.092	0.489	0.134
	Significance		0.267	0.256	0.762	0.485	0.715
	Married	N	157	157	157	157	157
		Mean	1.69	3.49	2.01	3.72	4.09
		Std. Dev.	.959	1.004	1.013	1.091	1.134
n "		N	43	43	43	43	43
Rajkot	Unmarried	Mean	1.49	3.28	2.33	3.67	4.23
	T I	Std. Dev.	.668	.797	1.358	1.229	.947
	Total	Mean	1.65	3.45	2.08	3.71	4.12
	t Valu		1.748	1.624	2.755	0.055	0.576
	Significance		0.188	0.204	0.099	0.815	0.449
TOTAL (FROM GUJARAT)	Ma	N Maan	682	682	682	682	682
	Married	Mean	2.18	3.05	2.49	3.46	3.82
		Std. Dev.	1.253	1.235	1.325	1.283	1.300
	II	N	118	118	118	118	118
	Unmarried	Mean	2.24	3.06	2.27	3.48	3.95
,	T-4-1	Std. Dev.	1.292	1.235	1.259	1.306	1.154
	Total	Mean	2.19	3.05	2.46	3.46	3.84
	t valu		0.195	0.006	2.701	0.031	1.053
	Significance		0.659	0.939	0.101	0.860	0.305
	Statistic is significa	int at 0.05 leve	l				

• As per table 5.4.139, in Gujarat, it was observed that there wasn't a significant difference in decorative exterior paints brand preferences of married and unmarried consumers. There wasn't a significant difference (t Value = 0.195; p value = 0.659) between respondents with

different marital status regarding their preference for Apex/Ultima. Similarly, there wasn't a significant difference between respondents from different marital status regarding their choice for Weather Shield (t Value = 0.006; p value = 0.939), Excel (t Value = 2.701; p value = 0.101), Weather Coat (t Value = 0.031; p value = 0.860) and Xtra (t Value = 1.053; p value = 0.305).

- Hence, it could be said that married and unmarried respondents had similar choice of decorative exterior paint brands. In Vadodara, Ahmedabad, Surat and Rajkot individually also, there was almost similar brand preferences among married and unmarried respondents.
- In Vadodara, there wasn't a significant difference between married and unmarried respondents regarding their choice for Apex/Ultima (t Value = 2.326; p value = 0.129), Weather Shield (t Value = 0.086; p value = 0.769), Weather Coat (t Value = 0.000; p value = 0.992) and Xtra (t Value = 0.034; p value = 0.854). While, for Excel (t Value = 4.358; p value = 0.038), there was a significant choice difference between married and unmarried respondents from Vadodara. Excel brand was more preferred by unmarried (Mean = 2.14) respondents of Vadodara compared to married (Mean = 2.65) respondents.
- In Ahmedabad, there wasn't a significant difference between married and unmarried respondents regarding their choice for Apex/Ultima (t Value = 2.455; p value = 0.119), Weather Shield (t Value = 0.752; p value = 0.387), Excel (t Value = 2.954; p value = 0.087), Weather Coat (t Value = 0.076; p value = 0.837) and Xtra (t Value = 0.056; p value = 0.813).
- In Surat, there wasn't a significant difference between married and unmarried respondents regarding their choice for Apex/Ultima (t Value = 1.240; p value = 0.267), Weather Shield (t Value = 1.299; p value = 0.256), Excel (t Value = 0.092; p value = 0.762), Weather Coat (t Value = 0.489; p value = 0.485) and Xtra (t Value = 0.134; p value = 0.715).
- In Rajkot, there wasn't a significant difference between married and unmarried respondents regarding their choice for Apex/Ultima (t Value = 1.748; p value = 0.188), Weather Shield (t Value = 1.624; p value = 0.204), Excel (t Value = 2.755; p value = 0.099), Weather Coat (t Value = 0.055; p value = 0.815) and Xtra (Chi-Square = 0.576; p value = 0.449).
- It was found that there was almost similar pattern of brand preference, for all five exterior paint brands i.e., Apex/Ultima, Weather Shield, Excel, Weather Coat and Xtra, among

married and unmarried respondents of Gujarat as well as Vadodara, Ahmedabad, Surat and Rajkot individually. (Ref. Table 5.4.139)

Table 5.4.140: Table showing mean comparison of average preference rank assign to effecting exterior paint brand regarding intention of purchasing environment friendly paints across monthly income groups of respondents

Vadodara		Monthly Income		BRAND OF DECORATIVE PAINTS						
Vadodara	City		Statistics	Apex/Ultima		Excel	Weather Coat	Xtra		
Vadodara			N	79	79	79	79	79		
Vadodara		<=29166.67	Mean	1.96	2.86	2.58	3.16	4.43		
Vadodara			Std. Dev.	1.149	1.288	1.183	1.265	0.872		
N 57 57 57 57 57 57 57			N	64	64	64	64	64		
N 57 57 57 57 Mean 2.39 3.11 2.53 2.88 Std. Dev. 1.449 1.345 1.151 1.283 1 F value 0.304 0.303 0.049 0.767 1 Significance Level 0.739 0.739 0.952 0.466 0 Sid. Dev. 1.224 1.203 1.408 1.330 1 Std. Dev. 1.224 1.203 1.408 1.330 1 Std. Dev. 1.393 1.379 1.303 1.056 1 Std. Dev. 1.393 1.379 1.303 1.056 1 Std. Dev. 1.393 1.379 1.303 1.056 1 Std. Dev. 1.315 1.272 1.449 1.140 1 Total Mean 2.08 2.77 3.15 3.17 Std. Dev. 1.315 1.272 1.449 1.140 1 F value 0.595 1.490 5.889 0.997 0 Significance Level 0.553 0.225 0.004 0.371 0 Significance Level 0.553 0.225 0.004 0.371 0 Std. Dev. 1.419 1.278 1.410 1.523 1 Std. Dev. 1.419 1.278 1.410 1.523 1 Std. Dev. 1.1419 1.278 1.410 1.523 1 Std. Dev. 1.1419 1.278 1.420 1.430 1 Std. Dev. 1.1419 1.278 1.420 1.430 1 Std. Dev. 1.1419 1.278 1.420 1.430 1 Std. Dev. 1.1419 1.278 1.410 1.523 1 Std. Dev. 1.141 1.274 1.408 1.413 1 Std. Dev. 1.141 1.274 1.408 1.413 1 Std. Dev. 1.141 1.41 1.41 1.41 1.41 1 Std. Dev. 1.141 1.41 1.41 1.41 1.41 1.41 1 Std. Dev. 701 7.43 1.184 1.029 1 Std. Dev. 701 7.43 1.184 1.029 1 Std. Dev. 701 7.43 1.184 1.029 1 N 68 68 68 68 68 68 68 6		29166.68-46250.00	Mean	2.36	2.77	2.61		3.92		
N	Vadodara		Std. Dev.					1.395		
Std. Dev. 1.449	v auduai a		N					57		
Total Mean 2.21 2.90 2.58 3.14		>46250.00						4.09		
F value								1.184		
Significance Level			Mean					4.17		
N 97 97 97 97 97 97 97								1.658		
Ahmedabad Ahmedabadadabadabadabadabadabadabadabadabad		Significance L						0.159		
Std. Dev. 1.224 1.203 1.408 1.330 1.30					, ,			97		
Ahmedabad Ahmedabad		<=29166.67						3.90		
Ahmedabad Ahmedabad								1.271		
Std. Dev. 1.393 1.379 1.303 1.056 1								38		
N 65 65 65 65 65 65 65		29166.68-46250.00						3.71		
N	Ahmedabad							1.393		
Std. Dev. 1.315 1.272 1.449 1.140 1.140 1.141		>46250.00						65		
Total Mean 2.22 2.92 2.68 3.34 F value								3.83		
Significance Level 0.595 1.490 5.589 0.997 0.955 0.553 0.225 0.004 0.371 0.004			1					1.318		
Significance Level			Mean					3.84		
Surat N								0.279		
Surat C=29166.67 Mean		Significance L						0.757		
Std. Dev. 1.419 1.278 1.410 1.523 1		<=29166.67						62		
Surat N 62 62 62 62 62 62 Mean 2.79 3.00 2.47 3.73 Std. Dev. 1.243 1.343 1.423 1.439 1.449								3.08		
Surat 29166.68-46250.00 Mean 2.79 3.00 2.47 3.73 Std. Dev. 1.243 1.343 1.423 1.439 1 N		29166.68-46250.00						1.245		
Std. Dev. 1,243 1,343 1,423 1,439 1								3.03		
N 76 76 76 76 76 76 76								1.379		
N 34 34 34 34 34 34 34	Surat							76		
Std. Dev. 1.193 1.279 1.408 1.413 1		>46250.00						3.49		
Total Mean 2.68 2.94 2.48 3.66 F value								1.301		
F value		Total						3.22		
Significance Level 0.579 0.173 0.910 0.453			Mean					2.568		
N 34 34 34 34 34 34 34			evel					0.079		
Rajkot Capable Cap		Significance L						34		
Std. Dev. .701 .743 1.184 1.029 1 N 98 98 98 98 Std. Dev. .932 1.018 1.094 1.187 1 N 68 68 68 68 Std. Dev. .948 .996 1.071 1.055 1 Total Mean 1.65 3.45 2.08 3.71		<=29166.67					_	4.06		
Rajkot N 98 98 98 98 Mean 1.65 3.48 2.14 3.63 Std. Dev. .932 1.018 1.094 1.187 1 N 68 68 68 68 Mean 1.76 3.41 1.96 3.69 Std. Dev. .948 .996 1.071 1.055 1 Total Mean 1.65 3.45 2.08 3.71		~_2/100.07						1.071		
Rajkot 29166.68-46250.00 Mean 1.65 3.48 2.14 3.63 Std. Dev. .932 1.018 1.094 1.187 1 N 68 68 68 68 Std. Dev. .948 .996 1.071 1.055 1 Total Mean 1.65 3.45 2.08 3.71								98		
N 68 68 68 68 >46250.00 Mean 1.76 3.41 1.96 3.69 Std. Dev. .948 .996 1.071 1.055 1 Total Mean 1.65 3.45 2.08 3.71		29166 68-46250 00						4.10		
N 68 68 68 68	Rajkot -	27100.00-T0230.00						1.089		
Mean 1.76 3.41 1.96 3.69 Std. Dev. .948 .996 1.071 1.055 1 Total Mean 1.65 3.45 2.08 3.71			1					68		
Std. Dev. .948 .996 1.071 1.055 1 Total Mean 1.65 3.45 2.08 3.71		>46250 00						4.18		
Total Mean 1.65 3.45 2.08 3.71		- 10230.00						1.132		
		Total						4.12		
F Value 1.732 0.122 0.654 1.168 0		F Value	Mican					0.155		
			evel					0.133		

Table 5.4.140 Cont...

Table 5.4.140 Cont ...

	Monthly Income		BRAND OF DECORATIVE PAINTS						
City	Monthly Income (Indian Rupee)	Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra		
		N	272	272	272	272	272		
	<=29166.67	Mean	2.18	3.01	2.49	3.43	3.89		
		Std. Dev.	1.257	1.209	1.320	1.340	1.232		
	29166.68-46250.00	N	262	262	262	262	262		
		Mean	2.19	3.15	2.37	3.55	3.75		
TOTAL		Std. Dev.	1.262	1.241	1.282	1.233	1.344		
(GUJARAT)	>46250.00	N	266	266	266	266	266		
		Mean	2.20	3.00	2.51	3.41	3.88		
		Std. Dev.	1.260	1.251	1.349	1.280	1.263		
	Total	Mean	2.19	3.05	2.46	3.46	3.84		
	F value		0.023	1.322	0.907	0.965	0.955		
	Significance Level		0.977	0.267	0.404	0.382	0.385		
	Statistic is significant at 0.05 level								

- In Gujarat, there wasn't a significant difference between respondents, with different monthly income level, regarding their choice for Apex/Ultima (F value = 0.023; p value = 0.977), Weather Shield (F value = 1.322; p value = 0.267), Excel (F value = 0.907; p value = 0.404), Weather Coat (F value = 0.965; p value = 0.382) and Xtra (F value = 0.955; p value = 0.385).
- In Vadodara, there wasn't a significant difference between respondents, with different monthly income level, regarding their choice for Apex/Ultima (F value = 0.304; p value = 0.739), Weather Shield (F value = 0.303; p value = 0.739), Excel (F value = 0.049; p value = 0.952), Weather Coat (F value = 0.767; p value = 0.466) and Xtra (F value = 1.658; p value = 0.159).
- In Ahmedabad, there wasn't a significant difference between respondents, with different monthly income level, regarding their choice for Apex/Ultima (F value = 0.595; p value = 0.553), Weather Shield (F value = 1.490; p value = 0.225), Weather Coat (F value = 0.997; p value = 0.371) and Xtra (F value = 0.279; p value = 0.757). While, for Excel (F value = 5.589; p value = 0.004), there was a significant difference between respondents with different level of monthly income. From, post-hoc analysis (Annexure A25), it was observed that most noticeable difference (Significance = 0.013) in choice of Excel brand was between respondents with monthly income above Rs.46250 and respondents with monthly income less or equal to Rs.29166.67. While, noticeable difference (Significance = 0.025) in choice of Excel brand was observed between respondents with monthly income above Rs.46250 and respondents with monthly income from to Rs.29166.68 to Rs.46250.

Further, it was observed that Excel was the least preferred brand for people with monthly income above Rs.46250 (Mean = 3.15) compared to respondents with monthly income less or equal to Rs.29166.67 (Mean = 2.48) and respondents with monthly income from Rs.29166.68 to Rs.46250 (Mean = 2.37).

- In Surat, there wasn't a significant difference between respondents, with different monthly income level, regarding their choice for Apex/Ultima (F value = 0.548; p value = 0.579), Weather Shield (F value = 1.767; p value = 0.173), Excel (F value = 0.094; p value = 0.910), Weather Coat (F value = 0.795; p value = 0.453) and Xtra (F value = 2.568; p value = 0.079).
- In Rajkot, there wasn't a significant difference between respondents, with different monthly income level, regarding their choice for Apex/Ultima (F value = 1.732; p value = 0.180), Weather Shield (F value = 0.122; p value = 0.885), Excel (F value = 0.654; p value = 0.521), Weather Coat (F value = 1.168; p value = 0.313) and Xtra (F value = 0.155; p value = 0.857).
- It was found that there was almost similar pattern of brand preference, for all five exterior paint brands i.e., Apex/Ultima, Weather Shield, Weather Coat and Xtra, among respondents, with different monthly income, of Gujarat as well as Vadodara, Ahmedabad, Surat and Rajkot individually. Only in Ahmedabad, respondents with different monthly income level had difference in likelihood towards Excel brand of exterior decorative paints. (Ref. Table 5.4.140)

Table 5.4.141: Table showing mean comparison of average preference rank assign to effecting exterior paint brand regarding intention of purchasing environment friendly paints across per capita income of respondents

			BRAND	OF DECOR	ATIVE EX	TERIOR PAINTS	PAINTS	
City	PER CAPITA INCOME	Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra	
		N	69	69	69	69	69	
	LOW	Mean	2.12	2.75	2.70	3.19	4.25	
		Std. Dev.	1.266	1.193	1.252	1.298	1.143	
		N	61	61	61	61	61	
	MODERATE	Mean	2.21	3.00	2.41	3.25	4.11	
Vadodara		Std. Dev.	1.318	1.238	1.321	1.090	1.266	
v auduai a		N	70	70	70	70	70	
	HIGH	Mean	2.30	2.96	2.60	3.00	4.14	
		Std. Dev.	1.355	1.439	1.122	1.330	1.107	
	Total	Mean	2.21	2.90	2.58	3.14	4.17	
	F value		0.341	0.688	0.896	0.710	0.234	
	Significance Leve	1	0.711	0.504	0.410	0.493	0.792	
		N	94	94	94	94	94	
	LOW	Mean	2.24	3.01	2.45	3.46	3.84	
		Std. Dev.	1.233	1.266	1.388	1.292	1.256	
	MODERATE	N	45	45	45	45	45	
		Mean	2.31	2.96	2.78	3.33	3.62	
Ahmedabad		Std. Dev.	1.411	1.224	1.491	1.187	1.435	
	HIGH	N	61	61	61	61	61	
		Mean	2.11	2.74	2.97	3.18	4.00	
		Std. Dev.	1.279 2.22	1.290	1.426	1.133	1.278	
	Total			2.92	2.68	3.34	3.84	
	F value	0.333 0.717	0.892 0.411	2.611	0.953	1.086		
	Significance Leve	Significance Level			0.076 65	0.387 65	0.340 65	
	LOW	N Mean	2.65	65 3.08	2.51	3.51	3.22	
	LOW	Std. Dev.	1.441	1.241	1.416	1.480	1.244	
		N	61	61	61	61	61	
	MODERATE	Mean	2.85	3.11	2.33	3.69	3.03	
		Std. Dev.	1.181	1.343	1.399	1.455	1.402	
Surat		N	74	74	74	74	74	
	HIGH	Mean	2.57	2.69	2.59	3.77	3.38	
	mon	Std. Dev.	1.206	1.303	1.413	1.439	1.311	
}	Total	Mean	2.68	2.94	2.48	3.66	3.22	
	F value	Mean	0.862	2.303	0.611	0.578	1.150	
	Significance Leve	ı	0.424	0.103	0.544	0.562	0.319	
	Significante Deve	N	49	49	49	49	49	
	LOW	Mean	1.43	3.43	2.29	3.82	4.04	
		Std. Dev.	.791	.842	1.190	1.131	1.079	
		N	95	95	95	95	95	
	MODERATE	Mean	1.68	3.45	2.13	3.74	4.01	
D 11 4		Std. Dev.	.992	.998	1.054	1.150	1.189	
Rajkot		N	56	56	56	56	56	
	HIGH	Mean	1.79	3.45	1.82	3.57	4.38	
		Std. Dev.	.825	1.025	1.064	1.059	.906	
	Total	Mean	1.65	3.45	2.08	3.71	4.12	
	F Value		2.183	0.010	2.527	0.676	2.141	
	Significance Leve	l	0.115	0.990	0.082	0.510	0.120	

Table 5.4.141 Cont...

Table 5.4.141 Cont ...

	PER CAPITA INCOME		BRAND OF DECORATIVE EXTERIOR PAINTS						
City		Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra		
		N	277	277	277	277	277		
	LOW	Mean	2.16	3.04	2.49	3.47	3.83		
		Std. Dev.	1.285	1.191	1.329	1.323	1.247		
	MODERATE	N	262	262	262	262	262		
		Mean	2.19	3.18	2.35	3.54	3.74		
TOTAL		Std. Dev.	1.268	1.193	1.295	1.233	1.362		
(GUJARAT)	HIGH	N	261	261	261	261	261		
		Mean	2.22	2.93	2.52	3.38	3.94		
		Std. Dev.	1.223	1.310	1.326	1.297	1.225		
	Total Mean		2.19	3.05	2.46	3.46	3.84		
	F value		0.152	2.691	1.231	0.998	1.639		
	Significance Leve	l	0.859	0.068	0.292	0.369	0.195		
	Statistic is significant at 0.05 level								

- Gujarat, there wasn't a significant difference between respondents, with different per capita income level, regarding their choice for Apex/Ultima (F value = 0.152; p value = 0.859), Weather Shield (F value = 2.691; p value = 0.068), Excel (F value = 1.231; p value = 0.292), Weather Coat (F value = 0.998; p value = 0.369) and Xtra (F value = 1.639; p value = 0.195).
- In Vadodara, there wasn't a significant difference between respondents, with different per capita income level, regarding their choice for Apex/Ultima (F value = 0.341; p value = 0.711), Weather Shield (F value = 0.688; p value = 0.504), Excel (F value = 0.896; p value = 0.410), Weather Coat (F value = 0.710; p value = 0.493) and Xtra (F value = 0.234; p value = 0.792).
- In Ahmedabad, there wasn't a significant difference between respondents, with different per capita income level, regarding their choice for Apex/Ultima (F value = 0.333; p value = 0.717), Weather Shield (F value = 0.892; p value = 0.411), Excel (F value = 2.611; p value = 0.076), Weather Coat (F value = 0.953; p value = 0.387) and Xtra (F value = 1.086; p value = 0.340).
- In Surat, there wasn't a significant difference between respondents, with different per capita income level, regarding their choice for Apex/Ultima (F value = 0.862; p value = 0.424), Weather Shield (F value = 2.303; p value = 0.103), Excel (F value = 0.611; p value = 0.544), Weather Coat (F value = 0.578; p value = 0.562) and Xtra (F value = 1.150; p value = 0.319).
- In Rajkot, there wasn't a significant difference between respondents, with different per capita income level, regarding their choice for Apex/Ultima (F value = 2.183; p value = 0.115), Weather Shield (F value = 0.010; p value = 0.990), Excel (F value = 2.527; p value = 0.082), Weather Coat (F value = 0.676; p value = 0.510) and Xtra (F value = 2.141; p value = 0.120).

• It was found that there was almost similar pattern of brand preference, for all five exterior paint brands i.e., Apex/Ultima, Weather Shield, Weather Coat and Xtra, among respondents, with different per capita income, of Gujarat as well as Vadodara, Ahmedabad, Surat and Rajkot individually. (Ref. Table 5.4.141)

Table 5.4.142: Table showing mean comparison of average preference rank assign to effecting exterior paint brand regarding intention of purchasing environment friendly paints across family size of respondents

City	Family Size	Statistics	BRAN	ND OF DECOR	D OF DECORATIVE EXTERIOR PAINTS			
	(Members)		Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra	
Vadodara	1-4	N	154	154	154	154	154	
		Mean	2.11	2.88	2.55	3.22	4.23	
		Std. Dev.	1.250	1.323	1.199	1.233	1.095	
	5+	N	46	46	46	46	46	
		Mean	2.54	2.96	2.65	2.87	3.96	
		Std. Dev.	1.456	1.210	1.337	1.276	1.366	
	Total	Mean	2.21	2.90	2.58	3.14	4.17	
	t val	ue	3.920	0.113	0.234	2.830	2.015	
	Significan	ce Level	0.051	0.737	0.629	0.094	0.157	
Ahmedabad	1-4	N	147	147	147	147	147	
		Mean	2.28	2.90	2.62	3.33	3.87	
		Std. Dev.	1.302	1.215	1.435	1.246	1.315	
	5+	N	53	53	53	53	53	
		Mean	2.06	2.96	2.85	3.38	3.75	
		Std. Dev.	1.231	1.400	1.433	1.164	1.285	
	Total	Mean	2.22	2.92	2.68	3.34	3.84	
	t val		1.168	0.100	1.001	0.050	0.307	
	Significan	ce Level	0.281	0.752	0.318	0.823	0.580	
Surat	1-4	N	124	124	124	124	124	
		Mean	2.82	2.85	2.44	3.61	3.26	
		Std. Dev.	1.307	1.366	1.381	1.485	1.255	
	5+	N	76	76	76	76	76	
		Mean	2.45	3.09	2.55	3.74	3.16	
		Std. Dev.	1.204	1.191	1.455	1.408	1.424	
	Total	Mean	2.68	2.94	2.48	3.66	3.22	
	t val	ue	4.119	1.564	0.282	0.341	0.271	
	Significan	ce Level	0.044	0.213	0.596	0.560	0.603	
Rajkot	1-4	N	115	115	115	115	115	
v		Mean	1.70	3.39	2.02	3.64	4.25	
		Std. Dev.	.910	.980	1.076	1.133	1.007	
	5+	N	85	85	85	85	85	
		Mean	1.59	3.52	2.16	3.80	3.94	
		Std. Dev.	.904	.946	1.132	1.100	1.189	
	Total	Mean	1.65	3.45	2.08	3.71	4.12	
	t Val		0.685	0.837	0.876	0.956	3.993	
	Significan	ce Level	0.409	0.361	0.350	0.329	0.047	
TOTAL	1-4	N	540	540	540	540	540	
(GUJARAT)		Mean	2.23	2.99	2.43	3.43	3.91	
		Std. Dev.	1.271	1.253	1.303	1.288	1.239	
	5+	N	260	260	260	260	260	
		Mean	2.10	3.18	2.50	3.53	3.68	
		Std. Dev.	1.231	1.186	1.349	1.281	1.348	
	Total	Mean	2.19	3.05	2.46	3.46	3.84	
	t val	ue	1.807	4.260	0.529	1.047	6.102	
	Significan	ce Level	0.179	0.039	0.467	0.307	0.014	
	Statistic is signifi	cant at 0.05 level						

• From table 5.4.142, it could be observed that, in Gujarat, Weather Coat (Mean = 3.46), Weather Shield (Mean = 3.05) and Excel (Mean = 2.46) were brands mostly preferred by respondents with family size more than 4 while Apex/Ultima (Mean = 2.10) and Xtra

(Mean = 3.68) were brands mostly preferred by respondents with family size up to 4. However, there wasn't a significant difference between respondents with different family size regarding their preferences for Apex/Ultima (t value = 1.807; p value = 0.179), Excel (t value = 0.529; p value = 0.467) and Weather Coat (t value = 1.047; p value = 0.307).

- Moreover, there was a significant difference between respondents with different family size regarding their brand preferences for Weather Shield (t value = 4.260; p value = 0.039) and Xtra (t value = 6.102; p value = 0.014).
- In Vadodara, there wasn't a significant difference between respondents, with family size up to 4 and respondents with family size above 4, regarding their choice for Apex/Ultima (t Value = 3.920; p value = 0.051), Weather Shield (t Value = 0.113; p value = 0.737), Excel (t Value = 0.234; p value = 0.629), Weather Coat (t Value = 2.830; p value = 0.094) and Xtra (t Value = 2.015; p value = 0.157).
- In Ahmedabad, there wasn't a significant difference between respondents, with family size up to 4 and respondents with family size above 4, regarding their choice for Apex/Ultima (t Value = 1.168; p value = 0.281), Weather Shield (t Value = 0.100; p value = 0.752), Excel (t Value = 1.001; p value = 0.318), Weather Coat (t Value = 0.050; p value = 0.823) and Xtra (t Value = 0.307; p value = 0.580).
- In Surat, there wasn't a significant difference between respondents, with family size up to 4 and respondents with family size above 4, regarding their choice for Weather Shield (t Value = 1.564; p value = 0.213), Excel (t Value = 0.282; p value = 0.596), Weather Coat (t Value = 0.341; p value = 0.560) and Xtra (t Value = 0.271; p value = 0.603). While, for Apex/Ultima (t Value = 4.119; p value = 0.044), there was a significant difference between respondents with different family size regarding their brand preferences.
- In Rajkot, there wasn't a significant difference between respondents, with family size up to 4 and respondents with family size above 4, for Apex/Ultima (t Value = 0.685; p value = 0.409), Weather Shield (t Value = 0.837; p value = 0.361), Weather Coat (t Value = 0.956; p value = 0.329) and Excel (t Value = 0.876; p value = 0.350). However, Xtra (Chi-Square = 3.993; p value = 0.047) for there was a significant difference between respondents with different family size regarding their brand preferences. (Ref. Table 5.4.142)

Table 5.4.143: Table showing mean comparison of average preference rank assign to effecting exterior paint brand regarding intention of purchasing environment friendly paints across family type of respondents

	Family St. 1: 1:		BRAN	D OF DECOR.	ATIVE EX	TERIOR PAINTS			
City	Туре	Statistics	Apex/Ultima	Weather Shield	Excel	Weather Coat	Xtra		
		N	138	138	138	138	138		
	Nuclear	Mean	2.06	2.85	2.57	3.26	4.26		
		Std. Dev.	1.213	1.339	1.189	1.216	1.069		
		N	62	62	62	62	62		
Vadodara	Joint	Mean	2.55	3.02	2.58	2.87	3.97		
		Std. Dev.	1.456	1.194	1.325	1.287	1.342		
	Total	Mean	2.21	2.90	2.58	3.14	4.17		
		value	6.157	0.721	0.002	4.242	2.731		
	Significa	ance Level	0.014	0.397	0.965	0.041	0.100		
		N	147	147	147	147	147		
	Nuclear	Mean	2.25	2.93	2.67	3.33	3.82		
		Std. Dev.	1.281	1.239	1.458	1.240	1.328		
		N	53	53	53	53	53		
Ahmedabad	Joint	Mean	2.13	2.89	2.70	3.40	3.89		
		Std. Dev.	1.301	1.340	1.381	1.182	1.251		
	Total	Mean	2.22	2.92	2.68	3.34	3.84		
	F value		0.337	0.036	0.011	0.126	0.092		
	Significa	ance Level	0.562	0.850	0.915	0.723	0.762		
	Nuclear	N	129	129	129	129	129		
		Mean	2.84	2.88	2.43	3.60	3.24		
		Std. Dev.	1.304	1.341	1.391	1.481	1.286		
	Joint	N	71	71	71	71	71		
Surat		Mean	2.39	3.07	2.58	3.76	3.18		
		Std. Dev.	1.189	1.234	1.441	1.409	1.387		
	Total Mean		2.68	2.94	2.48	3.66	3.22		
	F value		5.618	1.018	0.474	0.525	0.086		
	Significa	ance Level	0.019	0.314	0.492	0.470	0.770		
		N	121	121	121	121	121		
	Nuclear	Mean	1.68	3.41	2.04	3.69	4.17		
		Std. Dev.	.906	.946	1.106	1.139	1.054		
D 11 4		N	79	79	79	79	79		
Rajkot	Joint	Mean	1.61	3.49	2.14	3.73	4.04		
	Tr. 4.1	Std. Dev.	.912	.998	1.095	1.094	1.160		
	Total	Mean	1.65	3.45	2.08	3.71	4.12		
		Value	0.285	0.331	0.378	0.061	0.730		
	Significa	ance Level	0.594	0.566	0.540	0.806	0.394		
	Nuclear	N Mean	535 2.21	535 3.00	535 2.45	535	535 3.87		
	Nuclear			1.250	1.318	3.46	1.256		
TOTAL (FROM GUJARAT)		Std. Dev.	1.258 265	265	265	1.284 265	265		
	Joint	N							
		Mean Std. Day	2.14 1.259	3.15 1.199	2.47	3.47	3.76		
<u> </u>	Tetal	Std. Dev.			1.317	1.291	1.326		
	Total	Mean value	2.19 0.543	3.05 2.398	2.46 0.064	3.46 0.015	3.84 1.370		
		ance Level	0.461	0.122	0.801	0.902	0.242		
	Statistic is significant at 0.05 level								

• From table 5.4.143, in Gujarat, it was observed that there wasn't a significant difference between respondents with different family types regarding their preferences for Apex/Ultima (t value = 0.543; p value = 0.461), Weather Shield (t value = 2.398; p value

- = 0.122), Excel (t value = 0.064; p value = 0.801), Weather Coat (t value = 0.015; p value = 0.902) and Xtra (t value = 1.370; p value = 0.242). Hence, in Gujarat, it could be said that there was almost similar brand preference, between respondents with nuclear family and respondents with joint family, among Apex/Ultima, Weather Shield, Excel, Weather Coat and Xtra.
- In Vadodara, it was observed that there wasn't a significant difference between respondents with different family types regarding their preferences for Weather Shield (t value = 0.721; p value = 0.397), Excel (t value = 0.002; p value = 0.965) and Xtra (t value = 2.731; p value = 0.100). Hence, in Vadodara, it could be said that there was almost similar brand preference, between respondents with nuclear family and respondents with joint family, among Weather Shield, Excel and Xtra. However, for Apex/Ultima (t value = 6.157; p value = 0.014) and Weather Coat (t value = 4.242; p value = 0.041), there was a significant difference between respondents with nuclear family and respondents with joint family.
- In Ahmedabad, it was observed that there wasn't a significant difference between respondents with different family types regarding their preferences for Apex/Ultima (t value = 0.337; p value = 0.562), Weather Shield (t value = 0.036; p value = 0.850), Excel (t value = 0.011; p value = 0.915), Weather Coat (t value = 0.126; p value = 0.723) and Xtra (t value = 0.092; p value = 0.762). Hence, in Ahmedabad, it could be said that there was almost similar brand preference, between respondents with nuclear family and respondents with joint family, among Apex/Ultima, Weather Shield, Excel, Weather Coat and Xtra.
- In Surat, it was observed that there wasn't a significant difference between respondents with different family types regarding their preferences for Weather Shield (t value = 1.018; p value = 0.314), Excel (t value = 0.474; p value = 0.492), Weather Coat (t value = 0.525; p value = 0.470) and Xtra (t value = 0.086; p value = 0.770). Hence, in Surat, it could be said that there was almost similar brand preference, between respondents with nuclear family and respondents with joint family, among Weather Shield, Excel, Weather Coat and Xtra. While, for Apex/Ultima (t value = 5.618; p value = 0.019), there was a significant difference between respondents with nuclear family and respondents with joint family.
- In Rajkot, it was observed that there wasn't a significant difference between respondents with different family types regarding their preferences for Apex/Ultima (t value = 0.285; p

value = 0.594), Weather Shield (t value = 0.331; p value = 0.566), Excel (t value = 0.378; p value = 0.540), Weather Coat (t value = 0.061; p value = 0.806) and Xtra (t value = 0.730; p value = 0.394). Hence, in Rajkot, it could be said that there was almost similar brand preference, between respondents with nuclear family and respondents with joint family, among Apex/Ultima, Weather Shield, Excel, Weather Coat and Xtra. (Ref. Table 5.4.143)

Table 5.4.144: Mean comparison of average preference rank assigned to effecting factors regarding attitude towards selection of environment friendly paint brand overall

		REASONS FOR BRAND PREFERENCES											
Statistics	VFM	M QLT PRC PERF SFT DNP MTNC ENFR											
N	800	800	800	800	800	800	800	800					
Mean	4.12	3.29	3.05	5.20	5.03	6.35	6.03	2.92					
Std. Dev.	2.157	1.894	1.897	1.752	2.120	1.730	1.895	1.801					

(VFM: Value For Money; QLT: Quality; PRC: Price; PERF: Performance; SFT: Safety; DNP: Design and Pattern; MTNC: Maintenance; ENFR: Environment Friendly)

- Overall, 'Environment Friendliness' of paint was the most important factor (Mean = 2.92) for respondents to prefer the paint brand. Second most preferred factor to select paint brand was 'price' (Mean = 3.05) of the paint. It was followed by 'Quality of Paint' (Mean = 3.29), 'Value for Money' (Mean = 4.12), 'Safety' (Mean = 5.03), 'Performance of the paint' (Mean = 5.20) and 'Maintenance' (Mean = 6.03). The least preferred factor for selection of paint brand was 'Design and Pattern' (Mean = 6.35).
- The mean values for all the factors for paint brand preference were between 2.92 and 6.35.
- Here, it was observed that respondents from four selected cities of Gujarat state were more cautious about environment friendliness, price and quality of the paints. However, they compromise with the design and pattern as well as maintenance for paint during their selection of paint brand. (Ref. Table 5.4.144)

Table 5.4.145: Mean comparison of average preference rank assigned to effecting factors regarding attitude towards selection of environment friendly paint brand across four selected cities of Gujarat

			Reasons for brand preference VFM OLT PRC PERF SFT DNP MTNC ENFR											
City	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR					
	N	200	200	200	200	200	200	200	200					
Vadodara	Mean	3.76	3.05	3.08	5.08	5.23	6.54	6.42	2.86					
	Std. Dev.	1.858	1.861	1.879	1.679	2.046	1.629	1.627	1.818					
	N	200	200	200	200	200	200	200	200					
Ahmedabad	Mean	4.42	3.17	3.13	5.02	4.92	6.38	6.02	2.90					
	Std. Dev.	2.238	1.878	1.879	1.739	2.138	1.798	1.985	1.667					
	N	200	200	200	200	200	200	200	200					
Surat	Mean	4.55	3.78	2.71	5.23	5.00	6.46	5.28	3.00					
	Std. Dev.	2.492	1.873	1.784	1.643	2.181	1.686	2.077	1.839					
	N	200	200	200	200	200	200	200	200					
Rajkot	Mean	3.74	3.16	3.27	5.48	4.99	6.02	6.42	2.92					
-	Std. Dev.	1.862	1.890	2.007	1.913	2.117	1.771	1.630	1.882					
Total	Mean	4.12	3.29	3.05	5.20	5.03	6.35	6.03	2.92					
F Va	lue	8.004	6.258	3.263	2.690	0.801	3.535	16.975	0.226					
Signific	ance#	0.000	0.000	0.021	0.045	0.493	0.014	0.000	0.878					
# Statistic is significan	Statistic is significant at 0.05 level													

VFM: Value For Money; QLT: Quality; PRC: Price; PERF: Performance; SFT: Safety; DNP: Design and Pattern; MTNC: Maintenance; ENFR: Environment Friendly

- Across selected cities from Gujarat, In Vadodara (Mean = 2.86), Ahmedabad (Mean = 2.90) and Rajkot (Mean = 2.92), the factor 'Environment Friendliness' was the most preferred factor affecting respondents' selection of paint brand. However, in Surat city, 'Price of the Paint' (Mean = 2.71) was the most preferred factor and 'Environment Friendliness' (Mean = 3.00) was the second most preferred factor for selection of paint brands. While in Vadodara (Mean = 3.05) and Rajkot (Mean = 3.16) cities, 'Quality' of the paint was the second most preferred factor. Moreover, 'Price' was the third most preferred factor to choose a paint brand in Vadodara (Mean = 3.08) and Rajkot (Mean = 3.27). Moreover, 'Design and Pattern' was the least preferred factor for selection of paint brand in Vadodara (Mean = 6.54), Ahmedabad (Mean = 6.38) and Surat cities (Mean = 6.46). While, in Rajkot, 'Maintenance' (Mean = 6.42) was the least preferred factor and 'Design and Pattern' (Mean = 6.02) was the second least preferred factor for selection of paint brands.
- From ANNOVA results, it was observed that perception of respondents regarding 'Environment friendliness' (F Value = 0.226; p value = 0.878) and 'safety of paints' (F Value = 0.801; p value = 0.493) were similar across four selected cities, Vadodara, Ahmedabad, Surat and Rajkot. However, for other factors, Value for Money (F Value =

8.004; p value = 0.000), Price (F Value = 3.363; p value = 0.021), Quality (F Value = 6.258; p value = 0.000), Performance (F Value = 2.690; p value = 0.045), Design and Pattern (F Value = 3.535; p value = 0.014) and Maintenance (F Value = 16.975; p value = 0.000), there was significant difference in perception of respondents across cities.

- Post-hoc analysis (Annexure A26) revealed that the perception of the respondents regarding Design and Pattern of paint as well as Environment Friendliness of the paint across cities of Gujarat were same.
- For 'Value For Money', there was a significant difference between respondents opinion across cities. For this factor, the most significant difference was observed between respondents from Surat and Rajkot (p = 0.003) and Surat and Vadodara (p = 0.003). Second most significant difference was observed between respondents from Ahmedabad and Rajkot (p value = 0.019) followed by difference between respondents from Vadodara and Ahmedabad (p value = 0.021). However, similarity was observed in opinion regarding Value for Money between respondents from Ahmedabad and Surat (p value = 0.951) as well as Vadodara and Rajkot (p value = 1.000).
- For 'Quality', perception of respondents from Surat was significantly different from perception of respondents from Vadodara (p value = 0.002), Rajkot (p value = 0.013) and Ahmedabad (p value = 0.014). However, perception of respondents for the same factor were same across Vadodara, Ahmedabad and Rajkot.
- For 'Price', there was a significant difference between opinions of respondents across Surat and Rajkot cities (p value = 0.031) only.
- Significant difference was observed for 'Performance of Paint' affecting respondents' preference of brand across cities of Gujarat however, there was no significant difference was observed, during post-hoc test, between two individual cities of Gujarat. Yet, from post-hoc results it could be said that perception of respondents from Rajkot regarding Performance factor was to a certain extent different from perception of respondents from Ahmedabad (p value = 0.080).
- For the factor 'Design and Pattern', there was a significant difference between opinions of respondents across Vadodara and Rajkot cities (p value = 0.031) only.
- For 'Maintenance', perception of respondents from Surat was significantly different from perception of respondents from Vadodara (p value = 0.000), Rajkot (p value = 0.000) and

Ahmedabad (p value = 0.001). However, perception of respondents for the same factor were same across Vadodara, Ahmedabad and Rajkot. (Ref. Table 5.4.145)

Table 5.4.146: Mean comparison of average preference rank assigned to effecting factors regarding attitude towards selection of environment friendly paint brand across age group of respondents.

G.	l .				Re	easons for B	rand Prefe	rence		
City	Age	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR
		N	74	74	74	74	74	74	74	74
	<=37	Mean	3.85	2.73	3.09	4.91	5.49	6.55	6.77	2.58
		Std. Dev.	1.863	1.564	1.681	1.500	2.049	1.606	1.495	1.613
		N	73	73	73	73	73	73	73	73
	38-46	Mean	3.73	3.10	2.99	5.27	5.32	6.42	6.55	2.66
Vadodara		Std. Dev.	1.865	1.741	1.911	1.702	2.210	1.572	1.415	1.539
v auouai a		N	53	53	53	53	53	53	53	53
	>46	Mean	3.66	3.43	3.19	5.06	4.74	6.66	5.74	3.53
		Std. Dev.	1.870	2.308	2.113	1.875	1.734	1.753	1.883	2.258
	Total	Mean	3.76	3.05	3.08	5.08	5.23	6.54	6.42	2.86
		Value	0.176	2.274	0.180	0.892	2.217	0.327	7.030	5.104
	Signifi	cance Level	0.839	0.106	0.835	0.412	0.112	0.721	0.001	0.007
		N	67	67	67	67	67	67	67	67
	<=37	Mean	4.58	3.43	3.27	5.00	4.64	6.07	5.75	3.19
		Std. Dev.	2.381	2.224	1.989	1.651	2.248	2.113	2.099	1.588
		N	59	59	59	59	59	59	59	59
	38-46	Mean	3.86	2.80	3.29	4.92	5.12	6.61	6.54	2.88
Ahmedabad		Std. Dev.	1.824	1.769	1.782	1.745	1.975	1.651	1.765	1.820
		N	74	74	74	74	74	74	74	74
	>46	Mean	4.72	3.22	2.88	5.12	5.00	6.47	5.85	2.66
	70 ()	Std. Dev.	2.350	1.573	1.850	1.828	2.164	1.572	1.991	1.590
	Total	Mean	4.42	3.17	3.13	5.02	4.92	6.38	6.02	2.90
		value	2.687	1.861	1.055	0.236	0.872	1.558	3.007	1.812
	Signifi	cance Level	0.071 67	0.158 67	0.350 67	0.790 67	0.420 67	0.213 67	0.052 67	0.166 67
	<=37	N Mean	4.70	3.93	2.21	5.43	4.96	6.76	5.22	2.79
	\-3 /	Std. Dev.	2.523	1.682	1.523	1.578	2.163	1.468	1.945	1.552
		N	67	67	67	67	67	67	67	67
	38-46	Mean	4.87	3.67	2.94	4.87	5.13	6.43	5.21	2.88
	36-40	Std. Dev.	2.498	2.033	1.696	1.705	1.914	1.811	2.122	2.056
Surat	-	N	66	66	66	66	66	66	66	66
	>46	Mean	4.06	3.74	2.97	5.38	4.89	6.20	5.41	3.35
	7 40	Std. Dev.	2.417	1.908	2.023	1.605	2.463	1.738	2.184	1.852
	Total	Mean	4.55	3.78	2.71	5.23	5.00	6.46	5.28	3.00
		value	1.953	0.325	4.016	2.485	0.217	1.897	0.190	1.772
		icance Level	0.145	0.723	0.020	0.088	0.805	0.153	0.827	0.173
		N	78	78	78	78	78	78	78	78
	<=37	Mean	3.92	3.04	3.13	5.21	5.33	5.86	6.46	3.04
		Std. Dev.	1.905	1.896	1.956	2.047	2.004	1.785	1.601	2.003
		N	54	54	54	54	54	54	54	54
	38-46	Mean	3.54	3.15	3.19	5.46	5.11	6.19	6.44	2.94
D "		Std. Dev.	1.809	1.947	2.120	1.610	2.107	1.727	1.667	1.774
Rajkot		N	68	68	68	68	68	68	68	68
	>46	Mean	3.71	3.31	3.50	5.79	4.50	6.07	6.35	2.76
		Std. Dev.	1.861	1.855	1.981	1.951	2.189	1.798	1.655	1.838
	Total	Mean	3.74	3.16	3.27	5.48	4.99	6.02	6.42	2.92
	F	Value	0.706	0.371	0.687	1.737	2.994	0.586	0.088	0.388
	Signifi	cance Level	0.495	0.691	0.504	0.179	0.052	0.557	0.916	0.679

Table 5.4.146 Cont...

Table 5.4.146 Cont...

City	1.00	Statistics	Reasons f	for Brand l	Preference					
City	Age	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR
		N	286	286	286	286	286	286	286	286
	<=37	Mean	4.24	3.26	2.94	5.13	5.12	6.30	6.08	2.90
		Std. Dev.	2.191	1.896	1.838	1.720	2.126	1.785	1.877	1.717
		N	253	253	253	253	253	253	253	253
	38-46	Mean	4.02	3.19	3.09	5.12	5.18	6.42	6.17	2.83
TOTAL		Std. Dev.	2.086	1.889	1.869	1.701	2.048	1.685	1.841	1.795
(GUJARAT)		N	261	261	261	261	261	261	261	261
	>46	Mean	4.07	3.42	3.13	5.35	4.79	6.34	5.85	3.04
		Std. Dev.	2.189	1.897	1.987	1.831	2.169	1.717	1.959	1.895
	Total	Mean	4.12	3.29	3.05	5.20	5.03	6.35	6.03	2.92
	F	value	0.786	0.986	0.765	1.399	2.579	0.324	2.029	0.898
Statistic is significa		cance Level	0.456	0.374	0.466	0.248	0.077	0.724	0.132	0.408

Statistic is significant at 0.05 level

VFM: Value For Money; QLT: Quality; PRC: Price; PERF: Performance; SFT: Safety; DNP: Design and Pattern; MTNC: Maintenance; ENFR: Environment Friendly

- From table no 5.4.146, it was observed that, in Gujarat, there was no significant difference between respondents of different age groups i.e., less or equal to 37 years, from 38 years to 46 years of age and above 46 years of age regarding their any of the reason for brand preferences i.e., Value for Money (F Value = 0.786; p value = 0.456), Quality (F Value = 0.986; p value = 0.374), Price (F Value = 0.765; p value = 0.466), Performance (F Value = 1.399; p value = 0.248), Safety (F Value = 2.579; p value = 0.077), Designs and Patterns (F Value = 0.324; p value = 0.724), Maintenance (F Value = 2.029; p value = 0.132) and Environment Friendliness (F Value = 0.898; p value = 0.408). However, from mean score, it was seen that environment friendliness (Mean = 2.83), Price (Mean = 3.09) Quality of the Paint (Mean = 3.19) and Value for Money (Mean = 4.02) were the most prominent reasons to go for green paints while Maintenance and Designs and Patterns were unremarkable reasons to go for eco-friendly paints among respondents with age of 38 years to 46 years.
- In Vadodara, there was no significant difference between respondents of different age groups i.e., less or equal to 37 years, from 38 years to 46 years of age and above 46 years of age regarding their any of the reason for brand preferences i.e., Value for Money (F Value = 0.176; p value = 0.839), Quality (F Value = 2.274; p value = 0.106), Price (F Value = 0180; p value = 0.835), Performance (F Value = 0.892; p value = 0.412), Safety (F Value = 2.217; p value = 0.112), Designs and Patterns (F Value = 0.327; p value = 0.721), except Maintenance (F Value = 7.030; p value = 0.001) and Environment Friendliness (F Value = 5.104; p value = 0.007). In Vadodara, Environment Friendliness (Mean = 2.58) was the most prominent reason for selecting a green paints while Maintenance (Mean = 6.77) was the least affecting reason for

green paint purchase among respondents with age less or equal to 37 years. From post-hoc results (Annexure - A27), for Environment Friendliness, major difference was observed between respondents with age above 46 years and respondents with age less or equal to 37 year (Significance = 0.002) while less significant (Significance = 0.019) difference was observed between respondents with age 38 years to 46 years and respondents with age above 46 years. Hence, it could be said that preference of green paints by people with lesser age was mostly due to environment friendliness of paint while maintenance was the least affecting reasons for them.

- In Ahmedabad also, there was no significant difference between respondents of different age groups i.e., less or equal to 37 years, from 38 years to 46 years of age and above 46 years of age regarding their any of the reason for brand preferences i.e., Value for Money (F Value = 2.687; p value = 0.071), Quality (F Value = 1.861; p value = 0.158), Price (F Value = 1.055; p value = 0.350), Performance (F Value = 0.236; p value = 0.790), Safety (F Value = 0.872; p value = 0.420), Designs and Patterns (F Value = 1.558; p value = 0.213), Maintenance (F Value = 3.007; p value = 0.052) and Environment Friendliness (F Value = 1.812; p value = 0.166).
- In Surat, there was no significant difference between respondents of different age groups i.e., less or equal to 37 years, from 38 years to 46 years of age and above 46 years of age regarding their any of the reason for brand preferences i.e., Value for Money (F Value = 1.953; p value = 0.145), Quality (F Value = 0.325; p value = 0.723), Performance (F Value = 2.485; p value = 0.088), Safety (F Value = 0.217; p value = 0.805), Designs and Patterns (F Value = 1.897; p value = 0.153), Maintenance (F Value = 0.190; p value = 0.827) and Environment Friendliness (F Value = 1.772; p value = 0.173) except Price (F Value = 4.016; p value = 0.020). Price factor (Mean = 2.21) was the most prominent reason for selecting a green paints among respondents with age less or equal to 37 years. From post-hoc results (Annexure A28), for Price factor, major difference was observed between respondents with age above 46 years and respondents with age less or equal to 37 year (Significance = 0.047). Hence, it could be said that, in Surat, preference of green paints by people with lesser age differ due to Price of paint.
- In Rajkot, there was no significant difference between respondents of different age groups i.e., less or equal to 37 years, from 38 years to 46 years of age and above 46 years of age regarding their any of the reason for brand preferences i.e., Value for Money (F Value = 0.706; p value = 0.495), Quality (F Value = 0.371; p value = 0.691), Price (F Value = 0.687; p value = 0.504),

Performance (F Value = 1.737; p value = 0.179), Safety (F Value = 2.994; p value = 0.052), Designs and Patterns (F Value = 0.586; p value = 0.557), Maintenance (F Value = 0.088; p value = 0.916) and Environment Friendliness (F Value = 0.388; p value = 0.679). (Ref. Table 5.4.146)

Table 5.4.147: Mean comparison of average preference rank assigned to effecting factors regarding attitude towards selection of environment friendly paint brand across gender of respondents

Gt.	G 1	G			BRAN	D OF DEC	ORATIV	E PAINTS	<u> </u>	
City	Gender	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR
		N	142	142	142	142	142	142	142	142
	Male	Mean	3.75	3.06	3.16	5.08	5.27	6.48	6.45	2.73
		Std. Dev.	1.831	1.903	1.919	1.663	2.104	1.662	1.587	1.692
		N	58	58	58	58	58	58	58	58
Vadodara	Female	Mean	3.78	3.02	2.88	5.09	5.10	6.67	6.33	3.17
		Std. Dev.	1.938	1.772	1.778	1.730	1.907	1.549	1.731	2.079
	Total	Mean	3.76	3.05	3.08	5.08	5.23	6.54	6.42	2.86
		alue	0.010	0.025	0.931	0.001	0.287	0.580	0.235	2.428
	Significa	ance Level	0.919	0.874	0.336	0.973	0.593	0.447	0.628	0.121
		N	152	152	152	152	152	152	152	152
	Male	Mean	4.32	3.12	3.18	5.00	4.87	6.54	5.99	2.93
		Std. Dev.	2.245	1.841	1.931	1.745	2.080	1.695	1.990	1.727
		N	48	48	48	48	48	48	48	48
Ahmedabad	Female	Mean	4.73	3.31	2.96	5.08	5.06	5.87	6.13	2.83
		Std. Dev.	2.210	2.002	1.713	1.736	2.328	2.028	1.985	1.478
	Total	Mean	4.42	3.17	3.13	5.02	4.92	6.38	6.02	2.90
		alue	1.207	0.389	0.526	0.083	0.300	5.086	0.178	0.116
	Significa	ance Level	0.273	0.534	0.469	0.773	0.585	0.025	0.675	0.734
		N	141	141	141	141	141	141	141	141
	Male	Mean	4.63	3.77	2.73	5.30	4.82	6.39	5.41	2.94
		Std. Dev.	2.477	1.906	1.673	1.656	2.206	1.642	2.125	1.891
		N	59	59	59	59	59	59	59	59
Surat	Female	Mean	4.34	3.80	2.64	5.03	5.42	6.64	4.97	3.17
		Std. Dev.	2.537	1.808	2.041	1.608	2.078	1.788	1.938	1.714
	Total	Mean	4.55	3.78	2.71	5.23	5.00	6.46	5.28	3.00
		alue	0.571	0.007	0.097	1.134	3.269	0.944	1.921	0.668
	Signific	ance Level	0.451	0.936	0.756	0.288	0.072	0.333	0.167	0.415
		N	145	145	145	145	145	145	145	145
	Male	Mean	3.74	3.08	3.14	5.41	5.09	6.17	6.36	3.02
		Std. Dev.	1.892	1.862	1.971	1.970	1.968	1.732	1.649	1.924
		N	55	55	55	55	55	55	55	55
Rajkot	Female	Mean	3.75	3.36	3.62	5.65	4.73	5.64	6.58	2.65
		Std. Dev.	1.797	1.966	2.077	1.756	2.468	1.829	1.583	1.756
	Total	Mean	3.74	3.16	3.27	5.48	4.99	6.02	6.42	2.92
		alue	0.000	0.880	2.299	0.667	1.169	3.608	0.747	1.513
	Signific	ance Level	0.998	0.349	0.131	0.415	0.281	0.059	0.389	0.220
	M-1-	N	580	580	580	580	580	580	580	580
	Male	Mean	4.11	3.26	3.06	5.19	5.01	6.39	6.05	2.91
		Std. Dev.	2.156	1.895	1.883	1.768	2.093	1.685	1.891	1.809
TOTAL	E 1	N	220	220	220	220	220	220	220	220
(FROM GUJARAT)	Female	Mean	4.13	3.38	3.02	5.21	5.09	6.23	5.98	2.97
. ,	Tr . 1	Std. Dev.	2.165	1.892	1.937	1.713	2.195	1.842	1.909	1.784
	Total	Mean	4.12	3.29	3.05	5.20	5.03	6.35	6.03	2.92
		alue	0.008	0.663	0.066	0.018	0.205	1.416	0.228	0.195
a	Significa	ance Level	0.929	0.416	0.797	0.982	0.651	0.234	0.633	0.659
Statistic is significant at 0	.05 level									

Statistic is significant at 0.05 level

VFM: Value For Money; QLT: Quality; PRC: Price; PERF: Performance; SFT: Safety; DNP: Design and Pattern; MTNC: Maintenance; ENFR: Environment Friendly

From table 5.4.147, it was observed all the factors i.e., Value for Money, Quality, Price,
 Performance, Safety, Design and Patterns, Maintenance and Environment Friendliness had an

- analogous effect on preference of eco-friendly paints among male and female respondents, within Gujarat as well as Vadodara, Rajkot and Surat individually.
- While, in Ahmedabad, there was a difference (t value = 5.086; p value = 0.025) between male and female respondents regarding preference of eco-friendly paints due to its design and patterns. From mean score, it was observed that female (Mean = 5.87) from Ahmedabad had more effect of paints' design and pattern during their purchase of green paints compared to male (Mean = 6.54) respondents. However, for all other factors, male and female respondents had similar effect during selection of eco-friendly paint brands. (Ref. Table 5.4.147)

Table 5.4.148: Mean comparison of average preference rank assigned to effecting factors regarding attitude towards selection of environment friendly paint brand across educational qualifications of respondents.

G!:	Educational	G			Rea	sons for B	rand Pref	erence		
City	Qualifications	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR
	Undon	N	14	14	14	14	14	14	14	14
	Under Graduate	Mean	3.71	2.93	3.57	4.14	5.36	7.00	5.57	3.71
	Graduate	Std. Dev.	1.858	1.817	2.209	1.703	2.061	1.301	1.989	2.644
		N	79	79	79	79	79	79	79	79
	Graduate	Mean	3.33	2.90	3.05	5.08	5.53	6.54	6.72	2.85
Vadodara		Std. Dev.	1.599	1.939	1.716	1.575	1.600	1.663	1.625	1.819
vauouara		N	107	107	107	107	107	107	107	107
	Post Graduate	Mean	4.07	3.18	3.04	5.21	4.98	6.47	6.30	2.76
		Std. Dev.	1.984	1.816	1.957	1.725	2.307	1.644	1.537	1.676
	Total	Mean	3.76	3.05	3.08	5.08	5.23	6.54	6.42	2.86
	F va	lue	3.765	0.539	0.513	2.520	1.687	0.662	3.652	1.731
	Significan	ce Level	0.025	0.584	0.599	0.083	0.188	0.517	0.028	0.180
	H. J.	N	35	35	35	35	35	35	35	35
	Under Graduate	Mean	4.66	3.51	2.69	5.09	4.43	6.54	5.20	3.63
	Graduate	Std. Dev.	2.566	1.634	2.011	1.946	2.173	1.358	2.506	1.716
		N	109	109	109	109	109	109	109	109
	Graduate	Mean	4.43	3.09	3.27	5.08	4.95	6.23	6.22	2.74
Ahmedabad		Std. Dev.	2.166	1.917	1.937	1.622	2.105	1.966	1.838	1.630
Anneuabau		N	56	56	56	56	56	56	56	56
	Post Graduate	Mean	4.25	3.09	3.14	4.86	5.14	6.57	6.14	2.77
		Std. Dev.	2.185	1.947	1.656	1.843	2.169	1.693	1.793	1.618
	Total	Mean	4.42	3.17	3.13	5.02	4.92	6.38	6.02	2.90
	F va	lue	0.357	0.732	1.269	0.339	1.245	0.842	3.750	4.125
	Significan		0.700	0.482	0.283	0.713	0.290	0.432	0.025	0.018
	Under	N	38	38	38	38	38	38	38	38
	Graduate	Mean	3.97	3.97	2.84	5.24	5.18	6.74	4.68	3.37
	0111111111	Std. Dev.	2.354	1.938	1.853	1.715	2.051	1.245	2.462	2.174
		N	116	116	116	116	116	116	116	116
	Graduate	Mean	4.70	3.57	2.56	5.45	4.98	6.42	5.47	2.85
Surat		Std. Dev.	2.475	1.705	1.680	1.562	2.292	1.705	1.927	1.685
Surat		N	46	46	46	46	46	46	46	46
	Post Graduate	Mean	4.63	4.15	2.96	4.65	4.87	6.35	5.28	3.09
		Std. Dev.	2.628	2.170	1.977	1.676	2.029	1.946	2.051	1.907
	Total	Mean	4.55	3.78	2.71	5.23	5.00	6.46	5.28	3.00
	F va		1.248	1.863	0.950	3.986	0.219	0.640	2.093	1.184
	Significan		0.289	0.158	0.389	0.020	0.803	0.529	0.126	0.308
	Under	N	35	35	35	35	35	35	35	35
	Graduate	Mean	4.03	3.20	3.37	5.57	4.71	5.71	6.37	3.00
		Std. Dev.	1.978	1.779	2.143	2.305	2.396	1.619	1.592	1.847
		N	118	118	118	118	118	118	118	118
	Graduate	Mean	3.79	3.02	3.25	5.30	5.15	6.24	6.43	2.83
Rajkot		Std. Dev.	1.820	1.844	1.909	1.901	2.057	1.757	1.630	1.832
		N	47	47	47	47	47	47	47	47
	Post Graduate	Mean	3.43	3.49	3.23	5.85	4.79	5.70	6.43	3.09
		Std. Dev.	1.874	2.073	2.179	1.574	2.053	1.864	1.691	2.052
	Total	Mean	3.74	3.16	3.27	5.48	4.99	6.02	6.42	2.92
	F Va		1.131	1.060	0.055	1.473	0.859	2.193	0.019	0.344
	Significan	ice Level	0.325	0.348	0.946	0.232	0.425	0.114	0.981	0.710

Table 5.4.148 Cont...

Table 5.4.148 Cont...

City	Educational Qualifications Under Graduate Graduate	Statistics	Reasons	for Branc	l Preferer	ıce					
City	Qualifications	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR	
		N	122	122	122	122	122	122	122	122	
	Under Graduate	Mean	4.16	3.50	3.03	5.16	4.85	6.42	5.42	3.38	
		Std. Dev.	2.264	1.810	2.028	1.985	2.192	1.459	2.281	2.014	
		N	422	422	422	422	422	422	422	422	
	Graduate	Mean	4.12	3.17	3.03	5.24	5.13	6.34	6.17	2.82	
TOTAL		Std. Dev.	2.130	1.856	1.839	1.682	2.066	1.781	1.822	1.733	
(GUJARAT)		N	256	256	256	256	256	256	256	256	
	Post Graduate	Mean	4.09	3.39	3.08	5.15	4.96	6.33	6.11	2.88	
		Std. Dev.	2.158	1.985	1.933	1.752	2.174	1.769	1.758	1.777	
	Total	Mean	4.12	3.29	3.05	5.20	5.03	6.35	6.03	2.92	
	F value		0.035	2.020	0.067	0.256	0.992	0.117	7.815	4.722	
	Significance	Level	0.966	0.133	0.935	0.774	0.371	0.889	0.000	0.009	
	Statistic is significan										
		VFM: Value For Money; QLT: Quality; PRC: Price; PERF: Performance; SFT: Safety; DNP: Design and Pattern; MTNC:									
	Maintenance; ENFR:	M: Value For Money; QLT: Quality; PRC: Price; PERF: Performance; SFT: Safety; DNP: Design and Pattern; MTNC: Intenance; ENFR: Environment Friendly									

In Gujarat, it was observed that there was no difference between respondents with different educational qualifications regarding effect of factors i.e., Value for Money, Quality, Price, Performance, Safety and Design and Patterns, on preference of eco-friendly paints (Ref. Table 5.4.148). However, two factors, maintenance and environment friendliness of paints, were distinctly affected to respondents with different level of education. There was a significant difference between undergraduate, graduate and post-graduate respondents regarding effectiveness of maintenance (F Value = 7.815; p value = 0.000) and environment friendliness (F Value = 4.722; p value = 0.009) factors on their preference of green paints. From post-hoc analysis (Annexure – A29), it was observed that for maintenance factor, there was a strong significant (Significance = 0.004) difference between undergraduate and postgraduate people regarding their preference of eco-friendly paint brand. However, most remarkable difference (Significance = 0.001) was observed between graduate and undergraduate respondents regarding effect of maintenance factor on their purchase of eco-friendly paints. While, it was observed that for environment friendliness of paint, there was a strong significant (Significance = 0.042) difference between undergraduate and postgraduate people regarding their preference of eco-friendly paint brand. However, most remarkable difference (Significance = 0.010) was observed between graduate and undergraduate respondents regarding effect of environment friendliness of paint on their purchase of eco-friendly paints. From mean score, it was observed that graduate respondents had major effect of environment friendliness (Mean = 2.82) while maintenance (Mean = 6.17) factor had minimal effect on their preference of eco-friendly green paints compared to undergraduate and postgraduate respondents of Gujarat.

- In Vadodara, it was observed that there was no difference between respondents with different educational qualifications regarding effect of factors i.e., Quality, Price, Performance, Safety, environment friendliness and Design and Patterns, on preference of eco-friendly paints (Ref. Table 5.4.148). However, two factors, Maintenance and Value for Money of paints, were distinctly affected among respondents with different level of education. There was a significant difference between undergraduate, graduate and post-graduate respondents regarding effectiveness of maintenance (F Value = 3.652; p value = 0.028) and value for money (F Value = 3.765; p value = 0.025) factors on their preference of green paints. From post-hoc analysis (Annexure – A30), it was observed that for maintenance factor, there was a strong significant (Significance = 0.049) difference between undergraduate and graduate people regarding their preference of eco-friendly paint brand. While, it was observed that for Value for Money factor, there was a strong significant (Significance = 0.025) difference between graduate and postgraduate people regarding their preference of eco-friendly paint brand. From mean score, it was observed that graduate respondents had major effect of Value for money (Mean = 3.33) while maintenance (Mean = 6.72) factor had minimal effect on their preference of eco-friendly green paints compared to undergraduate and postgraduate respondents.
- In Ahmedabad, it was observed that there was no difference between respondents with different educational qualifications regarding effect of factors i.e., Value for Money, Quality, Price, Performance, Safety and Design and Patterns, on preference of eco-friendly paints (Ref. Table 5.4.148). However, two factors, maintenance and environment friendliness of paints, were distinctly affected to respondents with different level of education. There was a significant difference between undergraduate, graduate and post-graduate respondents regarding effectiveness of maintenance (F Value = 3.750; p value = 0.025) and environment friendliness (F Value = 4.125; p value = 0.018) factors on their preference of green paints. From post-hoc analysis (Annexure A31), it was observed that for maintenance factor, there was a strong significant (Significance = 0.029) difference between undergraduate and graduate people regarding their preference of eco-friendly paint brand. While, it was observed that for environment friendliness of paint, there was a strong significant (Significance = 0.023) difference between undergraduate and graduate people regarding their preference of eco-friendly paint brand. From mean score, it was observed that graduate respondents had major effect of environment friendliness (Mean = 2.74) while maintenance (Mean = 6.22) factor had

- minimal effect on their preference of eco-friendly green paints compared to undergraduate and postgraduate respondents of Ahmedabad.
- In Surat, it was observed that there was no difference between respondents with different educational qualifications regarding effect of factors i.e., Value for Money, Quality, Price, Safety, Design and Patterns, Maintenance and Environment Friendliness on preference of ecofiriendly paints (Ref. Table 5.4.148). However, performance of paints, were distinctly affected to respondents with different level of education. There was a significant difference between undergraduate, graduate and post-graduate respondents regarding effectiveness of performance (F Value = 3.986; p value = 0.020) on their preference of green paints. From post-hoc analysis (Annexure A32), it was observed that the most remarkable difference (Significance = 0.020) was observed between graduate and postgraduate respondents regarding effect of performance factor on their purchase of eco-friendly paints. From mean score, it was observed that graduate respondents had major effect of performance (Mean = 5.45) factor had minimal effect on their preference of eco-friendly green paints compared to undergraduate (Mean = 5.24) and postgraduate (Mean = 4.65) respondents of Surat.
- In Rajkot, it was observed that there was no difference between respondents with different educational qualifications regarding effect of all factors i.e., Value for Money, Quality, Price, Performance, Safety, Design and Patterns, Maintenance and Environment Friendliness on preference of eco-friendly paints (Ref. Table 5.4.148).

Table 5.4.149: Mean comparison of average preference rank assigned to effecting factors regarding attitude towards selection of environment friendly paint brand with respect to occupation of respondents.

Gt.		G			Rea	asons for Br	and Prefer	ence		
City	Occupation	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR
		N	80	80	80	80	80	80	80	80
	Service	Mean	3.19	2.40	3.06	4.49	6.14	6.73	6.91	3.10
		Std. Dev.	1.442	1.356	1.788	1.350	1.532	1.387	1.460	1.783
		N	60	60	60	60	60	60	60	60
	Business	Mean	4.13	3.22	3.05	5.12	4.93	6.73	6.37	2.43
**		Std. Dev.	1.789	1.795	2.251	1.738	1.939	1.656	1.390	1.511
Vadodara		N	60	60	60	60	60	60	60	60
	Profession	Mean	4.13	3.75	3.13	5.83	4.30	6.08	5.80	2.97
		Std. Dev.	2.221	2.214	1.599	1.729	2.265	1.825	1.848	2.083
	Total	Mean	3.76	3.05	3.08	5.08	5.23	6.54	6.42	2.86
	F val	lue	6.567	10.229	0.035	12.293	17.076	3.376	8.678	2.488
	Significan	ce Level	0.002	0.000	0.966	0.000	0.000	0036	0.000	0.086
	9	N	80	80	80	80	80	80	80	80
	Service	Mean	5.36	3.41	3.16	4.70	4.51	5.84	5.08	3.83
		Std. Dev.	2.482	1.979	2.083	1.983	2.216	2.065	2.448	1.613
		N	60	60	60	60	60	60	60	60
	Business	Mean	3.20	2.38	3.22	4.90	6.10	6.83	7.03	2.35
		Std. Dev.	1.471	1.136	1.678	1.362	1.504	1.291	.991	1.436
Ahmedabad		N	60	60	60	60	60	60	60	60
	Profession	Mean	4.38	3.62	3.00	5.57	4.27	6.65	6.27	2.23
		Std. Dev.	1.941	2.108	1.804	1.619	2.122	1.686	1.401	1.382
	Total	Mean	4.42	3.17	3.13	5.02	4.92	6.38	6.02	2.90
	F val	lue	18.898	8.181	0.218	4.623	15.321	6.576	20.805	25.359
	Significan	ce Level	0.000	0.000	0.805	0.011	0.000	0.002	0.000	0.000
		N	80	80	80	80	80	80	80	80
	Service	Mean	4.35	3.71	2.36	5.40	4.96	6.74	5.27	3.21
		Std. Dev.	2.551	1.670	1.708	1.580	2.184	1.621	1.876	1.762
		N	60	60	60	60	60	60	60	60
	Business	Mean	3.47	4.05	2.98	5.27	6.23	6.73	4.33	2.92
Surat		Std. Dev.	2.021	2.054	1.900	1.645	1.555	1.413	2.137	2.053
Sulat		N	60	60	60	60	60	60	60	60
	Profession	Mean	5.88	3.60	2.88	4.95	3.80	5.83	6.23	2.82
		Std. Dev.	2.256	1.942	1.718	1.712	2.057	1.870	1.854	1.712
	Total	Mean	4.55	3.78	2.71	5.23	5.00	6.46	5.28	3.00
	F val		16.827	0.952	2.542	1.319	22.764	6.338	14.224	0.892
	Significan		0.000	0.388	0.081	0.270	0.000	0.002	0.000	0.411
		N	80	80	80	80	80	80	80	80
	Service	Mean	3.28	2.41	2.94	6.02	6.03	5.45	6.89	3.01
		Std. Dev.	1.526	1.177	1.774	1.814	1.534	1.720	1.396	1.717
		N	60	60	60	60	60	60	60	60
	Business	Mean	4.08	3.38	3.20	4.80	4.70	6.72	6.35	2.75
Rajkot		Std. Dev.	1.769	1.941	2.246	1.783	2.134	1.574	1.494	1.856
Rajkot		N	60	60	60	60	60	60	60	60
	Profession	Mean	4.03	3.93	3.78	5.42	3.90	6.08	5.87	2.97
		Std. Dev.	2.224	2.239	1.975	1.968	2.161	1.788	1.873	2.123
	Total	Mean	3.74	3.16	3.27	5.48	4.99	6.02	6.42	2.92
	F Va		4.404	13.123	3.165	7.538	21.864	9.590	7.229	0.358
	Significan	ce Level	0.013	0.000	0.044	0.001	0.000	0.000	0.001	0.700

Table 5.4.149 Cont...

Table 5.4.149 Cont...

City	Occumation	Statistics	Reasons fo	or Brand P	reference						
City	Occupation	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR	
		N	320	320	320	320	320	320	320	320	
	Service	Mean	4.04	2.98	2.88	5.15	5.41	6.19	6.04	3.29	
		Std. Dev.	2.241	1.675	1.862	1.796	2.010	1.798	2.029	1.742	
		N	240	240	240	240	240	240	240	240	
	Business	Mean	3.72	3.26	3.11	5.02	5.49	6.75	6.02	2.61	
TOTAL		Std. Dev.	1.807	1.855	2.023	1.640	1.917	1.481	1.851	1.737	
(GUJARAT)		N	240	240	240	240	240	240	240	240	
	Profession	Mean	4.61	3.73	3.20	5.44	4.07	6.16	6.04	2.75	
		Std. Dev.	2.277	2.120	1.802	1.780	2.150	1.807	1.757	1.863	
	Total	Mean	4.12	3.29	3.05	5.20	5.03	6.35	6.03	2.92	
	F val	ue	10.771	10.787	2.151	3.678	38.961	9.569	0.008	11.583	
	Significan	ce Level	0.000	0.000	0.117	0.026	0.000	0.000	0.992	0.000	
	Statistic is signi	ificant at 0.05	level								
	VFM: Value For	VFM: Value For Money; QLT: Quality; PRC: Price; PERF: Performance; SFT: Safety; DNP: Design and Pattern; MTNC:									
	Maintenance; El	gnificance Level 0.000 0.000 0.117 0.026 0.000 0.000 0.992 0.000 c is significant at 0.05 level									

- From Table 5.4.149, it was observed that for overall in Gujarat, there was similar effect of Price (F value = 2.151; p value = 0.117) and Maintenance (F value = 0.008; p value = 0.992) factors on respondents' preference for Green Paints among respondents with different occupations among respondents with different occupations. While, for all other factors i.e., Value for Money (F value = 10.771; p value = 0.000), Quality of the paint (F value = 10.787; p value = 0.000), Performance of the Product (F value = 3.678; p value = 0.026), Safety issues (F value = 38.961; p value = 0.000), Designs and patterns (F value = 9.569; p value = 0.000) and Environment Friendliness of the paint (F value = 11.583; p value = 0.000), there was a different level of perception between service class, business class and professional people. From mean score, it was observed that environment friendliness of paint was the most preferred factor for selection of eco-friendly paints among business class (Mean = 2.61) people followed by professionals (Mean = 2.75). For service class people, most affecting factors to their purchase of eco-friendly paints were price (Mean = 2.88) and Quality (Mean = 2.98) of paints. While design and pattern was the least affecting factors among respondents from all three occupations i.e., Service class (Mean = 6.19), Business class (Mean = 6.75) and Professionals (Mean = 6.16).
 - From post-hoc analysis (Annexure A33), for Value for Money factor, views of business class people and professionals were highly differentiating (Significance = 0.000) while views of professionals and service class were also significantly (Significance = 0.008) different but less effectively.

- For Quality, views of business class people and professionals were differentiating (Significance = 0.024) while views of professionals and service class were also significantly (Significance = 0.000) different but more effectively.
- For Performance factor, views of business class people and professionals were highly differentiating (Significance = 0.031).
- For Safety factor, views of business class people and professionals were highly differentiating (Significance = 0.000) and views of professionals and service class were also significantly (Significance = 0.000) different.
- For Design and Pattern, views of business class people and professionals were highly differentiating (Significance = 0.001) and views of business class and service class were also significantly (Significance = 0.001) different.
- For Environment Friendliness factor, views of business class people and service class people were highly differentiating (Significance = 0.000) while views of professionals and service class were also significantly (Significance = 0.002) different but less effectively.
- In Vadodara, there was similar effect of Price (F value = 0.035; p value = 0.966) and Environment Friendliness of Paints (F value = 2.488; p value = 0.086) factors on respondents' preference for Green Paints among respondents with different occupations. While, for all other factors i.e., Value for Money (F value = 6.567; p value = 0.002), Quality of the paint (F value = 10.229; p value = 0.000), Performance of the Product (F value = 12.293; p value = 0.000), Safety issues (F value = 17.076; p value = 0.000), Designs and patterns (F value = 3.376; p value = 0.036) and Maintenance (F value = 8.678; p value = 0.000), there was a different level of perception between service class, business class and professional people. From mean score, it was observed that environment friendliness of paint was the most preferred factor for selection of eco-friendly paints among business class (Mean = 2.43) people followed by professionals (Mean = 2.97). For service class people, most affecting factors to their purchase of eco-friendly paints were Quality (Mean = 2.40) and price (Mean = 3.06) of paints. While design and pattern was the least affecting factors among respondents from Business class (Mean = 6.73) and Professionals (Mean = 6.08) while for Service class people least effecting factor to their eco-paint purchase was maintenance on paint (Mean = 6.91).

- From post-hoc analysis (Annexure A34), for Value for Money factor, views of business class people and service class people were highly differentiating (Significance = 0.010) while views of professionals and service class were also significantly (Significance = 0.010) different.
- For Quality, views of business class people and service class were differentiating (Significance = 0.029) while views of professionals and service class were also significantly (Significance = 0.000) different but more effectively.
- For Performance factor, views of service class people and professionals were highly differentiating (Significance = 0.000).
- For Safety factor, views of business class people and service class were highly differentiating (Significance = 0.001) and views of professionals and service class were also significantly (Significance = 0.000) different.
- For Design and Pattern factor, there was no significant difference between any specific pair of people i.e., service class & business class; business class and professional; professional and service class, from different occupation.
- For Maintenance factor, views of professionals and service class were significantly (Significance = 0.000) different.
- In Ahmedabad, there was similar effect of Price (F value = 0.218; p value = 0.805) factor on respondents' preference for Green Paints among respondents with different occupations. While, for all other factors i.e., Value for Money (F value = 18.898; p value = 0.000), Quality of the paint (F value = 8.181; p value = 0.000), Performance of the Product (F value = 4.623; p value = 0.011), Safety issues (F value = 15.321; p value = 0.000), Designs and patterns (F value = 6.576; p value = 0.002), Maintenance (F value = 20.805; p value = 0.000) and Environment Friendliness of Paints (F value = 25.359; p value = 0.000), there was a different level of perception between service class, business class and professional people. From mean score, it was observed that environment friendliness of paint was the most preferred factor for selection of eco-friendly paints among professionals (Mean = 2.23) people followed by business class people (Mean = 2.35). For service class people, most affecting factors to their purchase of eco-friendly paints were price (Mean = 3.16) and Quality (Mean = 3.41) of paints. While design and pattern was the least affecting factors among respondents from Service class

(Mean = 5.84) and Professionals (Mean = 6.65) while for business class people least effecting factor to their eco-paint purchase was maintenance on paint (Mean = 7.03).

- From post-hoc analysis (Annexure A35), for Value for Money factor, views of business class people and service class people were highly differentiating (Significance = 0.000) while views of professionals and service class (Significance = 0.022) as well as business class and professionals (Significance = 0.008) were also significantly different but in lesser intent.
- For Quality, views of business class people and service class were differentiating (Significance = 0.005) while views of professionals and business class people were also significantly (Significance = 0.001) different but more effective.
- For Performance factor, views of service class people and professionals were highly differentiating (Significance = 0.013).
- For Safety factor, views of business class people and service class were highly differentiating (Significance = 0.000) and views of professionals and business class were also significantly (Significance = 0.000) different.
- For Design and Pattern factor, views of business class people and service class were highly differentiating (Significance = 0.004) and views of professionals and service class were also significantly (Significance = 0.027) different but in lesser intent.
- For Maintenance factor, views of business class people and service class were highly differentiating (Significance = 0.000) and views of professionals and service class were also significantly (Significance = 0.001) different.
- For Environment Friendliness of paint factor, views of business class people and service class were highly differentiating (Significance = 0.000) and views of professionals and service class were also significantly (Significance = 0.000) different.
- In Surat, there was similar effect of Quality of the paint (F value = 0.952; p value = 0.388), Price (F value = 2.542; p value = 0.081), Performance of the Product (F value = 1.319; p value = 0.270), and Environment Friendliness of Paints (F value = 0.892; p value = 0.411) factors on respondents' preference for Green Paints among respondents with different occupations. While, for all other factors i.e., Value for Money (F value = 16.827; p value = 0.000), Safety issues (F value = 22.764; p value = 0.000), Designs and patterns (F value = 6.338; p value = 0.002) and Maintenance (F value = 14.224; p value = 0.000), there was a different level of

perception between service class, business class and professional people. From mean score, it was observed that environment friendliness of paint was the most preferred factor for selection of eco-friendly paints among professionals (Mean = 2.82) people followed by business class people (Mean = 2.92). For service class people, most affecting factors to their purchase of eco-friendly paints was price (Mean = 2.36) of paints. While design and pattern was the least affecting factors among respondents from Service class (Mean = 6.74) and business class people (Mean = 6.73) while for professionals least effecting factor to their eco-paint purchase was maintenance on paint (Mean = 6.23).

- From post-hoc analysis (Annexure A36), for Value for Money factor, views of professional and business class people were highly differentiating (Significance = 0.000) while views of professionals and service class (Significance = 0.001) were also significantly different.
- o For Safety factor, views of professional and business class people were highly differentiating (Significance = 0.000) while views of professionals and service class (Significance = 0.003) as well as business class and service class (Significance = 0.001) were also significantly different but in lesser intent.
- For Design and Pattern factor, views of business class people and professionals were highly differentiating (Significance = 0.012) and views of professionals and service class were also significantly (Significance = 0.006) different but in higher intent.
- For Maintenance factor, views of professional and business class people were highly differentiating (Significance = 0.000) while views of professionals and service class (Significance = 0.017) as well as business class and service class (Significance = 0.020) were also significantly different but in lesser intent.
- In Rajkot, there was similar effect of Environment Friendliness of Paints (F value = 0.008; p value = 0.992) factors on respondents' preference for Green Paints among respondents with different occupations. While, for all other factors i.e., Value for Money (F value = 4.404; p value = 0.013), Quality of the paint (F value = 13.123; p value = 0.000), Price of the paint (F value = 3.165; p value = 0.044), Performance of the Product (F value = 7.538; p value = 0.001), Safety issues (F value = 21.864; p value = 0.000), Designs and patterns (F value = 9.590; p value = 0.000) and Maintenance (F value = 7.229; p value = 0.001), there was a different level of perception between service class, business class and professional people. From mean score,

it was observed that environment friendliness of paint was the most preferred factor for selection of eco-friendly paints among business class (Mean = 2.75) people followed by professionals (Mean = 2.97). For service class people, most affecting factors to their purchase of eco-friendly paints were Quality (Mean = 2.41) of paints. While design and pattern was the least affecting factors among respondents from Business class (Mean = 6.72) and Professionals (Mean = 6.08) while for Service class people least effecting factor to their eco-paint purchase was maintenance on paint (Mean = 6.89). (Ref. Table 5.4.149)

- From post-hoc analysis (Annexure A37), for Value for Money factor, views of business class people and service class people were highly differentiating (Significance = 0.037).
- For Quality, views of business class people and service class were differentiating (Significance = 0.007) while views of professionals and service class were also significantly (Significance = 0.000) different but more effectively.
- For price factor, views of service class people and professionals were highly differentiating (Significance = 0.047).
- For Performance factor, views of service class people and business class people were highly differentiating (Significance = 0.001).
- For Safety factor, views of business class people and service class were highly differentiating (Significance = 0.000) and views of professionals and service class were also significantly (Significance = 0.000) different.
- For Design and Pattern factor, views of business class people and service class were highly differentiating (Significance = 0.000).
- For Maintenance factor, views of professionals and service class were significantly (Significance = 0.001) different.

Table 5.4.150: Mean comparison of average preference rank assigned to effecting factors regarding attitude towards selection of environment friendly paint brand across marital status of respondents.

C:	Manifestor	64-4' 4'			Reas	sons for B	rand Pref	ference		
City	Marital Status	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR
		N	171	171	171	171	171	171	171	171
	Married	Mean	3.75	3.08	2.99	5.18	5.18	6.58	6.37	2.87
		Std. Dev.	1.870	1.867	1.834	1.683	2.037	1.612	1.616	1.799
		N	29	29	29	29	29	29	29	29
Vadodara	Unmarried	Mean	3.79	2.86	3.62	4.48	5.48	6.24	6.66	2.83
		Std. Dev.	1.820	1.846	2.077	1.550	2.115	1.725	1.696	1.965
	Total	Mean	3.76	3.05	3.08	5.08	5.23	6.54	6.42	2.86
	t valu		0.0140	0.345	2.834	4.366	0.537	1.103	0.738	0.11
	Significance		0.905	0.558	0.094	0.038	0.464	0.295	0.391	0.918
	Significant Control	N	172	172	172	172	172	172	172	172
	Married	Mean	4.35	3.12	3.27	5.03	4.95	6.47	6.08	2.73
	Married	Std. Dev.	2.197	1.846	1.855	1.735	2.119	1.728	1.968	1.633
		N	28	28	28	28	28	28	28	28
Ahmedabad	Unmarried	Mean	4.82	3.43	2.25	4.96	4.68	5.82	5.68	4.00
1 Innicuation	- IIIIIIII I ICU	Std. Dev.	2.480	2.080	1.818	1.795	2.278	2.127	2.091	1.466
	Total	Mean	4.42	3.17	3.13	5.02	4.92	6.38	6.02	2.90
	t valu		1.048	0.640	7.370	0.033	0.397	3.178	0.963	15.033
	Significance	-	0.307	0.425	0.007	0.855	0.529	0.076	0.328	0.000
	Significance	N	182	182	182	182	182	182	182	182
	Married	Mean	4.52	3.81	2.70	5.25	5.05	6.44	5.18	3.05
	Marricu	Std. Dev.	2.480	1.895	1.766	1.668	2.179	1.693	2.119	1.875
		N	18	18	18	18	18	18	18	18
Surat	Unmarried	Mean	4.83	3.50	2.78	5.00	4.39	6.72	6.33	2.56
Surat	Cilliarricu	Std. Dev.	2.662	1.654	2.016	1.372	2.173	1.638	1.188	1.381
	Total	Mean	4.55	3.78	2.71	5.23	5.00	6.46	5.28	3.00
	t valu		0.264	0.441	0.033	0.370	1.531	0.459	5.196	1.183
	Significance		0.608	0.508	0.857	0.544	0.217	0.499	0.024	0.278
	Significance	N	157	157	157	157	157	157	157	157
	Married	Mean	3.59	3.19	3.36	5.61	4.87	6.08	6.39	2.92
	Mairicu	Std. Dev.	1.833	1.875	2.029	1.811	2.120	1.772	1.690	1.891
		N	43	43	43	43	43	43	43	43
Rajkot	Unmarried	Mean	4.33	3.05	2.93	5.00	5.42	5.79	6.53	2.93
rajkut	Onmarricu	Std. Dev.	1.874	1.963	1.907	2.204	2.073	1.767	1.403	1.869
	Total	Mean	3.74	3.16	3.27	5.48	4.99	6.02	6.42	2.92
	t Valu		5.444	0.197	1.575	3.420	2.259	0.02	0.42	0.002
	Significance		0.021	0.658	0.211	0.066	0.134	0.339	0.603	0.968
	Significant	N	682	682	682	682	682	682	682	682
	Married	Mean	4.07	3.31	3.07	5.26	5.02	6.40	5.98	2.89
	Mairicu	Std. Dev.	2.155	1.891	1.883	1.731	2.114	1.707	1.930	1.801
		N Sta. Dev.	118	118	118	118	118	118	118	118
TOTAL	Unmarried	Mean	4.39	3.16	2.92	4.86	5.10	6.05	6.33	3.10
(FROM GUJARAT)	Unmarried	Std. Dev.	2.160	1.912	1.981	1.839	2.166	1.839		1.795
	Total								1.659	
	1 otal t valu	Mean	4.12 2.230	3.29 0.629	3.05 0.660	5.20	5.03 0.153	6.35 4.154	6.03 3.404	2.92 1.371
						5.106				
	Significance		0.136	0.428	0.417	0.024	0.696	0.042	0.065	0.242
	Statistic is signifi			C. Dei	DEDE: P	wfo	CET: C. C	otru DND	Donies -	l Dotte
	VFM: Value For I				rekr: Pei	normance;	Sr 1: Saf	ety; DNP:	Design and	rattern;
	MTNC: Maintena	nce, entk: Ei	iviioiiment	rnenaiy						

• From table 5.4.150, it was observed that, in overall i.e. in Gujarat, out of all eight factors i.e., value for money, quality of paint, price of paint, performance, safety issues, designs and patterns, maintenance and environment friendliness, only design and pattern (t value = 4.154; p value = 0.042) was the factor which had significantly different effect on married and

unmarried respondents' choice of green paints brand while no other factor had significantly different effect during choice of green paint brands among married and unmarried respondents. From mean score, it was also observed that married respondents (Mean = 6.40) had lesser effect of design and pattern factor compared to unmarried respondents (Mean = 6.05).

- In Vadodara, only performance of the paint (t value = 4.366; p value = 0.038) was the factor which had significantly different effect on married and unmarried respondents' choice of green paints brand while no other factor had significantly different effect during choice of green paint brands among married and unmarried respondents. From mean score, it was also observed that married respondents (Mean = 5.18) had lesser effect of performance of the paint factor compared to unmarried respondents (Mean = 4.48).
- In Ahmedabad, only price of the paint (t value = 7.370; p value = 0.007) and environment friendliness of paint (t value = 15.033; p value = 0.000) were factors which had significantly different effect on married and unmarried respondents' choice of green paints brand while no other factor had significantly different effect during choice of green paint brands among married and unmarried respondents. From mean score, it was also observed that married respondents (Mean = 3.27) had lesser effect of price of the paint factor compared to unmarried respondents (Mean = 4.00) had lesser effect of price of the paint factor compared to married respondents (Mean = 2.73).
- In Surat, only maintenance (t value = 5.196; p value = 0.024) was the factor which had significantly different effect on married and unmarried respondents' choice of green paints brand while no other factor had significantly different effect during choice of green paint brands among married and unmarried respondents. From mean score, it was also observed that married respondents (Mean = 5.18) had higher effect of maintenance factor compared to unmarried respondents (Mean = 6.33).
- In Rajkot, only value for money (t value = 5.444; p value = 0.021) was the factor which had significantly different effect on married and unmarried respondents' choice of green paints brand while no other factor had significantly different effect during choice of green paint brands among married and unmarried respondents. From mean score, it was also observed that married respondents (Mean = 3.59) had higher effect of value for money factor compared to unmarried respondents (Mean = 4.33). (Ref. Table 5.4.150)

Table 5.4.151: Mean comparison of average preference rank assigned to effecting factors regarding attitude towards selection of environment friendly paint brand across monthly income groups of respondents.

C''	Monthly Income	64.4.4.			Rea	asons for B	rand Pre	ference		
City	(Indian Rupee)	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR
		N	79	79	79	79	79	79	79	79
	<=29166.67	Mean	3.38	2.66	2.99	4.84	5.62	6.81	6.48	3.25
		Std. Dev.	1.842	1.632	1.691	1.454	1.835	1.528	1.624	1.918
		N	64	64	64	64	64	64	64	64
	29166.68-46250.00	Mean	3.73	3.33	3.11	5.28	5.03	6.28	6.62	2.59
87 1 1		Std. Dev.	1.802	2.086	1.895	1.804	2.123	1.618	1.618	1.466
Vadodara		N	57	57	57	57	57	57	57	57
	>46250.00	Mean	4.30	3.28	3.18	5.19	4.89	6.44	6.09	2.61
		Std. Dev.	1.842	1.830	2.122	1.807	2.177	1.743	1.618	1.962
	Total	Mean	3.76	3.05	3.08	5.08	5.23	6.54	6.42	2.86
	F value		4.181	2.959	0.176	1.434	2.543	2.025	1.766	3.119
	Significance L	evel	0.017	0.054	0.839	0.241	0.081	0.135	0.174	0.46
		N	97	97	97	97	97	97	97	97
	<=29166.67	Mean	4.82	3.31	3.18	4.78	4.79	6.06	5.71	3.26
		Std. Dev.	2.513	1.944	1.931	1.816	2.145	1.914	2.245	1.710
		N	38	38	38	38	38	38	38	38
	29166.68-46250.00	Mean	4.79	2.89	2.97	5.08	5.29	6.26	5.95	2.74
Ahmedabad		Std. Dev.	1.877	1.752	2.007	1.715	2.192	1.841	2.013	1.655
Ammedabad		N	65	65	65	65	65	65	65	65
	>46250.00	Mean	3.60	3.11	3.15	5.34	4.88	6.92	6.52	2.48
		Std. Dev.	1.748	1.855	1.743	1.603	2.103	1.461	1.393	1.511
	Total	Mean	4.42	3.17	3.13	5.02	4.92	6.38	6.02	2.90
	F value		6.847	0.708	0.163	2.029	0.747	4.737	3.365	4.673
	Significance I		0.001	0.494	0.846	0.134	0.475	0.010	0.037	0.010
	*****	N	62	62	62	62	62	62	62	62
	<=29166.67	Mean	4.52	3.87	2.74	5.06	5.03	6.61	5.16	3.00
		Std. Dev.	2.400	1.877	1.792	1.697	2.104	1.712	2.189	1.899
	20177 (0 1727) 00	N	62	62	62	62	62	62	62	62
	29166.68-46250.00	Mean	4.92	3.53	2.47	5.40	4.74	6.15	5.81	2.98
Surat		Std. Dev.	2.651 76	1.744	1.647	1.420	2.297	1.809	1.782	1.769
	. 4/250.00	N	4.26	76 3.91	76 2.87	76 5.21	76 5.17	76 6.61	76 4.95	76 3.03
	>46250.00	Mean								
	Ta4-1	Std. Dev. Mean	2.424 4.55	1.974 3.78	1.886 2.71	1.769 5.23	2.156 5.00	1.541	2.147 5.28	1.869 3.00
	Total F value	wiean	1.192	0.791	0.879	0.662	0.672	6.46 1.627	3.134	0.009
	Significance I	evel	0.306	0.791	0.879	0.662	0.672	0.199	0.046	0.009
	Significance L	N	34	34	34	34	34	34	34	34
	<=29166.67	Mean	2.79	2.47	3.21	5.59	5.71	5.68	7.38	3.18
	~_2/100.07	Std. Dev.	1.647	1.581	1.553	1.654	1.624	1.821	.817	1.678
		N	98	98	98	98	98	98	98	98
	29166.68-46250.00	Mean	4.00	3.24	3.46	5.47	4.93	6.12	6.24	2.53
	27100.00-T0230.00	Std. Dev.	1.816	1.927	2.101	1.840	2.249	1.778	1.771	1.568
Rajkot		N	68	68	68	68	68	68	68	68
	>46250.00	Mean	3.85	3.38	3.03	5.43	4.72	6.04	6.19	3.35
	.020000	Std. Dev.	1.903	1.924	2.066	2.146	2.087	1.740	1.567	2.264
	Total	Mean	3.74	3.16	3.27	5.48	4.99	6.02	6.42	2.92
	F Value		5.726	2.885	0.941	0.081	2.576	0.809	7.639	4.355
	Significance I	evel	0.004	0.058	0.392	0.922	0.079	0.447	0.001	0.014
	Significance I	. 101	0.004	0.030	0.374	0.744	0.073	U.77/	0.001	0.014

Table 5.4.151 Cont...

Table 5.4.151 Cont...

City	Monthly Income (Indian Rupee) <=29166.67 29166.68-46250.00	Statistics	Reasons	for Bran	d Prefere	nce				
City	(Indian Rupee)	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR
		N	272	272	272	272	272	272	272	272
	<=29166.67	Mean	4.08	3.14	3.03	4.96	5.20	6.36	6.02	3.19
		Std. Dev.	2.331	1.860	1.786	1.681	2.016	1.788	2.050	1.806
		N	262	262	262	262	262	262	262	262
	29166.68-46250.00	Mean	4.27	3.28	3.07	5.35	4.96	6.19	6.19	2.68
TOTAL		Std. Dev.	2.095	1.901	1.964	1.717	2.216	1.748	1.790	1.608
(GUJARAT)		N	266	266	266	266	266	266	266	266
	>46250.00	Mean	4.00	3.44	3.05	5.29	4.92	6.50	5.89	2.89
		Std. Dev.	2.029	1.917	1.946	1.836	2.125	1.642	1.825	1.941
	Total	Mean	4.12	3.29	3.05	5.20	5.03	6.35	6.03	2.92
	F value		1.040	1.695	0.034	3.864	1.361	2.221	1.627	5.367
	Significance L	evel	0.354	0.184	0.966	0.021	0.257	0.109	0.197	0.005
	Statistic is significant a	at 0.05 level		•				•		
	VFM: Value For Money; QLT: Quality; PRC: Price; PERF: Performance; SFT: Safety; DNP: Design and Pattern; MTN									MTNC:
	Maintenance; ENFR: En	nvironment Fri	endly							

- From table 5.4.151, it was observed that in Gujarat, there was a distinct effect of Environment Friendliness of Paints (F value = 5.367; p value = 0.005) and Performance of the Product (F value = 3.864; p value = 0.021) factors on respondents' preference for Green Paints among respondents with different level of monthly income i.e., less or equal to Rs.29166.67, from Rs.29166.68 to Rs.46250 and above Rs.46250. While, for all other factors i.e., Value for Money (F value = 1.040; p value = 0.354), Quality of the paint (F value = 1.695; p value = 0.184), Price of the paint (F value = 0.034; p value = 0.966), Safety issues (F value = 1.361; p value = 0.257), Designs and patterns (F value = 2.221; p value = 0.109) and Maintenance (F value = 1.627; p value = 0.197), there wasn't a different level of effect on purchaser of green paints among people with different level of monthly income. From mean score, it was observed that environment friendliness of paint was the most preferred factor for selection of ecofriendly paints among people with monthly income from Rs.29166.67 to Rs.46250 (Mean = 2.68) followed by people with monthly income above Rs.46250 (Mean = 2.89). For people with monthly income up to Rs.29166.67, most affecting factors to their purchase of ecofriendly paints were Price (Mean = 3.03) and Quality (Mean = 3.14) of paints. While design and pattern was the least affecting factors among respondents with monthly income up to Rs.29166.67 (Mean = 6.72), monthly income from Rs.29166.67 to Rs.46250 (Mean = 6.08) and monthly income above Rs.46250 (Mean = 6.89).
 - \circ From post-hoc analysis (Annexure A38), performance (Significance = 0.038) and Environment Friendliness (Significance = 0.005) factors had significantly different

- effect on choice of eco-friendly paints among respondents with monthly income up to Rs.29166.67 and respondents with monthly income from Rs.29166.68 to Rs.46250.
- In Vadodara, it was observed that there was a distinct effect of Environment Friendliness of Paints (F value = 3.119; p value = 0.046) and Value for Money (F value = 4.181; p value = 0.017) factors on respondents' preference for Green Paints among respondents with different level of monthly income i.e., less or equal to Rs.29166.67, from Rs.29166.68 to Rs.46250 and above Rs.46250. While, for all other factors i.e., Quality of the paint (F value = 2.959; p value = 0.054), Price of the paint (F value = 0.176; p value = 0.839), Performance of the paint (F value = 1.434; p value = 0.241), Safety issues (F value = 2.543; p value = 0.081), Designs and patterns (F value = 2.025; p value = 0.135) and Maintenance (F value = 1.766; p value = 0.174), there wasn't a different level of effect on purchaser of green paints among people with different level of monthly income. From mean score, it was observed that environment friendliness of paint was the most preferred factor for selection of eco-friendly paints among people with monthly income from Rs.29166.67 to Rs.46250 (Mean = 2.59) followed by people with monthly income above Rs.46250 (Mean = 2.61). For people with monthly income up to Rs.29166.67, most affecting factors to their purchase of eco-friendly paints were Price (Mean = 2.99) and Quality (Mean = 2.66) of paints. While design and pattern was the least affecting factors among respondents with monthly income up to Rs.29166.67 (Mean = 6.81) and monthly income above Rs.46250 (Mean = 6.44). While, for people with monthly income from Rs.29166.67 to Rs.46250 (Mean = 6.62), maintenance was the least effecting factor on their selection of eco-friendly paint brand.
 - o From post-hoc analysis (Annexure − A39), value for money (Significance = 0.017) factor had significantly different effect on choice of eco-friendly paints among respondents with monthly income up to Rs.29166.67 and respondents with monthly income above Rs.46250. While, there was no significant difference, in peoples' choice of eco-friendly paint brands due to environment friendliness of paint, between any specific pair of people with different monthly incomes.
- In Ahmedabad, it was observed that there was a distinct effect of Value for Money (F value = 6.847; p value = 0.001), Designs and patterns (F value = 4.737; p value = 0.010), Maintenance (F value = 3.365; p value = 0.037) and Environment Friendliness of Paints (F value = 4.673; p value = 0.010), factors on respondents' preference for Green Paints among respondents with

different level of monthly income i.e., less or equal to Rs.29166.67, from Rs.29166.68 to Rs.46250 and above Rs.46250. While, for all other factors i.e., Quality of the paint (F value = 0.708; p value = 0.494), Price of the paint (F value = 0.163; p value = 0.846), Performance of the Product (F value = 2.029; p value = 0.134) and Safety issues (F value = 0.747; p value = 0.475), there wasn't a different level of effect on purchaser of green paints among people with different level of monthly income. From mean score, it was observed that environment friendliness of paint was the most preferred factor for selection of eco-friendly paints among people with monthly income from Rs.29166.67 to Rs.46250 (Mean = 2.74) followed by people with monthly income above Rs.46250 (Mean = 2.48). For people with monthly income up to Rs.29166.67, most affecting factors to their purchase of eco-friendly paints were Price (Mean = 3.18) and Quality (Mean = 3.31) of paints. While design and pattern was the least affecting factors among respondents with monthly income up to Rs.29166.67 (Mean = 6.06), monthly income from Rs.29166.67 to Rs.46250 (Mean = 6.26) and monthly income above Rs.46250 (Mean = 6.92).

- o From post-hoc analysis (Annexure A40), value for money factor had significantly different effect on choice of eco-friendly paints among respondents with monthly income up to Rs.29166.67 and respondents with monthly income above Rs.46250 (Significance = 0.003). While among respondents with monthly income from Rs.29166.68 to Rs.46250 and respondents with monthly income above Rs.46250 (Significance = 0.030) there was also significantly different effect of value for money factor during their purchase of green paints.
- For design and pattern, factor had significantly different effect on choice of ecofriendly paints among respondents with monthly income up to Rs.29166.67 and respondents with monthly income above Rs.46250 (Significance = 0.011).
- Maintenance factor also had significantly different effect on choice of eco-friendly paints among respondents with monthly income up to Rs.29166.67 and respondents with monthly income above Rs.46250 (Significance = 0.038). Similarly, environment friendliness factor had significantly different effect on choice of eco-friendly paints among respondents with monthly income up to Rs.29166.67 and respondents with monthly income above Rs.46250 (Significance = 0.013).

- In Surat, it was observed that there was a distinct effect of maintenance of paints (F value = 3.134; p value = 0.046) factor on respondents' preference for Green Paints among respondents with different level of monthly income i.e., less or equal to Rs.29166.67, from Rs.29166.68 to Rs.46250 and above Rs.46250. While, for all other factors i.e., Value for Money (F value = 1.192; p value = 0.306), Quality of the paint (F value = 0.791; p value = 0.455), Price of the paint (F value = 0.879; p value = 0.417), Performance of the Product (F value = 0.662; p value = 0.517), Safety issues (F value = 0.672; p value = 0.512), Designs and patterns (F value = 1.627; p value = 0.199) and Environment friendliness of paint (F value = 0.009; p value = 0.991), there wasn't a different level of effect on purchaser of green paints among people with different level of monthly income. From mean score, it was observed that price of paint was the most effecting factor for selection of eco-friendly paints among people with monthly income from Rs.29166.67 to Rs.46250 (Mean = 2.47) followed by people with monthly income up to Rs.29166.67 (Mean = 2.74) and people with monthly income above Rs.46250 (Mean = 2.87). While design and pattern was the least affecting factors among respondents with monthly income up to Rs.29166.67 (Mean = 6.61), monthly income from Rs.29166.67 to Rs.46250 (Mean = 6.15) and monthly income above Rs.46250 (Mean = 6.61).
 - From post-hoc analysis (Annexure A41), maintenance (Significance = 0.000) factor had significantly different effect on choice of eco-friendly paints among respondents with monthly income above Rs.46250 and respondents with monthly income from Rs.29166.68 to Rs.46250.
- In Rajkot, it was observed that there was a distinct effect of Value for Money (F value = 5.726; p value = 0.004), Maintenance (F value = 7.639; p value = 0.001) and Environment Friendliness of Paints (F value = 4.355; p value = 0.014), factors on respondents' preference for Green Paints among respondents with different level of monthly income i.e., less or equal to Rs.29166.67, from Rs.29166.68 to Rs.46250 and above Rs.46250. While, for all other factors i.e., Quality of the paint (F value = 2.885; p value = 0.058), Price of the paint (F value = 0.941; p value = 0.392), Performance of the Product (F value = 0.081; p value = 0.922), Safety issues (F value = 2.576; p value = 0.079) and Designs and patterns (F value = 0.809; p value = 0.447), there wasn't a different level of effect on purchaser of green paints among people with different level of monthly income. From mean score, it was observed that the most effective factor for selection of eco-friendly paints among people with monthly income from

Rs.29166.67 to Rs.46250 (Mean = 2.74) was environment friendliness of paint while for people with monthly income above Rs.46250 (Mean = 2.48) it was price factor. For people with monthly income up to Rs.29166.67, most effecting factor to their purchase of eco-friendly paints was Quality (Mean = 2.47) of paints. While maintenance was the least effecting factors among respondents with monthly income up to Rs.29166.67 (Mean = 7.38), monthly income from Rs.29166.67 to Rs.46250 (Mean = 6.24) and monthly income above Rs.46250 (Mean = 6.19). (Ref. Table 5.4.151)

- o From post-hoc analysis (Annexure A42), value for money factor had significantly different effect on choice of eco-friendly paints among respondents with monthly income up to Rs.29166.67 and respondents with monthly income from Rs.29166.68 to Rs.46250 (Significance = 0.005). While among respondents with monthly income up to Rs.29166.67 and respondents with monthly income above Rs.46250 (Significance = 0.023) there was also significantly different effect of value for money factor during their purchase of green paints. Maintenance factor also had significantly different effect on choice of eco-friendly paints among respondents with monthly income up to Rs.29166.67 and respondents with monthly income from Rs.29166.68 to Rs.46250 (Significance = 0.002). While among respondents with monthly income up to Rs.29166.67 and respondents with monthly income above Rs.46250 (Significance = 0.002) there was also significantly different effect of value for money factor during their purchase of green paints.
- Similarly, environment friendliness factor had significantly different effect on choice of eco-friendly paints among respondents with monthly income from Rs.29166.68 to Rs.46250 and respondents with monthly income above Rs.46250 (Significance = 0.021).

Table 5.4.152: Mean comparison of average preference rank assigned to effecting factors regarding attitude towards selection of environment friendly paint brand across per capita income groups of respondents.

Cit	PER CAPITA	St. 1* 1*	Reasons for Brand Preference									
City	INCOME	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR		
		N	69	69	69	69	69	69	69	69		
	LOW	Mean	3.45	2.91	2.94	4.88	5.46	6.80	6.55	3.03		
		Std. Dev.	1.676	1.797	1.773	1.491	1.922	1.441	1.623	1.902		
		N	61	61	61	61	61	61	61	61		
	MODERATE	Mean	3.69	3.25	3.16	5.11	4.92	6.36	6.44	3.07		
Vadadawa		Std. Dev.	2.133	1.997	1.899	1.872	2.108	1.732	1.587	1.731		
Vadodara		N	70	70	70	70	70	70	70	70		
	HIGH	Mean	4.11	3.01	3.14	5.24	5.26	6.43	6.26	2.51		
		Std. Dev.	1.732	1.814	1.980	1.681	2.104	1.699	1.674	1.784		
	Total Mean		3.76	3.05	3.08	5.08	5.23	6.54	6.42	2.86		
	I	value	2.312	0.535	0.284	0.811	1.167	1.398	0.575	1.972		
	Signifi	icance Level	0.102	0.587	0.753	0.446	0.313	0.249	0.563	0.142		
		N	94	94	94	94	94	94	94	94		
	LOW	Mean	4.78	3.19	3.24	4.86	4.68	6.23	5.65	3.26		
		Std. Dev.	2.519	1.792	1.966	1.887	2.186	1.811	2.198	1.753		
	MODERATE	N	45	45	45	45	45	45	45	45		
		Mean	4.56	2.87	2.76	5.04	5.38	6.24	6.27	2.93		
Ahmedabad		Std. Dev.	2.018	1.890	1.708	1.429	2.059	1.956	1.935	1.601		
Ammedabad	HIGH	N	61	61	61	61	61	61	61	61		
		Mean	3.77	3.34	3.23	5.25	4.93	6.70	6.41	2.34		
		Std. Dev.	1.774	1.999	1.856	1.709	2.097	1.637	1.553	1.436		
	Total	Mean	4.42	3.17	3.13	5.02	4.92	6.38	6.02	2.90		
	I	3.959	0.854	1.156	0.908	1.631	1.440	3.238	5.798			
	Signifi	0.021	0.427	0.317	0.405	0.198	0.239	0.041	0.004			
		N	65	65	65	65	65	65	65	65		
	LOW	Mean	4.57	3.97	2.72	5.22	4.89	6.45	5.14	3.02		
		Std. Dev.	2.424	1.895	1.824	1.700	2.130	1.820	2.228	1.875		
		N	61	61	61	61	61	61	61	61		
	MODERATE	Mean	4.84	3.21	2.72	5.18	4.93	6.28	5.70	3.16		
Surat		Std. Dev.	2.511	1.603	1.854	1.784	2.344	1.685	1.745	1.864		
	HIGH	N	74	74	74	74	74	74	74	74		
		Mean	4.28	4.08	2.68	5.27	5.14	6.64	5.05	2.86		
		Std. Dev.	2.540	1.978	1.713	1.483	2.109	1.567	2.164	1.800		
	Total Mean F value		4.55	3.78	2.71	5.23	5.00	6.46	5.28	3.00		
		0.824	4.2121	0.016	0.051	0.246	0.751	1.882	0.441			
	Signii	icance Level	0.440 49	0.016 49	0.984 49	0.950 49	0.782 49	0.473 49	0.155 49	0.644 49		
Rajkot	LOW	N Mean		2.88		5.49		5.73	7.00	2.76		
			3.39 1.858	1.844	3.33 1.930	1.685	5.43 1.958	1.868	1.291	1.479		
	MODERATE HIGH	Std. Dev. N	95	95	95	95	95	95	95	95		
		N Mean	4.04	3.23	3.24	5.51	4.73	6.09	6.22	2.94		
			1.839	1.997		1.934	2.180					
		Std. Dev. N	1.839	56	2.072 56	1.934 56	2.180 56	1.751 56	1.715 56	1.912 56		
_		Mean	3.55	3.29	3.27	5.41	5.05	6.14	6.25	3.04		
	шен		1.858	1.745	1.995	2.087	2.110	1.721	1.654	2.149		
	Total	Std. Dev. Mean	3.74		3.27	5.48	4.99	6.02	6.42	2.149		
		3./4	3.16	3.47	3.40	4.77	0.02	0.42				
			2 442	0.727	0.020	0.045	1 920	0.054	4 2 4 0	0.206		
	F	Value icance Level	2.442 0.090	0.737 0.480	0.028 0.972	0.045 0.956	1.829 0.163	0.854 0.427	4.249 0.016	0.296 0.744		

Table 5.4.152 Cont...

Table 5.4.152 Cont...

City	PER CAPITA INCOME	Statistics	Reasons for Brand Preference									
			VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR		
	LOW	N	277	277	277	277	277	277	277	277		
		Mean	4.15	3.25	3.06	5.06	5.06	6.34	5.99	3.05		
		Std. Dev.	2.279	1.865	1.884	1.724	2.088	1.765	2.047	1.776		
		N	262	262	262	262	262	262	262	262		
	MODERATE	Mean	4.23	3.17	3.02	5.26	4.93	6.23	6.16	3.02		
TOTAL		Std. Dev.	2.141	1.888	1.927	1.807	2.182	1.761	1.743	1.801		
(GUJARAT)	HIGH	N	261	261	261	261	261	261	261	261		
		Mean	3.96	3.45	3.06	5.29	5.10	6.49	5.95	2.69		
		Std. Dev.	2.036	1.926	1.887	1.723	2.096	1.656	1.875	1.810		
	Total	Mean	4.12	3.29	3.05	5.20	5.03	6.35	6.03	2.92		
	F value		1.090	1.567	0.040	1.344	0.463	1.553	0.902	3.391		
	Significance	0.337	0.209	0.961	0.261	0.629	0.212	0.406	0.034			
	Statistic is significant at 0.05 level											
	VFM: Value For Money; QLT: Quality; PRC: Price; PERF: Performance; SFT: Safety; DNP: Design and Pattern; MTNC:									; MTNC:		
	Maintenance; ENFR: Environment Friendly											

- From table 5.4.152, it was observed that, in Gujarat, there was a distinct effect of environment friendliness of paints (F value = 3.391; p value = 0.034) factor on respondents' preference for Green Paints among respondents with different level of per capita income low, moderate and high.
 - However, form post-hoc analysis (Annexure A43), it was also observed that there wasn't strong significant difference in effect of environment friendliness of paints factor between people from any two per capita income groups pair i.e., low and moderate per capita income (Significance = 0.975), moderate and high per capita income (Significance = 0.106) and high and low per capita income (Significance = 0.06).
 - While, for all other factors i.e., Value for Money (F value = 1.090; p value = 0.337), Quality of the paint (F value = 1.567; p value = 0.209), Price of the paint (F value = 0.040; p value = 0.961), Performance of the Product (F value = 1.344; p value = 0.261), Safety issues (F value = 0.463; p value = 0.629), Designs and patterns (F value = 1.553; p value = 0.212) and maintenance of paint (F value = 0.902; p value = 0.406), there wasn't a different level of effect on purchase of green paints among people with different level of per capita income. From mean score, it was observed that environment friendliness of paint was the most effecting factor for selection of eco-friendly paints among people with low (Mean = 3.05), moderate (Mean = 3.02) and high (Mean = 2.69) per capita income. While design and pattern was the least affecting factors among

people with low (Mean = 6.34), moderate (Mean = 6.23) and high (Mean = 6.49) per capita income.

- It was observed that, in Vadodara, for all factors i.e., Value for Money (F value = 2.312; p value = 0.102), Quality of the paint (F value = 0.535; p value = 0.587), Price of the paint (F value = 0.284; p value = 0.753), Performance of the Product (F value = 0.811; p value = 0.446), Safety issues (F value = 1.167; p value = 0.313), Designs and patterns (F value = 1.398; p value = 0.249), maintenance of paint (F value = 0.575; p value = 0.563) and Environment friendliness of paint (F value = 1.972; p value = 0.142), there wasn't a different level of effect on purchase of green paints among people with different level of per capita income. However, from mean score it was observed that environment friendliness of paint was the most effecting factor for selection of eco-friendly paints among people with moderate (Mean = 3.07) and high (Mean = 2.51) per capita income. While, for respondents with low per capita income, quality of the paint (Mean = 2.91) was the most effecting factor on their choice of green paints brand. Moreover, design and pattern was the least affecting factors among people with low (Mean = 6.80) and high (Mean = 6.43) per capita income. While, for respondents with moderate per capita income, maintenance (Mean = 6.44) was the least effecting factor on their choice of green paints brand.
- In Ahmedabad, it was observed that there was a distinct effect of Value for Money (F value = 3.959; p value = 0.021), maintenance of paint (F value = 3.238; p value = 0.041) and environment friendliness of paints (F value = 5.798; p value = 0.004) factor on respondents' preference for Green Paints among respondents with different level of per capita income low moderate and high. While, for all other factors i.e., Quality of the paint (F value = 0.854; p value = 0.427), Price of the paint (F value = 1.156; p value = 0.317), Performance of the Product (F value = 0.908; p value = 0.405), Safety issues (F value = 1.631; p value = 0.198) and Designs and patterns (F value = 1.440; p value = 0.239), there wasn't a different level of effect on purchase of green paints among people with different level of per capita income. From mean score, it was observed that environment friendliness of paint was the most effecting factor for selection of eco-friendly paints among people with high (Mean = 2.34) and price factors for people with moderate (Mean = 2.76) per capita income. While quality of paint (Mean = 3.19) was the most effecting factor for selection of green paint brands. Moreover,

design and pattern was the least affecting factors among people with low (Mean = 6.34) and high (Mean = 6.49) per capita income.

- Moreover, form post-hoc analysis (Annexure A44), it was also observed that, for Value for Money (Significance = 0.023) and Environment Friendliness of paint (Significance = 0.004), there was a strong significant difference between people from any two per capita income groups pair i.e., low and high per capita income.
- It was observed that, in Surat, there was a distinct effect of quality of paints (F value = 4.212; p value = 0.016) factor on respondents' preference for Green Paints among respondents with different level of per capita income low, moderate and high.
 - However, form post-hoc analysis (Annexure A45), it was also observed that there was a strong significant difference in effect of quality factor between people from any two per capita income groups pair i.e., moderate and high per capita income (Significance = 0.026).
 - While, for all other factors i.e., Value for Money (F value = 0.824; p value = 0.440), Price of the paint (F value = 0.016; p value = 0.984), Performance of the Product (F value = 0.051; p value = 0.950), Safety issues (F value = 0.246; p value = 0.782), Designs and patterns (F value = 0.751; p value = 0.473), maintenance of paint (F value = 1.882; p value = 0.155) and Environment Friendliness (F value = 0.441; p value = 0.644), there wasn't a different level of effect on purchase of green paints among people with different level of per capita income. From mean score, it was observed that price of paint was the most effecting factor for selection of eco-friendly paints among people with low (Mean = 2.72), moderate (Mean = 2.72) and high (Mean = 2.68) per capita income. While design and pattern was the least affecting factors among people with low (Mean = 6.45), moderate (Mean = 6.28) and high (Mean = 6.64) per capita income.
- It was observed that, in Rajkot, there was a distinct effect of maintenance on paints (F value = 4.249; p value = 0.016) factor on respondents' preference for Green Paints among respondents with different level of per capita income low, moderate and high. (Ref. Table 5.4.152)
 - However, form post-hoc analysis (Annexure A46), it was also observed that there was a strong significant difference in effect of maintenance factor between people from any two per capita income groups pair i.e., moderate and low per capita income (Significance = 0.024).

O While, for all other factors i.e., Value for Money (F value = 2.442; p value = 0.090), Quality of paint (F value = 0.737; p value = 0.480), Price of the paint (F value = 0.028; p value = 0.972), Performance of the Product (F value = 0.045; p value = 0.956), Safety issues (F value = 1.829; p value = 0.163), Designs and patterns (F value = 0.854; p value = 0.427) and Environment Friendliness (F value = 0.296; p value = 0.744), there wasn't a different level of effect on purchase of green paints among people with different level of per capita income. From mean score, it was observed that environment friendliness of paint was the most effecting factor for selection of eco-friendly paints among people with low (Mean = 2.76), moderate (Mean = 2.94) and high (Mean = 3.04) per capita income. While maintenance was the least affecting factors among people with low (Mean = 7.00), moderate (Mean = 6.22) and high (Mean = 6.25) per capita income.

Table 5.4.153: Mean comparison of average preference rank assigned to effecting factors regarding attitude towards selection of environment friendly paint brand across family size of respondents.

C':	Family Size	G	Reasons for Brand Preference								
City	(Members)	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR	
	,	N	154	154	154	154	154	154	154	154	
	1-4	Mean	3.71	3.08	3.10	5.12	5.31	6.51	6.42	2.75	
		Std. Dev.	1.920	1.865	1.885	1.606	2.005	1.650	1.672	1.686	
		N	46	46	46	46	46	46	46	46	
Vadodara	5+	Mean	3.91	2.93	3.02	4.93	4.93	6.63	6.39	3.24	
		Std. Dev.	1.644	1.867	1.880	1.914	2.175	1.569	1.483	2.183	
	Total	Mean	3.76	3.05	3.08	5.08	5.23	6.54	6.42	2.86	
	t value		0.431	0.228	0.057	0.446	1.203	0.204	0.013	2.618	
	Significance Level		0.512	0.634	0.811	0.505	0.274	0.652	0.911	0.107	
		N	147	147	147	147	147	147	147	147	
	1-4	Mean	4.52	3.32	3.00	5.07	4.89	6.33	5.94	2.90	
		Std. Dev.	2.178	1.983	1.887	1.744	2.081	1.847	2.035	1.693	
		N	53	53	53	53	53	53	53	53	
Ahmedabad	5+	Mean	4.13	2.74	3.49	4.87	4.98	6.53	6.25	2.91	
		Std. Dev.	2.394	1.483	1.825	1.732	2.308	1.660	1.839	1.608	
	Total	Mean	4.42	3.17	3.13	5.02	4.92	6.38	6.02	2.90	
	t value		1.195	3.820	2.678	0.550	0.069	0.489	0.929	0.000	
	Significan	ce Level	0.276	0.052	0.103	0.459	0.794	0.485	0.336	0.997	
		N	124	124	124	124	124	124	124	124	
	1-4	Mean	4.48	3.75	2.62	5.25	4.99	6.61	5.35	2.94	
		Std. Dev.	2.529	1.885	1.756	1.469	2.117	1.622	2.069	1.754	
	5+	N	76	76	76	76	76	76	76	76	
Surat		Mean	4.64	3.83	2.84	5.18	5.00	6.22	5.16	3.11	
		Std. Dev.	2.442	1.865	1.833	1.902	2.298	1.771	2.098	1.977	
	Total	Mean	4.55	3.78	2.71	5.23	5.00	6.46	5.28	3.00	
	t value		0.196	0.083	0.723	0.075	0.001	2.530	0.423	0.363	
	Significan	ce Level	0.659	0.773	0.396	0.784	0.980	0.113	0.516	0.547	
		N	115	115	115	115	115	115	115	115	
	1-4	Mean	3.48	2.98	3.30	5.61	5.22	5.97	6.45	2.99	
		Std. Dev.	1.764	1.878	1.938	1.909	2.081	1.685	1.613	1.917	
	5+	N	85	85	85	85	85	85	85	85	
Rajkot		Mean	4.11	3.40	3.24	5.29	4.68	6.09	6.38	2.82	
		Std. Dev.	1.940	1.891	2.108	1.914	2.139	1.887	1.662	1.840	
	Total	Mean	3.74	3.16	3.27	5.48	4.99	6.02	6.42	2.92	
	t Val		5.683	2.400	0.044	1.324	3.155	0.258	0.105	0.387	
	Significan		0.018	0.123	0.834	0.251	0.077	0.612	0.746	0.534	
	1	N	540	540	540	540	540	540	540	540	
	1-4	Mean	4.06	3.28	3.00	5.24	5.10	6.37	6.05	2.89	
		Std. Dev.	2.158	1.921	1.878	1.691	2.069	1.718	1.905	1.753	
TOTAL	5+	N	260	260	260	260	260	260	260	260	
(FROM GUJARAT)		Mean	4.23	3.31	3.13	5.11	4.88	6.32	6.00	3.00	
		Std. Dev.	2.155	1.841	1.938	1.872	2.219	1.758	1.878	1.898	
	Total Mean		4.12	3.29	3.05	5.20	5.03	6.35	6.03	2.92	
	t value		1.160	0.038	0.836	0.982	1.942	0.154	0.151	0.644	
	Significan	0.282	0.845	0.361	0.322	0.164	0.695	0.697	0.422		
	Statistic is sign			DDC D:	DEDE	.	CET C	C. DATE	D : .	I.D	
	VFM: Value For Money; QLT: Quality; PRC: Price; PERF: Performance; SFT: Safety; DNP: Design and Pattern; MTNC: Maintenance; ENFR: Environment Friendly										

• From table 5.4.153, it was observed that, in Gujarat overall as well as in Vadodara, Surat and Ahmedabad, there was almost similar effect of all factors i.e., Value for Money, Quality of Paint, Price of Paint, Performance, Safety issues, Design and Pattern, Maintenance and

Environment Friendliness of Paint, among people with family size above 4 and people with family size up to 4.

• While, in Rajkot only, there was a significant difference in effect of value for money (t value = 5.683; p value = 0.018) factor on their choice of eco-friendly paint brands among respondents with different family size i.e., family size up to 4 members and above 4 members. Moreover, from mean score, it could be said that people with family size up to 4 (Mean = 3.48) had greater effect of value for money factor on their choice of eco-friendly paints compared to people with family size above 4 (Mean = 4.11). However, other factors had similar effect on people with family size up to 4 and family size above 4. (Ref. Table 5.4.153)

Table 5.4.154: Mean comparison of average preference rank assigned to effecting factors regarding attitude towards selection of environment friendly paint brand across family types of respondents.

C:t-:	Family	Statistics	Reasons for Brand Preference								
City	Type	Statistics	VFM	QLT	PRC	PERF	SFT	DNP	MTNC	ENFR	
	Nuclear	N	138	138	138	138	138	138	138	138	
		Mean	3.70	2.99	3.09	5.17	5.35	6.53	6.44	2.74	
		Std. Dev.	1.924	1.820	1.878	1.533	2.031	1.635	1.612	1.654	
		N	62	62	62	62	62	62	62	62	
Vadodara	Joint	Mean	3.89	3.19	3.06	4.87	4.95	6.55	6.35	3.13	
		Std. Dev.	1.709	1.957	1.898	1.963	2.068	1.626	1.670	2.131	
	Total	Mean	3.76	3.05	3.08	5.08	5.23	6.54	6.42	2.86	
	t value		0.453	0.533	0.006	1.396	1.610	0.006	0.122	1.976	
	Significa	nce Level	0.502	0.466	0.938	0.239	0.206	0.938	0.727	0.161	
		N	147	147	147	147	147	147	147	147	
	Nuclear	Mean	4.54	3.36	3.13	5.03	4.90	6.25	5.90	2.86	
		Std. Dev.	2.243	1.958	1.903	1.771	2.121	1.861	2.082	1.684	
		N	53	53	53	53	53	53	53	53	
Ahmedabad	Joint	Mean	4.08	2.62	3.13	5.00	4.94	6.74	6.34	3.04	
		Std. Dev.	2.209	1.522	1.830	1.664	2.205	1.571	1.663	1.629	
	Total	Mean	4.42	3.17	3.13	5.02	4.92	6.38	6.02	2.90	
	t value		1.715	6.173	0.000	0.009	0.013	2.852	1.878	0.456	
	Significa	nce Level	0.192	0.014	0.993	0.923	0.911	0.093	0.172	0.500	
	Nuclear	N	129	129	129	129	129	129	129	129	
		Mean	4.58	3.66	2.60	5.25	4.96	6.64	5.35	2.97	
		Std. Dev.	2.539	1.873	1.739	1.495	2.159	1.540	2.056	1.709	
	Joint	N	71	71	71	71	71	71	71	71	
Surat		Mean	4.48	4.00	2.90	5.18	5.06	6.14	5.15	3.07	
		Std. Dev.	2.419	1.867	1.861	1.892	2.235	1.892	2.122	2.066	
	Total	Mean	4.55	3.78	2.71	5.23	5.00	6.46	5.28	3.00	
	t v	alue	0.077	1.522	1.336	0.071	0.087	4.132	0.398	0.139	
	Significa	nce Level	0.781	0.219	0.249	0.790	0.769	0.043	0.529	0.710	
		N	121	121	121	121	121	121	121	121	
	Nuclear	Mean	3.58	3.05	3.24	5.50	5.24	5.99	6.51	2.88	
		Std. Dev.	1.783	1.839	1.979	1.963	2.049	1.686	1.613	1.805	
	Joint	N	79	79	79	79	79	79	79	79	
Rajkot		Mean	4.00	3.33	3.32	5.43	4.61	6.06	6.28	2.99	
		Std. Dev.	1.961	1.966	2.060	1.844	2.175	1.904	1.656	2.003	
	Total	Mean	3.74	3.16	3.27	5.48	4.99	6.02	6.42	2.92	
	t V	alue	2.467	1.046	0.070	0.071	4.331	0.078	0.984	0.167	
	Significa	nce Level	0.118	0.308	0.792	0.791	0.039	0.781	0.322	0.684	
		N	535	535	535	535	535	535	535	535	
	Nuclear	Mean	4.12	3.27	3.01	5.23	5.11	6.36	6.05	2.86	
TOTAL (FROM GUJARAT)		Std. Dev.	2.191	1.889	1.886	1.700	2.094	1.703	1.914	1.708	
	Joint	N	265	265	265	265	265	265	265	265	
		Mean	4.12	3.34	3.11	5.15	4.88	6.33	6.01	3.05	
		Std. Dev.	2.092	1.906	1.921	1.854	2.168	1.787	1.861	1.973	
	Total	Mean	4.12	3.29	3.05	5.20	5.03	6.35	6.03	2.92	
	t value		0.000	0.245	0.439	0.360	2.142	0.042	0.076	2.078	
	Significa	nce Level	0.995	0.621	0.508	0.549	0.144	0.837	0.783	0.150	
	Statistic is significant at 0.05 level										
		e For Money; (ince; SFT:	Safety; Di	NP: Design a	nd	
	Pattern; MTNC: Maintenance; ENFR: Environment Friendly										

• From table 5.4.154, it was observed that, in Gujarat overall as well as in Vadodara, there was almost similar effect of all factors i.e., Value for Money, Quality of Paint, Price of Paint,

- Performance, Safety issues, Design and Pattern, Maintenance and Environment Friendliness of Paint, among people with nuclear family and people with joint family.
- In Ahmedabad, there was a significant difference in effect of quality of paints (t value = 6.173; p value = 0.014) factor on their choice of eco-friendly paint brands among respondents with different family type i.e., nuclear and joint. Moreover, from mean score, it could be said that people with joint family (Mean = 2.62) had greater effect of quality factor on their choice of eco-friendly paints compared to people with nuclear family (Mean = 3.36). However, other factors had similar effect on people with nuclear family and people with joint family.
- In Surat, there was a significant difference in effect of designs and patterns in paints (t value = 4.132; p value = 0.043) factor on their choice of eco-friendly paint brands among respondents with different family type i.e., nuclear and joint. Moreover, from mean score, it could be said that people with joint family (Mean = 6.14) had greater effect of designs and patterns factor on their choice of eco-friendly paints compared to people with nuclear family (Mean = 6.64). However, other factors had similar effect on people with nuclear family and people with joint family.
- In Rajkot, there was a significant difference in effect of safety issues in paints (t value = 4.331; p value = 0.039) factor on their choice of eco-friendly paint brands among respondents with different family type i.e., nuclear and joint. Moreover, from mean score, it could be said that people with joint family (Mean = 4.61) had greater effect of safety factor on their choice of eco-friendly paints compared to people with nuclear family (Mean = 5.24). However, other factors had similar effect on people with nuclear family and people with joint family. (Ref. Table 5.4.154)